

 Arduino

 A Step-by-Step Guide for Absolute Beginners

 [image:]

 Daniel Bell

Please note the information contained within this document is for educational and entertainment purposes only. No warranties of any kind are expressed or implied. Readers acknowledge that the author is not engaging in the rendering of legal, financial, medical or professional advice. Please consult a licensed professional before attempting any techniques outlined in this book.

 By reading this document, the reader agrees that under no circumstances is the author responsible for any losses, direct or indirect, which are incurred as a result of the use of the information contained within this document, including, but not limited to, errors, omissions, or inaccuracies.

 Arduino: A Step-by-Step Guide For Absolute Beginners

 Copyright © 2019 by Daniel Bell.

 All rights reserved. No part of this book may be used or reproduced in any manner whatsoever without written permission except in the case of brief quotations em- bodied in critical articles or reviews.

 Under no circumstances will any legal responsibility or blame be held against the publisher for any reparation, damages, or monetary loss due to the information herein, either directly or indirectly.

 Publisher: Amazon KDP & Guzzler Media LLC

 [image:]

 http://www.guzzlermedia.com

 Contact: contact@guzzlermedia.com

 Book and Cover design by Angela W.T.

 ISBN:

 Imprint: Independently published

 First Edition: December 2019

 CONTENTS

 Introduction

 1-Arduino Basics

 What is Arduino?

 Board Description

 Installing the Arduino IDE

 Arduino Program Structure

 Arduino Comments

 The Arduino Serial Library

 2- Arduino Data Types, Variables and Constants

 Arduino Data Types

 What are Variables?

 3-Arduino Operators

 Arithmetic Operators

 Comparison Operators

 Boolean Operators

 4-Control Statements

 if Statement

 if…else Statement

 if…else if …else statement

 switch case Statement

 5- Arduino Loops

 while Loop

 do…while Loop

 for Loop

 Nested for Loop

 infinite Loop

 6- Arduino Functions

 What is a Function?

 Function Declaration

 Function Call

 7- Arduino Arrays

 Declaring an Array

 Assign Values to an Array

 Accessing Array Values

 Using Arrays

 Modifying Array Elements

 8- Arduino Strings

 String Character Arrays

 Manipulating String Arrays

 String Manipulation Functions

 Array Bounds

 String Object

 9- Time in Arduino

 The delay() Function

 The delayMicroseconds() Function

 The millis() Function

 The micros() Function

 10- I/O Functions in Arduino

 INPUT Pins

 Pull-up Resistors

 Output Pins

 The pinMode() Function

 The digitalWrite() Function

 The analogRead() Function

 The analogReference() Function

 Character Functions

 Conditional Operator

 ABOUT THE AUTHOR

 Acknowledgments

 Introduction

 There is a high demand for electronic projects. Most electronic projects interact with the real world. The Arduino board is a great tool for one to develop hardware projects that interact with the real world. Arduino is the best platform for anyone who is beginning to program electronics. For you to load your code to the Arduino board, you are not required to have an extra hardware device. This is not the case with the previous programmable circuit boards. When using the Arduino board, you are only required to have a USB cable. This cable will allow you to connect the board to your computer. The cable will act as a pathway for loading code from your computer to the board. The same cable will also allow the Arduino board to draw charge from your computer. This means that it is not a must for you to charge the Arduino board directly from the power socket, but you can simply do it from your computer. This shows that it is easy to use the board.

 The Arduino platform also uses a simplified version of the C++ programming language. This has made it easy for beginners to learn to program. Arduino has also provided a standard form factor, breaking out the functions of the microcontroller into a package that is more accessible. The Arduino Uno is one of the versions of the Arduino boards and a great choice for beginners. The Arduino boards come with LEDs that can be programmed to light. This book is an excellent guide for you to learn how to program the Arduino board. Enjoy reading!

 1-Arduino Basics

 In this chapter, you will learn the basics of Arduino.

 What is Arduino?

 Arduino is a programmable circuit board that can be integrated into a number of simple and complex markerspace projects. The box comes with a microcontroller that can be programmed to control and sense objects in the real world. When Arduino responds to sensors and inputs, it can interact with a wide variety of outputs like motors, LEDs, and displays. Note that the board is open source. Because of the low cost and the flexibility of Arduino, it has become the best choice for makers in need of developing interactive hardware projects.

 Arduino was introduced in 2005 by Massimo Banzi in Italy. The goal of introducing the board was to provide engineers with a low cost way of creating hardware projects. There are different types of Arduino boards. This difference has been brought about by the use of different microcontrollers. However, all of these boards share one thing common, which is that they are all programmed using the Arduino IDE.

 Different boards have different inputs and outputs, operating voltage, speed, form factor, etc.

 Board Description

 In this section, we will discuss the different parts of an Arduino board:

 	 The Microcontroller/ Main Chip

 This is the brain of the Arduino board. This is the part which is programmed. It is the one responsible for running the code, hence it can be seen as the CPU (Central Processing Board) of the board.

 This chip has some legs, which are usually plugged into the socket. These can be seen once it is taken out of the socket. However, they are not referred to as “legs” but “pins”.

 	 Power Jack and Supply

 There are two ways on how you can supply power to your Arduino board. You may choose to use a USB connector to establish a connection to a computer or some portable power jack, or you may choose to plug it to the wall adapter. The USB can be used for powering and programming. The DC is only used for powering the board, and it is the best if you are in need of connecting the board and leaving it for some long-term project.

 	 USB Jack and Interface

 The USB Jack is the cable that helps you connect your board to the computer. You can use any computer, provided it has a USB port.

 Some processor chips will fail when you are using a USB cable for connection to a computer. In such a case, you will have to use the serial interface. You must have a USB to the serial interface translator chip.

 	 The LEDs

 The Arduino comes with some lights from which you can draw ideas regarding what it is up to. The lights are referred to as LEDs. The Arduino board comes with 4 LEDs which are L, RX, TX, and ON. On the UNO board, you will find three of these at the center and one on the right side.

 The ON LED will turn to green once you have powered the Arduino board. In case you find it off or flickering, then just check on your power connection.

 The RX and TX boards will blink whenever data is being sent from the board or being received on the board. The TX LED will light yellow once you send data from Arduino to the computer USB port. The RX LED will light yellow whenever data is sent to Arduino from the computer’s USB port.

 The LED is the one that you are able to control. The other 3 LEDS usually light automatically. The L LED has been connected to the main chip of the Arduino. This can be turned on and off once you begin to write the code.

 	 Headers

 This is the main part of the Arduino board. These are the two lines of sockets that line up with edges of the circuit board. The thin sockets will allow you to plugin some wires into them. The wires can, in turn, be connected to any types of electronic parts including sensors, LEDs, displays, motors etc.

 USB Fuse

 The little USB fuse protects the computer and the Arduino. There are high chances that all types of wires will be connected to the Arduino, which may cause an accidental short on the wires. The importance of this fuse comes during this time. It is resettable, and in such occurrence, it will just open up in the same way a fuse or circuit breaker works. This will protect your board from damage.

 	 Reset Button

 This button is located next to the USB jack. However, on some other boards, you may find it on the right side. It is the button that can be used for restarting the Arduino. Restarting the board will only take a second, and it is done if it gets stuck or if you need to re-run some program.

 	 Power up Test

 We are now ready to power on our Arduino board. You can simply do this by connecting one end of your USB cable to the Arduino board and the other one to your computer. The computer will act as the source of power for the Arduino.

 If you are using Arduino UNO, then the USB cable should have its end as square B-type. The USB cable should be plugged directly to the computer port. After you are sure that you are able to power the Arduino then upload the sketches, you will be set. You can then plug it to the other ports. For you to know whether the power source is working correctly, just check on whether the ON LED is lit green. The L or yellow LED may also blink or light up, which the same case with the RX and TX LEDs.

 Installing the Arduino IDE

 Now that you know the different parts of the Arduino board, we can learn how to prepare the Arduino IDE. After learning this, we will be ready to upload out the first program to the board. You will learn how to setup the board and set it ready to receive the program through a USB cable.

 Ensure that you have the Arduino board and a USB cable. After assembling these, the next step is to download the Arduino IDE. You can download this from the following URL:

 https://www.arduino.cc/en/Main/Software

 Download the right version of Arduino based on the operating system that you are using. Once the download completes, unzip the downloaded file.

 You can now power your board. The board can draw power from a USB connection to your computer or from an external power supply. Just connect your Arduino board to your computer via a USB cable. You should see the green power LED glow.

 It is now time to launch the Arduino IDE. Open the folder where you unzipped the Arduino IDE. Double the .exe file to start the IDE.

 The software will be opened and you will be able to create a new project or open an existing one. To create a new project, click File then chooses New. To open an existing project, click File, choose Example, Basics and then Blink.

 You need to select the type of board that you are using. To avoid any errors when you are loading programs from the IDE to the board, ensure that you select the correct board, that is, the type of board you select in the IDE must match the type of board that is connected to your computer via the USB cable.

 To select the board, click Tools then choose Board.

 Next, you should select the serial port of your Arduino board. Click Tools then choose Serial Port. If you find it hard to know the serial port, just disconnect the Arduino board from the computer then look for the entry that disappears. This should be the Arduino board. You can then reconnect the board and choose that port.

 Anytime you need to load a program to the Arduino board, just click the Upload button on the IDE. Note that an Arduino program is referred to as a sketch.

 Arduino Program Structure

 An Arduino program can be divided into the following three parts:

 	 Structure

 	 Values

 	 Functions

 The Structure itself is made of two main functions:

 	 Setup() function

 	 Loop() function

 These are implemented in a program as follows:

 void setup() // runs once, once the sketch starts

 {

 }

 void loop() // run over and over, or loop

 {

 }

 The setup() function runs only once your Arduino code, commonly referred to as a sketch is started. It is within this function where you should initialize pin modes, variables, begin to use libraries, etc.

 Once you have called the setup() function to initialize the initial values, the loop() function will loop consecutively to allow your program to respond. Use it when you need to control your Arduino function actively.

 Blinkie

 We will write a program that will cause an Arduino pin to blink. Just write the following code in the Arduino IDE:

 /*

 * Blink

 *

 *A basic Arduino example. It turns the LED on for one second,

 * then off for one second, and this continues

 */

 int ledPin = 13; // LED connected to digital pin 13

 void setup() // run once after the sketch is started

 {

 pinMode(ledPin, OUTPUT); // sets digital pin as the output

 }

 void loop() // run over and over again

 {

 digitalWrite(ledPin, HIGH); // sets LED on

 delay(1000); // waits for a second

 digitalWrite(ledPin, LOW); // sets LED off

 delay(1000); // waits for a second

 }

 The sketch should keep on blinking the Arduino LED. The pauses between on and off should last for a second.

 Arduino Comments

 We use comments to explain to readers the meaning of various lines of code, making the code more understandable. The Arduino compiler will do nothing to the comments, but it will simply ignore/skip them.

 To mark a single line comment in Arduino, we add // at the beginning of the line. This is demonstrated below:

 // A single line comment in Arduino.

 When the Arduino compiler encounters the above line, it will skip/ignore it and jump to the next line which has not been commented out.

 Multi-line comments are denoted by wrapping them within /* and */. Here is an example:

 /* A multiline comment in Arduino */

 The Arduino Serial Library

 It is possible for us to communicate from the Arduino board to the computer via a USB port. This can be done using the Serial Library.

 A library refers to a collection of procedures, and all of these procedures are related. The Serial Library allows us to send data back to the computer. In serial data transfer, the transfer of data is done in terms of bits, one bit after another.

 For us to pass information between the computer and the Arduino, we have to set the pin to either high or low. The technique used for switching the LED on and off can be employed to send data. Note that the size of data being transferred is measured in terms of bits and bytes. During the compilation/verification step, the sketch is always converted into binary data. Once you begin to upload the sketch to your Arduino board, it is transferred bit after a bit and then stored in the chip.

 Write the sketch given below:

 /*

 * Hello World!

 *

 * Hello World example in Arduino.

 * It demonstrates how to send data to the board

 */

 void setup() // run once after the sketch starts

 {

 Serial.begin(9600); // Serial library set up at 9600 bps

 Serial.println("Hello world"); // To print hello

 }

 void loop() // run again and again

 {

 }

 Consider the following line extracted from the above code:

 Serial.begin(9600); // Serial library set up at 9600 bps

 This is referred to as a library procedure call. The name of the library is Serial, and inside this, we have a procedure named begin(). This statement helps us set the board with the transfer rate which is needed. This rate has been set to 9600 bits per second.

 The next line in the code is as follows:

 Serial.println("Hello world"); // To print hello

 This line is also calling the Serial library, and a procedure named println which has been defined inside that library. This is the short hand for the print line. The text which will be printed has been enclosed within double quotes.

 You can now compile the sketch then upload it to the Arduino. You will see the sketch being launched after some seconds.

 Suppose we need the Arduino to print the Hello world text after every second. This can be done using the following code:

 /*

 * Hello world

 */

 void setup() // run once after the sketch is started

 {

 Serial.begin(9600); // set up the Serial library to 9600 bps

 }

 void loop() // run again and again

 {

 Serial.println("Hello world"); // prints hello world

 delay(1000);

 }

 The code will print Hello world severally after each second. The delay(1000); statement helps us delay the Arduino for one second before printing the text.

 Other than text, it is also possible for us to print out numbers. Consider the following example:

 /*

 * Math in Arduino

 */

 int x = 5;

 int y = 10;

 int z = 20;

 void setup() // run once after the sketch is started

 {

 Serial.begin(9600); // set up a Serial library to 9600 bps

 Serial.println("Here is the math: ");

 Serial.print("x = ");

 Serial.println(x);

 Serial.print("y = ");

 Serial.println(y);

 Serial.print("z = ");

 Serial.println(z);

 Serial.print("x + y = "); // add

 Serial.println(x + y);

 Serial.print("x * z = "); // multiply

 Serial.println(x * z);

 Serial.print("z / y = "); // divide

 Serial.println(z / y);

 Serial.print("y - z = "); // subtract

 Serial.println(y - z);

 }

 void loop()

 {

 }

 You can now upload the code to the Arduino board and observe the output. You will see the numbers and the output from the various mathematical operations that we have performed in the code. Notice how we have used the print and println procedures so as to print on a single line. The latter has the new line character which moves the cursor to the next line while the former doesn’t have.

 Consider the following statement extracted from the code:

 Serial.println(x);

 The statement tells Arduino to access the value of variable x and print it. Note that this has not been enclosed within double quotes. If you ask Arduino to do the math, it can do it perfectly. The following statement adds the values of variables x and y:

 Serial.println(x);

 The input to the Arduino is a calculation.

 Arduino has a library named math.h that provides us with a number of procedures that we can call to perform some complex mathematical calculations such as square root, sin, tan, etc.

 Suppose we have a right angled triangle. If you are given the two sides, you can calculate the hypotenuse. Below is the formula for this:

 h = √(x2 + y2)

 In Arduino, the value of h can be obtained by calling the sqrt() function from the math.h library. Consider the example given below demonstrates this:

 # include "math.h" // include Math Library

 int x = 3;

 int y = 4;

 int h;

 void setup() // run once, once the sketch is started

 {

 Serial.begin(9600); // set up the Serial library to 9600 bps

 Serial.println("Calculating the value of hypotenuse");

 Serial.print("x = ");

 Serial.println(x);

 Serial.print("y = ");

 Serial.println(y);

 h = sqrt(x*x + y*y);

 Serial.print("h = ");

 Serial.println(h);

 }

 void loop() // this is needed even if it is empty

 {

 }

 The statement #include "math.h" helps us instruct Arduino to include a library named math.h since we need to use it in the sketch. The sqrt() function has been defined in this library.

 h = sqrt(x*x + y*y);

 The above line helps us get the sum of squares of x and y, then find their square root, and the result will be assigned to the variable h for the hypotenuse.

 	 Arduino is a programmable circuit board that can be integrated into a number of simple and complex markerspace projects.

 	 The box has a microcontroller that can be programmed to control and sense objects in the real world.

 	 The code is written in the Arduino IDE. The code is referred to as a sketch.

 	 The Arduino IDE is an open source software.

 	 An Arduino program is made up of two main functions, the setup() and loop() functions.

 	 The setup() function runs only once your Arduino code is started. It is within this function where you should initialize pin modes, variables, begin to use libraries, etc.

 	 The loop() function loops consecutively to allow the program to respond.

2- Arduino Data Types, Variables and Constants

 In this chapter, you will learn the various data types supported in Arduino programming. We will also discuss Arduino variables.

 Arduino Data Types

 Data types allow us to declare variables belonging to different data types. The type of data type will determine the amount of memory space allocated to the variable and how the stored bit pattern will be interpreted.

 See Arduino simply as C++ with support for libraries and some built-in assumptions that make the coding process simple. Here are the common data types in Arduino:

 	 Boolean- has a size of 8 bits. Takes logical values true/false.

 	 byte- has a size of 8 bits. It is an unsigned number with values ranging from 0-255

 	 char – it has a size of 8 bits. It is a signed number with values ranging from -128 to 127. The compiler tries to interpret this data type as a character in some cases, which may return unexpected results.

 	 unsigned char- it has a size of 8 bits. It is similar to 'byte'. This means that you can use byte if you need more clarity.

 	 word- has a size of 16 bits. It is an unsigned number with values ranging from 0-65535

 	 unsigned int- it has a size of 16 bits. It is similar to 'word'. You can use 'word' if you need more clarity and brevity.

 	 int- it has a size of 16 bits. It is a signed number whose values range from -32768 to 32767. It is the common data type used for general purpose variables in the Arduino example code that comes with the IDE.

 	 unsigned long- is has a size of 32 bits. It is an unsigned number whose values range from 0-4,294,967,295. It is commonly used to store the output of the millis() function, which gives the number of milliseconds for which the current code has been running.

 	 long- it has a size of 32 bits. It is a signed number with values ranging from -2,147,483,648 to 2,147,483,647

 	 float- it has a size of 32 bits. It is a signed number with values ranging from -3.4028235E38 to 3.4028235E38.

 What are Variables?

 A variable is a pointer to a memory location. Each variable belongs to a particular data type. The data type of the variable determines the amount of space reserved for that variable as well as the type of data that can be stored in that location.

 Variable Scope

 The scope is simply a section or a place within a program. The variable scope is the place within a program where a variable can be defined. It determines the places from which a variable can be accessed. In Arduino, we can define a variable in any of the following three places:

 	 Inside a block or a function. Such a variable is known as a local variable.

 	 Inside the definition of function parameters, known as formal parameters.

 	 Outside all functions. Such a variable is called a global variable.

 Local Variables

 A local variable is a variable that has been defined inside a block or a function. Such a variable can only be accessed and used by the statements that have been defined inside that block or function. Local variables cannot function outside their own.

 The following example shows how to declare a local variable in Arduino:

 Void setup () {

 }

 Void loop () {

 int a, b ;

 int c ;

 a = 0;

 b = 0;

 c = 5;

 }

 We have defined three local variables, a, b and c. Their values have been initialized thereafter. The three variables are local to the loop() function. Since they have been defined inside this function, they can only be accessed and used by the variables defined inside this function. Even the initialization of the variables had to be done within the same function.

 Global Variables

 In Arduino, global variables are defined outside all functions, at the top of the program. The global variables hold the value of variables throughout the life of the program. Since such variables are defined outside all other functions, they can be accessed from any function defined in the program. Consider the example given below:

 Int T, S ;

 float z = 0 ;

 Void setup () {

 }

 Void loop () {

 int a, b ;

 int c ;

 a = 0;

 b = 0;

 c = 5;

 }

 In the above example, the variables T, S, and z are global variables. They have been defined outside all functions. This means that they can be accessed from within any function that is defined in the program.

 However, the variables a, b and c are local to the loop() function. They can only be accessed by statements that have been defined inside this function.

 	 A variable points to a memory location for storage of values.

 	 A variable must belong to a particular data type. The value of a variable can be changed.

 	 The name of a variable can only have letters, digits and an underscore. It must start with either a letter or an underscore.

 	 The scope of a variable is determined by the place of the definition of the variable within the sketch.

 	 The scope of a variable determines the place within the sketch from where the variable can be accessed.

 	 A local variable is a variable defined within a function. It can only be accessed from within that function.

 	 A global variable is a variable defined outside all functions. It can be accessed from anywhere within the program.

 3-Arduino Operators

 In this chapter, you will learn the various operators supported in Arduino.

 An operator is simply a symbol that instructs the compiler to perform a particular mathematical or logical operation. We can use an operator to check, change or even combine values. Examples of operators are the addition operator (+) that adds two numbers and the AND operator (&&) that combines two values of a Boolean type.

 Let us discuss the various operators that you can use in Arduino:

 Arithmetic Operators

 These operators are used to perform standard mathematical operations on the operands. Arduino supports the following arithmetic operators:

 	 Addition Operator (+)- for adding two operands.

 	 Subtraction Operator (-)- for subtracting the second operand from the first operand.

 	 Multiplication Operator (*)- multiplies both operands.

 	 Division Operator (/)- divides the numerator by the denominator.

 	 Modulo operator (%)- returns the remainder after division.

 The following example demonstrates how to use these types of operators:

 void loop () {

 int x = 7, y = 2, result;

 result = x + y;

 result = x - y;

 result = x * y;

 result = x / y;

 result = x % y;

 }

 We have declared three variables, x, y, and result. The variables x and y hold the values of the operands, while the variable result will hold the result of each arithmetic operation. The code should return the following:

 x + y = 9

 x – y = 5

 x * y = 14

 x / y = 3.5

 Remainder when x divided by y = 1

 Comparison Operators

 These types of operators are used to make comparisons between values. They are applied to two operands. Arduino supports the standard comparison operators that are supported in the C programming language. They include the following:

 	 Equal to the operator (==)- checks whether the values of two operands are equal or not. If the two are equal, the operator returns a TRUE.

 	 Not equal to the operator (!=)- checks whether the values of the two operators are equal or not. It becomes TRUE if the values of the operands are not equal.

 	 Greater than operator (>)- checks whether the value of the left operand is greater than the value of the right operand. If yes, the operator returns a TRUE.

 	 Less than operator (<)-checks whether the value of the left operand is less than the value of the right operand. If yes, the operator returns a TRUE.

 	 Greater than or equal to the operator (>=)-checks whether the value of the left operand is greater than or equal to the value of the right operand. If yes, the operator returns a TRUE.

 	 Less than or equal to the operator (<=)-checks whether the value of the left operand is less than or equal to the value of the right operand. If yes, the operator returns a TRUE.

 Consider the example given below:

 void loop () {

 int x = 7, y = 2

 bool result = false;

 if(x == y)

 result = true;

 else

 result = false;

 if(x != y)

 result = true;

 else

 result = false;

 if(x < y)

 result = true;

 else

 result = false;

 if(x > y)

 result = true;

 else

 result = false;

 if(x <= y)

 result = true;

 else

 result = false;

 if(x >= y)

 result = true;

 else

 result = false;

 }

 We have declared three variables, x, y, and result. The variables x and y hold the values of the operands, while the variable result will hold the result of each comparison operation. Note that the result is a Boolean variable, meaning that it can take a value of either true or false. The code should return the following:

 result = false

 result = true

 result = false

 result = true

 result = false

 result = false

 The value of x was initialized to 7 while that of y was initialized to 2. The operations have then been performed on these two values to return the above.

 Boolean Operators

 These operators are used to perform logical operations on operands. They include the following:

 	 Logical AND operator (&&) - Becomes TRUE when the operands are non-zero.

 	 Logical OR operator (||) - Becomes TRUE when one of the operands is non-zero.

 	 Logical NOT operator (!) - It reverses the logical state of an operand.

 For example:

 void loop () {

 int x = 7, y = 2

 bool result = false;

 if((x > y)&& (y < x))

 result = true;

 else

 result = false;

 if((x == y)|| (y < x))

 result = true;

 else

 result = false;

 if(!(x == y)&& (y < x))

 result = true;

 else

 result = false;

 }

 The code will return the following:

 result = true

 result = true

 result = true

 In the first operation, we are using the && Boolean operator. Both parts returned true, hence, true&&true is true.

 In our second operation, we are using the || Boolean operator. The first part evaluated to a false, while the second part evaluated to a true. Hence, false||true returns a true.

 In the last operation, we are using two Boolean operators, ! and &&. The first operation, x==y, will evaluate to a false. The second operation, y<x, will evaluate to a true. When the && operator is applied, false&&true will return a false. The ! operator was then applied as !false, which returned true.

 	 Arduino supports various types of operators. These are the same operators that are supported in C.

 	 Arithmetic operators help us perform various arithmetic/mathematical operations in Arduino.

 	 Comparison operators are used to performing comparison operations between the values of operands.

 	 Boolean operators help in performing logical operations on operands.

 4-Control Statements

 In this chapter, we will discuss the various decision making statements supported in Arduino.

 In decision making, we specify a condition or a set of conditions that are to be evaluated alongside the actions to be taken based on the outcome of the evaluation. The evaluation of the condition normally involves checking whether the condition is true or false. If true, a particular action is taken, if false, another action may be taken or nothing may be done.

 Arduino supports a number of statements that we can use for decision making. These will form the center of discussion in this chapter.

 if Statement

 This is a control flow statement used when we need to perform a set of different actions based on specified conditions that are either true or false. The statement takes the syntax given below:

 if (expression) {

 // statement(s)

 }

 The expression in the above syntax is simply the condition to be evaluated. If the condition is true, the statement(s) placed within the body of the if statement {} will be executed, otherwise, execution will jump to the first statement immediately after the body of the if, that is, after the closing curly brace }.

 For example:

 /* Defining global variables */

 int X = 2 ;

 int Y = 7 ;

 Void setup () {

 }

 Void loop () {

 /* checking boolean condition */

 if (X > Y) /* if condition is true, execute the following statement*/

 X++;

 /* checking boolean condition */

 If ((X < Y) && (Y != 0)) /* if condition is true, execute the following statement*/ {

 X += Y;

 Y--;

 }

 }

 We first created two global variables, X and Y. There values were initialized to 2 and 7 respectively. In the first, if statement, we are checking whether the value of variable X is greater than the value of variable Y. This is false, hence, the statement below this will not be executed. The expression in the second if statement will evaluate into a true because X is less than Y and Y is not equal to 0. The statements below this will be executed.

 The expression X += Y will add the values of X and Y and assign the result to the variable X, hence, the new value of X will become 9. The expression Y- - will decrease the value of Y by 1, hence, the new value of Y will become 6.

 if…else Statement

 This Arduino statement is made up of two statements, the if statement and the else statement. We use this statement when we need to specify the part that will be executed when the if the condition evaluates to a false. This is specified within the else part. It takes the syntax given below:

 if(expression) {

 // statement(s) to be executed if the Boolean expression is true

 } else {

 // statement(s) to be executed if the Boolean expression is false

 }

 For example:

 /* Defining a global variable */

 int X = 2 ;

 int Y = 7 ;

 Void setup () {

 }

 Void loop () {

 /* checking the boolean condition */

 if (X > Y) /* if condition is true, execute the following statement*/ {

 X++;

 }else {

 Y -= X;

 }

 }

 We defined two global variables, X and Y, and assigned them values 2 and 7 respectively. In the if condition, we are checking whether the value of X is greater than Y, which is false. This means that the statement below the if statement will not be executed. The Arduino compiler will then jump to execute the else part. Statement Y -=X will be executed. The value of X will be extracted from the value of Y and the result assigned to the variable Y. The new value of the variable will then become 5.

 if…else if …else statement

 This statement should be used when there is a need to test multiple conditions. In this statement, you should begin by a single if statement, followed by any number of else if statements and lastly an else statement. The last statement, that is, else will be executed when none of the previous conditions have evaluated to a true. This syntax is given below:

 if(expression 1) {

 // Executes when the expression 1 is true

 } else if(expression 2) {

 // Executes when the expression 2 is true

 } else if(expression 3) {

 // Executes when the expression 3 is true

 } else {

 // executes when none of the above conditions is true.

 }

 For example:

 /* Defining a global variable */

 int X = 2 ;

 int Y = 7 ;

 int z = 13;

 Void setup () {

 }

 Void loop () {

 /* checking the Boolean condition */

 if (X > Y) /* if condition is true, execute the following statement*/ {

 X++;

 }

 /* checking the Boolean condition */

 else if ((X == Y)||(Y < z)) /* if condition is true,

 execute the following statement*/ {

 z = Y* X;

 }else

 z++;

 }

 In the above example, we first created three global variables, X, Y, and z and initialized their values to 2, 9 and 13 respectively. In the if statement, we are checking whether the value of x is greater than the value of Y, which is false. This means that the statement below it, that is, X++, will not be executed. In the else, if statement, the whole expression will evaluate to a true because of the use of the || operator. The first part, X==Y, will evaluate to a false. The second part, Y<z, will evaluate to a true. false||true gives a true, hence, the statement below this expression will be executed. The values of X and Y will be multiplied to give the new value of z, which is 14. The execution of the program will halt there.

 switch case Statement

 Sometimes, we may have a very long if..else…if statement. The switch case statement acts as a substitute for this, especially when the pattern under evaluation is complex. It uses a number of case statements for performing different actions based on various conditions. It simply compares the value specified in the switch statement with the values specified using the case statements.

 The switch case statement stops execution immediately a matching case is found, meaning that the rest of the cases will not be evaluated. Here is the syntax for the switch statement:

 switch(variable){

 case value_1:

 //code for execution;

 break;

 case value_2:

 //code for execution;

 break;

 default:

 //code for execution if no case is matched;

 break;

 }

 The switch statement will get the value of the variable/expression at the top, then begin to compare it with the various cases. Once a case is matched, the statement within the case will be executed and the switch statement will halt the execution. The cases are executed from the top to the bottom, and when a case is not matched, the compiler will proceed to the next one. If none of all the cases are matched, the default part will be executed.

 Let us create an example to demonstrate this:

 Suppose we have a variable named state which can only take three possible states, 0, 1 and 3. There are three functions, each corresponding to each of these three states. This can be implemented using a switch case statement as shown below:

 switch (state) {

 case 0: Low();

 break;

 case 1: Mid();

 break;

 case 2: Hig();

 break;

 default: Message("Unknown state!");

 }

 When the value of the state variable is 0, the function Low() will be called. When the value of the variable 1, the function Mid() will be called. When the value of the variable is 2, the function Hig() will be called. This means that the function to be called will be determined by the case whose value is matched with the value of the state variable.

 	 Decision making helps us evaluate conditions and take actions based on the outcome of the evaluation.

 	 The if statement helps us evaluate a condition and take action if the evaluation becomes true.

 	 With the if…else statement, the if statement is executed if the condition is true while the else statement is executed if the condition is false.

 	 In the if…else…if statement, we can test many conditions and take action based on the true conditions.

 	 The switch statement makes it simple for us when we have multiple else if statements. The switch statement gets the value of a variable/expression and tries to compare it with other values specified using case to find a match.

5- Arduino Loops

 In this chapter, we will be discussing the various loop control statements supported in Arduino.

 Loops provide us with an automated way of performing certain tasks repetitively. This is the case when we need to execute part of our code repeatedly. The statements of code placed within a loop are executed sequentially, that is, in the order that you have written them. The loop will execute the statements from the first to the second etc.

 Here are the various loop statements supported in Arduino:

 while Loop

 The while loop will execute a statement or a set of statements as long as the provided condition is true. The loop will halt execution immediately the condition becomes false. The while loop takes the syntax given below:

 while (test_expression) {

 // statement(s)

 }

 If the test_expression is true, the statement(s) within the body of the while loop will be executed. The text_expression will be evaluated before each iteration. When it becomes false, the execution of the statement(s) will stop.

 Consider the example given below:

 void setup() {

 int x = 0;

 while (x < 10) {

 // repeat 10 times

 Serial.println(x);

 x++;

 }

 }

 void loop(){

 }

 In the above example, we have created a variable named x and initialized its value to 0. In the text expression placed inside the while loop, we are checking for whether the value of x is less than 10. If this is true, the statements placed within the body of the while will be executed. These will just print the values of x from 0 to 9.

 Note that 10 is not part of the output. This is because we use the less than symbol (<) symbol, meaning that the value of x must be less than 10. The moment the Arduino compiler finds the value of x is 10, it will stop execution immediately to avoid violating the while condition.

 Consider the following line of the code:

 Serial.println(x);

 This line will print the value of the variable x on the serial monitor window.

 do…while Loop

 In the while loop, we were evaluating the loop control condition at the top of the loop body. Due to this, we may have some cases were the body of the loop wuill never be executed. A good example is when the test_expression of the loop evaluates to a false on the first test.

 This is different from the do…while loop. The loop control condition is evaluated at the end of the loop body. This means that the loop body must be evaluated for at least once, even when the condition evaluates to a false for the first time. This type of loop takes the following syntax:

 do {

 statement(s);

 }

 while(condition);

 After the first iteration, when the condition evaluates to a true, control will jump back to the do part. If it evaluates to a false, the execution will continue downwards without going back to the loop. This means that as long as the condition is true, the loop body will keep on executing. Let us create an example that demonstrates this:

 void setup() {

 int sum = 0;

 Serial.begin(9600);

 do {

 sum = sum + 10;

 Serial.print("sum = ");

 Serial.println(sum);

 delay(500); // a delay of 500 milliseconds

 } while (sum < 50);

 }

 void loop() {

 }

 In the above example, we have declared an integer sum and initialized its value to a 0. We have then created a do…while loop. The test condition in the above example comes at the end of the loop body. This means that before this is evaluated, the body of the loop will have been executed once. In the first pass, the code will print a 10 as the value of the variable sum. The condition x<50 will then be evaluated and found to be true. The loop will then jump to the do and execute the loop body again to return a 20. Note that the statement sum = sum + 10 will increase the value of the variable sum by 10 after every iteration. This will continue until the loop finds itself violating the condition sum<50. This is when the execution of the loop will halt.

 for Loop

 This type of loop is good and efficient when you know the exact number of times that you need to repeat a task. The loop takes the following syntax:

 for (initial; condition; increment) {

 statement(s);

 }

 The initial part of the loop allows you to declare and initialize the variable that you will use to control the execution of the loop. For example, we can use a variable x. We can set it to x=5.

 The condition part is where you specify the condition that must be true for the loop body to be executed. In our case, this is where we specify that the value of variable x should be less than or equal to 10. We can set this to x<=10.

 The increment is where the flow will jump after every iteration. It specifies how we should modify the loop control variable after every iteration. This is where we add the x++ statement to increment the variable by 1 after every iteration.

 The compiler will evaluate the condition after every iteration to check whether it is true or false. If true, it will jump to the increment part then the loop body. This is repeated until the condition becomes false.

 Here is an example:

 void setup (void) {

 Serial.begin(9600);

 for (int x=0; x<10; x++)

 Serial.println(x);

 }

 void loop(void) {

 }

 The code will print the values of x from o to 9. We created a variable x and initialized its values to a 0. In the loop condition, we have specified that the value of x should be less than 10. The increment increases the value of x by 1 after every iteration. When the loop finds itself violating the loop condition, that is, x<10, it will stop the execution. That is why the code will return the values of x from 0 to 10.

 Nested for Loop

 We get a nested for loop when we add a for loop inside another for loop. For a single iteration of the outer loop, the inner loop will be executed fully. This means that if the outer loop is executed for 4 times, the inner loop will be executed 4 times for each, meaning that it will be executed 16 times.

 A nested for loop takes the following syntax:

 for (initial; condition; increment) {

 // statement (s)

 for (initial; condition; increment) {

 // statement (s)

 }

 }

 Consider the example given below:

 void setup (void) {

 Serial.begin(9600);

 for(x = 0; x<= 4; x ++) {

 //statements will executed 5 times

 for(y = 0; y<= 9; y++) {

 //statements will executed 10 times

 }

 }

 }

 void loop(void) {

 }

 In the outer for loop, we have initialized the variable x. In the inner for loop, we have initialized the variable y. For a single execution of the outer for loop, the inner for loop will run 10 times. Since the outer for loop will run for 5 times, the inner for loop will run for 50 times.

 infinite Loop

 This is a type of loop that will run forever. It does not have a terminating condition. An infinite loop can be implemented in a for loop, while loop or the do…while loop. All we need to do in these loops is to remove the loop control condition. The purpose of this condition is to state the circumstances under which should run and when it should halt the execution. When removed, we will not have a way of stating when the loop should stop the execution, hence, the loop will run forever.

 The following example demonstrates how to create an infinite loop with the for loop:

 void setup (void) {

 Serial.begin(9600);

 for (;;) {

 Serial.print("Hello World");

 }

 }

 void loop(void) {

 }

 When executed, the above loop will run forever. For each iteration, it will print Hello World.

 The following example demonstrates how to create an infinite loop using the while loop:

 void setup (void) {

 Serial.begin(9600);

 while (1) {

 Serial.print("Hello World");

 }

 }

 void loop(void) {

 }

 The code will print the Hello World statement forever. Instead of adding the condition inside the while loop, we only added a 1. This will always evaluate to a true, hence, the loop will run forever.

 The following example demonstrates how to create an infinite loop using the do…while loop:

 void setup (void) {

 Serial.begin(9600);

 do {

 Serial.print("Hello World");

 }

 while(1);

 }

 void loop(void) {

 }

 In the text condition, we have added a 1. This will always evaluate to a true, hence, the loop will print the statement Hello World forever.

 	 Arduino loops help us perform a set of tasks repetitively.

 	 The for loop can be used to iterate over a statement(s) over a fixed number of times.

 	 The while loop executes a task repetitively as long as a particular condition is true.

 	 The do…while loop must be executed for at least once, whether the test condition is true or false.

 	 Loop control statements help us alter the normal execution of a program.

 	 We can create infinite loops, which are loops that run forever.

 	 Infinite loops run forever because they lack a loop control condition.

6- Arduino Functions

 In this chapter, you will learn the use and various features of Arduino functions.

 What is a Function?

 A function refers to a set of statements that perform related tasks. Other than the setup() and the loop() functions in Arduino, it is possible for more functions to be defined within a program.

 An Arduino program can be subdivided into a set of functions. The way you sub-divide the code lies up to you, but it should be done in such a way that every function performs a certain task.

 When such code is grouped together and given a name, it becomes easy for you to reuse the code by calling and calling it again using the function name. Again, the code will become optimized since there will be no need for you to write it again. Suppose your goal is to check three numbers, 150, 230 and 450 to tell whether they are even or not. Without the use of a function, you will have to write the logic for the even number each time. This will be a repetition of code. However, by use of a function, you can write the logic only once and keep on calling it.

 When creating a function in an Arduino program, make sure that it lies outside the brackets of the setup() and the loop() functions.

 Function Declaration

 The work of a function declaration is to tell the Arduino compiler about the name of the function, its return type, and parameters. The function should be declared outside the two functions, that is, setup() and loop() functions, either at the top or at the bottom. To define a function in Arduino, we use the following syntax:

 returnType functionName(argument1, argument2, …)

 {

 //function body code

 }

 A function can return any value. The returnType denotes the data type of the value returned by the function. However, there are functions that will perform their tasks without returning values. In such a case, the return type should be void.

 The functionName is the name of the function. The functionName together with the parameter list form the function signature.

 See an argument as a placeholder. When you invoke a function, you pass a value to the argument. The value will be the actual parameter or argument. Note that each parameter is associated with a data type. Also, note that there are functions without arguments. The function body should have statements defining what the function should when invoked.

 The following example demonstrates how to define a function in Arduino:

 int sum (int a, int b) // function declaration {

 int c = 0;

 c = a+b ;

 return c; // return the value

 }

 void setup () {

 Statement(s)

 }

 Void loop () {

 }

 Above, we have defined a function named sum() that takes in two integer parameters, a and b. The function will add together the values of these two parameters and assign the result to the variable c. We could also have defined the function as follows:

 int sum (int , int) ; // function prototype

 void setup () {

 Statement(s)

 }

 Void loop () {

 }

 int sum (int a, int b) // function declaration {

 int c = 0;

 c = a+b ;

 return c; // return the value

 }

 In the second method, the function was declared just above the loop function.

 Function Call

 Defining a function is not enough. Defining a function helps us declare what it should do. We do not need it to perform a task. This can be achieved by calling the function. It is after the function call that the function does its work and returns the expected value.

 We pass the values of the parameters when calling or invoking the function. The arguments are then copied to the parameters for the function to operate on them. A function is called by its name. The values of the parameters are then passed inside in the order by which they were defined. The call to the function should be done within the loop() function as shown below:

 int sum (int a, int b) // function declaration {

 int c = 0;

 c = a+b ;

 return c; // return the value

 }

 void setup () {

 Statement(s)

 }

 Void loop () {

 int result = 0 ;

 result = sum (4,8) ; // function call

 Serial.println(result);

 }

 The code will print 12 upon execution. When calling the function within the loop() function, we have passed 4,8 to the name of the function, that is, sum. From the definition of the function, it should add the values of the two parameters, a and b. The 4 will become the value of parameter a while the 8 will become the value of parameter b. These two will be added to return a 12.

 In the second method of defining the function, we could have called it as follows:

 int sum (int , int) ; // function prototype

 void setup () {

 Statement(s)

 }

 Void loop () {

 int result = 0 ;

 result = sum (4, 8) ; // function call

 }

 int sum (int a, int b) // function declaration {

 int c = 0;

 c = a+b ;

 return c; // return the value

 }

 Again, the call to the function was done within the loop() function.

 Here is another example:

 void setup(){

 Serial.begin(9600);

 }

 void loop() {

 int x = 4;

 int y = 3;

 int z;

 z = multiplyFunction(x, y); // z now contains 12

 Serial.println(z);

 delay(500);

 }

 int multiplyFunction(int a, int b){

 int result;

 result = a * b;

 return result;

 }

 The code will print 12 when executed. We began by defining three integer variables, x, y, and z. The variables x and y were assigned values of 4 and 3 respectively. The variable z has been assigned the value that is returned by a function named multiplyFunction(). This is the value that should be printed as shown in the call to the println() function.

 In the last section of the program, we have defined what the multiplyFunction() should. The function takes two integer parameters, a and b and multiplies their values. The output of this should be assigned to the variable result.

 	 Arduino function groups together code that is intended to perform a similar or related task.

 	 To call a function, we use its name and pass the arguments to it. The function will return the expected result.

 	 In Arduino, functions should be defined outside the setup() and the loop() functions.

 	 The definition of the function can be done above or below the above two functions.

 7- Arduino Arrays

 Arrays are used for the storage of many values that belong to the same data type. The elements should all be either integers, strings, doubles etc. See an array as a container for storing many values that belong to the same data type in an ordered manner. When the elements are fetched from the array, they should be returned in the same order that they were added into the array.

 An array is defined by a name. The elements of the array are accessed by their position. The position of each element is referred to as an index. This means that we also access the elements using their indexes. The first element in the array is said to be at index 0 of the array while the last element is said to be at index n-1, where n is the total number of elements in the array.

 Declaring an Array

 With an array, you don’t have to declare all the variables. What you do is that you declare a single array and give it a name. You can then store the ages of different individuals into that array.

 Array declaration in Arduino involves telling the Arduino compiler the data type of the array elements, the array name and the number of elements to be stored in the array. An array is declared using the following syntax:

 type array_Name [arraySize];

 That is how we declare one-dimensional arrays in Arduino. The type can be any valid Arduino data type, the array_Name is the name you assign to the array while the arraySize is the number of elements you want to store in the array, and this must be an integer constant with a value greater than 0. For example:

 To create an array named age to store 10 elements, we can use the following statement:

 int age[11];

 We have declared an array named age to store 20 integers. The compiler will reserve the right amount of memory for this.

 Assign Values to an Array

 An array is used for storage of data. There are different ways through which we can add values into an array. The position of each element is denoted using an index, written inside square brackets []. For example:

 an_array[0] = 12; // assign a value of 12 to the 1st element

 an_array[1] = 11; // assign a value of 11 to the 2nd element, etc.

 an_array[2] = 9;

 an_array[3] = 14;

 an_array[4] = 97;

 In the above example, we have used array indexes to state the elements that should be stored in the respective indexes of the array named an_array. The element 12 will be stored at index 0, 11 at index 1, 9 at index 2, 14 at index 3 and 97 at index 4.

 The initialization could also have been done in a single line as follows:

 int an_array[5] = {12, 11, 9, 14, 97};

 The elements will be added to the array in the order that you have used to specify them. The value 12 will be stored at the index 0 of the array, the value 11 at index 1 of the array, the value 9 at index 2 of the array, etc.

 We can use a for loop to add values to an array. This requires us to create a loop variable that will iterate over the various indexes of the array. For example:

 int n[10] ; // n is an array of 10 integers

 void setup () {

 }

 void loop () {

 for (int p = 0; p < 10; ++p){// initialize array elements n to 0

 n[p] = 0; // set element at location p to 0

 Serial.print(p) ;

 Serial.print('\r') ;

 }

 In the above example, we have created the variable p as the loop variable. The for loop will create values 0 to 9, which will form the indexes of the array. At each iteration, a value of 0 will be assigned to each index of the array. This means that the array will store 10 0s.

 Accessing Array Values

 To access an element of an array, we only have to index the array. We only have to place the index at which the element is located within square brackets after the array name. The simplest way to access the elements of an array is by creating a for loop. We can use the loop to iterate over the elements of the array. For example:

 for (x = 0; x < 5; x++) {

 Serial.println(an_array[x]);

 }

 In the above example, we have created a for loop and a loop variable named x. The values of the variable will range between 0 and 4. The statement an_array[x] has then been used to access the values of the array at various indexes. In the first iteration, this will return the value stored at index 0 of the array an_array. In the second iteration, this will return the value stored at index 1 of array an_array, and this continues. These values will then be printed on the serial monitor window.

 Using Arrays

 Consider the example given below:

 int n[10] ; // n is an array of 10 integers

 void setup () {

 }

 void loop () {

 for (int p = 0; p < 10; ++p){// initialize array elements n to 0

 n[p] = 0; // set element at location p to 0

 Serial.print(p) ;

 Serial.print('\r') ;

 }

 for (int q = 0; q < 10; ++q){ // output each array element's value {

 Serial.print(n[q]) ;

 Serial.print('\r') ;

 }

 }

 In the above example, we have created an array named n to store a list of 10 integers. We have then used two for loops inside the loop() function. Inside the first for loop, we have created the variable p. This is the variable that we have used to iterate over the indexes of the array. This loop has been used to initialize the elements of the array n. It will create the 10 indexes of the array marking the positions where we should store the various elements.

 Consider the following line extracted from the code:

 n[p] = 0;

 The above line will initialize the values at all array indexes to 0. This means that the array will store 10 0s, right from index 0 to index 9. Consider the following line extracted from the code:

 Serial.print(p) ;

 This will print all the indexes of the array from 0 to 9 on the serial monitor window.

 In the second loop, we have created the variable q. This variable will be used to iterate over all the array indexes, right from index 0 to index 9. Consider the following line extracted from the code:

 Serial.print(n[q]) ;

 The n[q] will print the element stored in the index array q of the array n on the serial monitor window. This will happen after every iteration. Since the array holds elements 0 from index 0 to 9, this line will print a 0 after every iteration. At the end of it, it will return 10 0s.

 Consider the next example given below:

 void setup() {

 int an_array[5] = {12, 11, 9, 14, 97};

 int x;

 Serial.begin(9600);

 // display each array value on the serial monitor window

 for (x = 0; x < 5; x++) {

 Serial.println(an_array[x]);

 }

 }

 void loop() {

 }

 In the above example, we have created an array named an_array. This array is storing a list of 5 integers. The initialization of the array elements was done in the following line:

 int an_array[5] = {12, 11, 9, 14, 97};

 We have then used the variable x to iterate through the elements of the array. At each iteration, the code will print will print the value stored at a particular index of the array. The code will return all the 5 integers stored in the array. Consider the next example given below:

 void setup() {

 int an_array[5]; // an array to store 5 integer elements

 int x;

 Serial.begin(9600);

 an_array[0] = 12; // assign a value of 12 to the 1st element

 an_array[1] = 11; // assign a value of 11 to the 2nd element, etc.

 an_array[2] = 9;

 an_array[3] = 14;

 an_array[4] = 97;

 // display each array element in the serial monitor window

 for (x = 0; x < 5; x++) {

 Serial.println(an_array[x]);

 }

 }

 void loop() {

 }

 We began by creating an array named an_array to store 5 integers. We have then created an integer variable x that we will use to iterate through the elements of the array. This time, we have manually assigned elements to the array. Consider the following line extracted from the code:

 an_array[0] = 12;

 The above line simply tells the Arduino compiler to store the number 12 in index 0 of the array named an_array. This means that 12 will be the first value of the array named an_array. This has been done up to index 4 of the array since it will store only 5 elements. We have then used a for loop and the variable x to iterate over the elements of the array and print them on the serial monitor window.

 Modifying Array Elements

 To change the value of an array, we can use the assignment operator. If it is about changing the value of an array, we have to specify the index of the value and the new value that should be stored in that index. Of course, the index should be specified in square brackets []. For example:

 an_array[0] = 10;

 In the above example, we are changing the value stored at index 0 of an array named an_array to 10. This means that the new value of at index 0 of the array will become 10.

 	 An array is a data structure that stores elements of the same data type.

 	 The elements of an array are stored sequentially.

 	 The elements are also accessed sequentially.

 	 The elements of an array can be changed, but the array size cannot be changed.

 	 We can use the for loop to iterate over the array elements.

 8- Arduino Strings

 Strings are used for the storage of text. It can be used for the display of text on the Arduino IDE Serial Monitor window or on an LCD. We can also use Strings to store input received from users. A good example is the characters typed by a user on a keyboard that has been connected to the Arduino.

 There are two types of strings in Arduino programming:

 	 Arrays of characters. These are similar to the strings that are used in the C programming language.

 	 Arduino String. This is the type of string object that can be used in an Arduino sketch.

 String Character Arrays

 This is a type of string that is simply made up of a series of characters that belong to the char data type. As we stated previously, an array is a data structure that stores elements of the same data type. See a string as an array of char variables.

 A string is a special array with one extra element at the end of the string, whose value is always a zero (0). This is called a “null terminated string.” Here is an example that shows how we can create a string and display it on the serial monitor window:

 void setup() {

 char my_string[6]; // an array to hold a 5 character string

 Serial.begin(9600);

 my_string[0] = 'S'; // the string has 5 characters

 my_string[1] = 'a';

 my_string[2] = 'm';

 my_string[3] = 'm';

 my_string[4] = 'y';

 my_string[5] = 0; // the 6th element is a null terminator

 Serial.println(my_string);

 }

 void loop() {

 }

 The above example shows what a string is made up of, a set of printable characters and a 0 at the end. The purpose of the 0 is to show the end of the string. The string can be printed on the serial monitor window by calling the Serial.println() function. See that the first character of the string is an index 0 of the string.

 The same string can also be written more conveniently as shown below:

 void setup() {

 char my_string[] = "Sammy";

 Serial.begin(9600);

 Serial.println(my_string);

 }

 void loop() {

 }

 The compiler will calculate the size of the string array and then null terminate it automatically with a zero. This will create a 6-elements long array of five characters followed by a zero.

 Manipulating String Arrays

 We can create an Arduino sketch and use it to alter a string array. Consider the example given below:

 void setup() {

 char my_string[] = "I love coffee and cake"; // create a string

 Serial.begin(9600);

 // print out the string

 Serial.println(my_string);

 // delete a section of the string

 my_string[13] = 0;

 Serial.println(my_string);

 // substitute a word in the string

 my_string[13] = ' '; // replace the null terminator with space

 my_string[18] = 't'; // insert a new word

 my_string[19] = 'e';

 my_string[20] = 'a';

 my_string[21] = 0; // terminate the string

 Serial.println(my_string);

 }

 void loop() {

 }

 In the above example, we have created a string named my_string. We have then called Serial.println() function so as to print the string on the serial monitor window. This will print the whole string as follows:

 I love coffee and cake

 Next, we have deleted a section of the string. The deletion will begin from index 13 of the string. This has been achieved by the following line:

 my_string[13] = 0;

 The above line tells the compiler the section of the string my_string from index 13. This will delete the “and cake” part of the string. Now, when we print the string, it will return the following:

 I love coffee

 We now have a new string. Consider the following line extracted from the code:

 my_string[13] = ' ';

 We are trying to insert a new space so that we can insert a new word at the end of the sentence. We have replaced the null terminator of the string with space.

 It is after this that we have inserted the word tea into the string. This has been done from index 13 of the string. This will return the following:

 I love coffee and tea

 Note that the index 13 denotes the 14th character of the string. We shortened the string by replacing this character with a null terminating zero. This is the element at number 13 of the string when we count from 0.

 When we printed the string, it returned all characters up to the new null terminating zero. Note that the rest of the characters do not disappear, but they are still kept in the computer memory. This means that the length of the string is still the same. The difference is brought by the fact that any function working with the string will only be able to see the string up to the position of the first null terminator.

 In the sketch, the word cake was replaced with the word tea. Remember we had inserted a null terminator at position 13. We had to replace this will space so that we can have our string formatted as it was originally. This is normally done by overwriting individual characters. The result is normally that the string is actually terminated with two null characters, the original one at the end of the string then a new one to replace the 'e' in the word "cake". This will make no difference when the new string has been printed since the function that prints the string will stop printing the string characters after it encounters the first null terminator. Overall, the sketch should return the following output:

 I like coffee and cake

 I like coffee

 I like coffee and tea

 String Manipulation Functions

 In the previous example, we manipulated the string in a manual way. We had to access the individual characters of the string using their respective indexes. However, you can create your own functions and use them to manipulate the strings. This will make the task of manipulating strings easy for you. Some of these functions are borrowed from the C language library.

 The following example demonstrates how we can use some functions from the C language library to manipulate strings:

 void setup() {

 char my_string[] = "This is my string"; // create a string

 char outer_str[40]; // result from the string functions stored here

 int x; // a general purpose integer

 Serial.begin(9600);

 // print the string

 Serial.println(my_string);

 // get the string length, excluding the null terminator

 x = strlen(my_string);

 Serial.print("String length is: ");

 Serial.println(x);

 // get the array length, including null terminator

 x = sizeof(my_string); // sizeof() is not a C string function

 Serial.print("Size of the array: ");

 Serial.println(x);

 // copy a string

 strcpy(outer_str, my_string);

 Serial.println(outer_str);

 // add a string to the end of a string (append)

 strcat(outer_str, " sketch.");

 Serial.println(outer_str);

 x = strlen(outer_str);

 Serial.print("String length is: ");

 Serial.println(x);

 x = sizeof(outer_str);

 Serial.print("Size of the array outer_str[]: ");

 Serial.println(x);

 }

 void loop() {

 }

 The code should return the following upon execution:

 This is my string

 String length is: 17

 Size of the array: 18

 This is my string

 This is my string sketch.

 String length is: 25

 Size of the array outer_str[]: 40

 We began by creating a string. This string was given the name my_string. This string was then printed on the serial monitor window.

 To know the length of a string, use the strlen() function as we have done above. The string length is only determined by the printable characters and the null terminator is not included. Our string has a total of 17 characters, and 17 characters were printed on the serial monitor window.

 The sizeof() operator helped us get the length of the array that holds the string. This length will include the null terminator, meaning that it will be one length more than the length of the string.

 The sizeof() looks more like a function, but it is simply an operator. It is not included in the C string library. We used it to show that there is a difference between the size of the array and the size of the string.

 The strcpy() function was used to copy the string named my_string[] to the variable outer_str[] array. The strcpy() function will copy the second string passed to it into the first string. The outer_num[] array now has a copy of the string, but it only takes 18 elements of the array. This means that the array still has 22 free char elements. The elements will be found in the memory after the string.

 The propose of copying the string to the array was so that we could have some extra space in the array to be used in the next part of the sketch, in which we will be adding a new string to the end of the string.

 We have also used the sketch to join a string to another string. This process is known as concatenation. We have used the strcat() function for this. This function works by adding the second string that has been passed to it to the end of the first string. We then printed the string in order to see the length of the new length. We have also printed the length of the array in order to show that we have a string with 25 characters in an array that can accommodate 40 elements.

 Note that a 25-character long string will take 26 characters of the array so as to include the null terminating zero.

 Array Bounds

 Whenever workings with arrays and strings, it is advisable for one to work within the bounds of the array or the string. In our previous sketch, we created an array to hold a a set of 40 characters. This helps in reserving the memory space that will be used for the purpose of manipulating the string.

 If we had created a small array then we try to copy a string whose size is bigger than the size of the array, the string would then have been copied to the end of the array. The memory space beyond that of the array may have data that is very important, and our string may overwrite it. If we overrun the memory that is beyond the end of the string, it may crash the sketch or even cause unexpected behavior.

 String Object

 This is another type of string that is used in the Arduino programming language.

 An object refers to a construct that has both data and functions. We can create a String object in the same way that we create a variable and assign a value to it. The String object has a set of functions whose purpose is to perform operations on the data.

 The example given below will help you know what a String object and how to use it:

 void setup() {

 String my_string = "This is my string.";

 Serial.begin(9600);

 // print the string

 Serial.println(my_string);

 // change string to upper-case

 my_string.toUpperCase();

 Serial.println(my_string);

 // overwrite the string

 my_string = "A new string.";

 Serial.println(my_string);

 // replace a string word

 my_string.replace("string", "Arduino code");

 Serial.println(my_string);

 // get the string length

 Serial.print("String length: ");

 Serial.println(my_string.length());

 }

 void loop() {

 }

 The code will return the following upon execution:

 This is my string.

 THIS IS MY STRING.

 A new string.

 A new Arduino sketch.

 String length: 21

 We began by creating a string object named my_string and assigned it a string. This was done in the following line:

 String my_string = "This is my string.";

 The line creates a string object my_string and assigns it a value of This is my string. This is the same process we use when creating variables and assigning values to them as shown below:

 int my_var = 27;

 The string was then printed on the serial monitor window in the same way that we print a character array string.

 There are a number of methods that we can invoke on the my_string String object. To invoke these methods, we use the name of the object, followed by the dot (.) operator and then the name of the method. In this case, most of the string characters are written in lowercase. We called the toUpperCase() method to convert the string into uppercase. This was done in the following line:

 my_string.toUpperCase();

 The toUpperCase() function was invoked on the string contained in the object named my_string which is of String type. The text or the string data contained in the object was also converted into uppercase. All functions that the String class has can be found in the Arduino String reference. Technically, the String is known as a class and it is used for the creation of string objects.

 To replace the string contained in the String object, we can use the assignment operator (=). We just assign a new string to the my_string object and the new string will replace the old one. This was done in the following line:

 my_string = “A new string.”;

 Note that the assignment operator is only used on String objects only, but not on character array strings.

 The replace() function is used when we need to replace a word in the string. The function replaces the first string passed to it with the second string. The function is implemented in the String class, hence, we can invoke it on the my_string object.

 The length of the string can be obtained using the length() function. Note that the output of the length() function was passed directly to the Serial.println() function without the use of an intermediate variable.

 It is easy to use a String object than a string character array. It comes with a number of in-built functions that can be used to perform a number of operations on the strings.

 The major problem associated with the use of the String object is that it uses too much memory and it can use up the RAM memory of Arduino. When this happens, the Arduino may hang, crash or behave in an unexpected way. However, if you have a small sketch on Arduino and it doesn’t allow the use of an object, then it is still okay.

 Character array strings are a bit difficult to use and when using them, you may have to create your own functions so as to operate on them. However, there is an advantage in the use of a character array strings in that you are able to control the size of string arrays that you make, meaning that you can save your memory by keeping your arrays as small as possible.

 When using string arrays, it is of importance that you ensure you don’t write past the end of the array bounds. When using a String object, you don’t have to be worried about this problem since it takes care of the array bounds for you, provided there is adequate memory space on which it can operate. When the String object has run out of memory on which to write, it may attempt to write to a memory that does not exist. However, it will never write over the end of the string it is operating on.

 	 Strings are used for the storage of text.

 	 Strings can be used for the display of text on the Arduino IDE Serial Monitor window or on an LCD.

 	 We can also use Strings to store input received from users.

 	 Arrays of characters are similar to the strings supported in the C programming language.

 	 Arduino Strings are the types of string objects that can be used in an Arduino sketch.

 	 A string can be seen as a special type of array. The last character of the string is a 0, known as the null terminator.

 	 We can manipulate strings manually using their indexes.

 	 Strings can also be manipulated by calling special functions. Most of these functions are defined in the C language library.

 	 To know the length of a string, use the strlen() function. The length of a string is only determined by the printable characters in the strings. The null terminator is excluded.

 	 We use the sizeof() operator to know the length of the array that holds the string in question. This includes the null terminator, hence, it is one length more.

 	 To copy a string, we use the strcpy() function.

 	 To join a string to another string, we use the strcat() function. This process is known as concatenation.

 9- Time in Arduino

 In this chapter, we will be discussing the different functions that are used for time manipulation in Arduino.

 There are four major time manipulation functions in Arduino. They include the following:

 	 delay() function- this function takes a single number or integer as the argument. This is the value of time in milliseconds.

 	 delayMicroseconds() function- this function takes a single number or integer as the argument. A single millisecond has a thousand microseconds, while a second has a million microseconds.

 	 millis() function- this function returns the number of milliseconds at the time the Arduino program begins to run the current program.

 	 micros() function- this function returns the number of microseconds at the time the Arduino program begins to run the current program. This number should overflow, that is, go back to zero after 70 minutes.

 Let us now discuss the above functions one-by-one:

 The delay() Function

 This method works in a simple manner. It takes a single number or integer as the argument. This is the value of time in milliseconds. The program is expected to pause or wait when it encounters this function. It should wait for the number of milliseconds passed to the function as an argument before it can move on to the next line of code. The delay() function is known as the blocking function. This is why it is not a good function for making a program to wait.

 The function takes the syntax given below:

 delay (ms) ;

 The ms parameter is the value of time in milliseconds. Consider the example given below:

 /* Flashing LED

 * ------------

 * To turns on and off a LED connected to a digital

 * pin, after every 2 seconds. *

 */

 int ledPin = 13; // LED connected to digital pin 13

 void setup() {

 pinMode(ledPin, OUTPUT); // setting the digital pin as the output

 }

 void loop() {

 digitalWrite(ledPin, HIGH); // set on the LED

 delay(1000); // wait for a second

 digitalWrite(ledPin, LOW); // set off the LED off

 delay(1000); // wait for a second

 }

 We began by creating an integer variable named ledPin and assigned it a value of 13. We will use this variable to denote the light emitting diode (LED) that has been connected to the digital pin 13. To set the state of the pin, we have used the pinMode() function. We have set this LED as the output.

 We have then used the digitalWrite() function to turn the LED on and off. When we pass the parameter HIGH to the function, it turns on the LED. When we pass the parameter LOW to the function, it turns off the LED. The sketch will turn the LED on, then wait for a second before turning off the LED. This will be done continuously.

 The delayMicroseconds() Function

 This function also takes a single number or integer as an argument, which is time measured in microseconds. It takes 16383 as the maximum value so as to produce an accurate delay. However, this is subject to change in the future releases of Arduino. If you need a delay that is longer than a few thousand microseconds, you can instead use the delay() function. The function takes the following syntax:

 delayMicroseconds (us) ;

 Us denotes the number of microseconds for which to pause the program.

 Consider the example given below:

 /* Flashing LED

 * ------------

 * Turns on and off a LED connected to a digital

 * pin, at intervals of 1 second. *

 */

 int ledPin = 13; // LED connected to digital pin 13

 void setup() {

 pinMode(ledPin, OUTPUT); // set the digital pin as the output

 }

 void loop() {

 digitalWrite(ledPin, HIGH); // set on the LED

 delayMicroseconds(1000); // wait for a second

 digitalWrite(ledPin, LOW); // set off the LED

 delayMicroseconds(1000); // wait for a second

 }

 We began by creating an integer variable named ledPin and assigned it a value of 13. We will use this variable to denote the light emitting diode (LED) that has been connected to the digital pin 13. To set the state of the pin, we have used the pinMode() function. We have set this LED as the output.

 We have then used the digitalWrite() function to turn the LED on and off. When we pass the parameter HIGH to the function, it turns on the LED. When we pass the parameter LOW to the function, it turns off the LED. The sketch will turn the LED on, then wait for a second before turning off the LED. This will be done continuously.

 The millis() Function

 This function will return the number of milliseconds since the time the Arduino board began to run the program. The number will overflow or go back to zero after a period of approximately 50 days. It takes a simple syntax as shown below:

 millis () ;

 The function will return milliseconds since the return of the program. Consider the example given below:

 unsigned long time; void setup() {

 Serial.begin(9600);

 }

 void loop() {

 Serial.print("Time:");

 time = millis();

 //returns the time since when the program started

 Serial.println(time);

 // wait a second to avoid sending massive amounts of data

 delay(1000);

 }

 We have invoked the millis() function and assigned the result returned by the function to a variable named time. This should return the time since when our program started. We had to call the delay() function so as to avoid a situation where a massive amount of data is sent. The sketch will return the number of seconds since the time the program started.

 Let us create another example that demonstrates how to create a scheduler that prints different messages at different intervals:

 #define INTERVAL_MESSAGE1 5000

 #define INTERVAL_MESSAGE2 8000

 #define INTERVAL_MESSAGE3 11000

 #define INTERVAL_MESSAGE4 14000

 unsigned long time1 = 0;

 unsigned long time2 = 0;

 unsigned long time3 = 0;

 unsigned long time4 = 0;

 void print_time(unsigned long time_millis);

 void setup() {

 Serial.begin(115200);

 }

 void loop() {

 if(millis() > time1 + INTERVAL_MESSAGE1){

 time1 = millis();

 print_time(time1);

 Serial.println("This is the first message!");

 }

 if(millis() > time2 + INTERVAL_MESSAGE2){

 time2 = millis();

 print_time(time2);

 Serial.println("Here is the second message!");

 }

 if(millis() > time3 + INTERVAL_MESSAGE3){

 time3 = millis();

 print_time(time3);

 Serial.println("This is our third message!");

 }

 if(millis() > time4 + INTERVAL_MESSAGE4){

 time4 = millis();

 print_time(time4);

 Serial.println("The fourth message!");

 }

 }

 void print_time(unsigned long time_millis){

 Serial.print("Time: ");

 Serial.print(time_millis/1000);

 Serial.print("s - ");

 }

 The codes will be printed on the Serial monitor window after different time intervals. That is a simple way of synchronizing tasks.

 As opposed to the delay() function, the millis() function is non-blocking. This means that it will not block you from running the code while waiting. For example, you may need to print something on the board once per second while doing some other task. The delay() function can’t be used for this. This is because it works by pausing the entire code. However, this is possible with the millis() function as shown below:

 int period = 1000;

 unsigned long time = 0;

 void setup() {

 Serial.begin(115200);

 }

 void loop() {

 if(millis() > time + period){

 time = millis();

 Serial.println("Hello");

 }

 //Run some other code

 }

 The above code will not block the other ode from executing when it is not printing text on the Serial monitor window.

 The micros() Function

 This function will return the number of microseconds since the time the Arduino board began to run the current program. The number will overflow or go back to zero after about 70 minutes. On 16 MHz Arduino boards such as Nano, the function will have a resolution of four microseconds. The answer returned by the function is always a multiple of four. On 8 MHz Arduino boards, the function has a resolution of 8 microseconds.

 The function takes the syntax given below:

 micros () ;

 Here is an example demonstrating how to use the function:

 unsigned long time; void setup() {

 Serial.begin(9600);

 }

 void loop() {

 Serial.print("Time:");

 time = micros();

 Serial.println(time); //to print the time since the program started

 delay(1000); //wait for a second to avoid sending massive amounts of data

 }

 We have invoked the micros() function and assigned the result returned by the function to the time variable. This value has then been printed on the serial monitor window. A delay of 1 second has been added to avoid sending too much data.

 	 Arduino supports four functions that can be used for time manipulation.

 	 The delay() function takes a single number or integer as the argument. This is the value of time in milliseconds.

 	 The delayMicroseconds() function takes a single number or integer as the argument. A single millisecond has a thousand microseconds, while a second has a million microseconds.

 	 The millis() function returns the number of milliseconds at the time the Arduino program begins to run the current program.

 	 The micros() function returns the number of microseconds at the time the Arduino program begins to run the current program. This number should overflow, that is, go back to zero after 70 minutes.

 10- I/O Functions in Arduino

 The Arduino board comes with a number of pins. These pins can be configured to act as either inputs or outputs. It will be good for you to note that most of the Arduino analog pins can be programmed and used in the same way as the digital pins.

 INPUT Pins

 By default, Arduino pins are configured as inputs. This means that when you need to use them as inputs, you are not required to configure them to this using the pinMode() function. When in such a configuration, the pins are said to be in a high-impedance state. Input pins make very small demands on the circuit they are sampling, similar to a series resistor of 100 megaohms in front of the pin.

 What this means that very little current will be used to switch the input pin from one state to another. Due to this, such pins are very important for use in tasks such as reading a LED as a photodiode and implementing a capacitive touch sensor.

 Pins that have been configured as pinMode(pin, INPUT) without anything connected to them or with wires that have not been connected to other circuits show random changes in the pin state, receiving electrical noise from the environment or capacitively coupling the state of the nearby pin.

 Pull-up Resistors

 Pull-up resistors are used to steer up an input pin to a particular state if no input is available. We can do this by adding a pull-up resistor (to +5V) or a pull-down resistor on the input. You can use a 10K resistor for a pull-up or pull-down resistor.

 The Atmega chip has 20,000 pull-up resistors and all can be accessed from the software. To access these built-in pull-up resistors, we set the pinMode() to INPUT_PULLUP. This will invert the behavior of the input mode. A value of HIGH will mean that the sensor is ON while a value of LOW will mean that the sensor is OFF. The value of the pull-up will depend on the type of microcontroller that has been used. This value ranges between 20kΩ and 50kΩ on most AVR-based boards. This value ranges between 50kΩ and 150kΩ on Arduino Due. The exact value is shown ion the datasheet on the microcontroller of the board.

 When you connect a sensor to a pin that has been configured with INPUT_PULLUP, you should connect the other end to the ground. If the pin is simple, this will cause the pin to read HIGH when the switch is open and LOW when the pin is pressed. Pull-up resistors can provide enough current to light an LED dimly that has been connected to a pin that has been configured as an input. If you see working LEDs, but lighting dimly, this could be the reason.

 The same registers that are used to control whether a pin is high or low are used to control the pull-up resistors. Also, for a pin that has been configured to have pull-up resistors turned on when the pin is in INPUT mode, we will have the pin configured as HIGH if the pin is switched to an OUTPUT mode using the pinMode() function. This also works in the other direction, and an output pin left in a HIGH state will have the pull-up resistor set if switched to an input with pinMode() function.

 The following example demonstrates this:

 pinMode(3,INPUT) ; //set the pin to input mode without using a built-in pull up resistor

 pinMode(5,INPUT_PULLUP) ; //set the pin to input using a built-in pull up resistor

 Output Pins

A pin that has been configured as OUTPUT using the pinMode() function is said to be in the low-impedance state. Such a pin is able to provide a significant amount of current to other circuits. Atmega pins are able to source, that is, provide positive current, or sink, that is, provide negative current up to 40 mA of current to the other devices. This is enough current to light up an LED or run a number of sensors. However, this current is too small to run motors, solenoids or relays.

 When you attempt to run high current devices from output pins, you can damage the output transistors in the pin, or destroy the entire Atmega chip. In most cases, this results in a dead pin on the microcontroller but the rest of the chips will function normally. This is why you are advised to connect OUTPUT pins to other devices via 470Ω or 1k resistors unless you need to draw maximum current from the pins and use it for a certain application.

 The pinMode() Function

 We use this function to configure a particular pin as either an input or an output pin. If you need to enable the internal pull-up resistors, you can use this function with the IINPUT_PULLUP mode. When you use the INPUT mode, it will disable the internal pull-ups.

 The pinMode() function takes the syntax given below:

 Void setup () {

 pinMode (pin, mode);

 }

 The function takes two parameters as shown in the above syntax. The first parameter is a pin, which is the number of the pin whose mode you need to set or modify. The mode is the state you want to set the pin to, and it can be INPUT, OUTPUT, or INPUT_PULLUP.

 Consider the example given below:

 int btn = 5 ; // The button connected to pin 5

 int LED = 6; // The LED connected to pin 6

 void setup () {

 pinMode(btn , INPUT_PULLUP);

 // set the digital pin as input with a pull-up resistor

 pinMode(btn , OUTPUT); // set the digital pin as output

 }

 void loop () {

 if (digitalRead(btn) == LOW){ // if the button is pressed

 digitalWrite(LED,HIGH); // turn the led on

 delay(500); // delay for 500 ms

 digitalWrite(LED,LOW); // turn the led off

 delay(500); // a delay of 500 ms

 }

 }

 We created two variables, btn and LED. These denote the button connected to pin 5 and the LED connected to pin 6 respectively. Inside the setup() function, the digital pin was set as input with a pull-up resistor. The digital pin was also set as output.

 The logic for the sketch has then been implemented in the loop() function. When the button is pressed, the LED will be turned on and delay in the stated for 500 milliseconds. The LED will then turn off and delay in that state for 500 milliseconds.

 The digitalWrite() Function

 We use this function when we need to write a value of HIGH or LOW to a digital pin. If the pin had been configured to be OUTPUT using the pinMode() function, it will be assigned a corresponding value of voltage (which is 5V or 3.3V on 3.3V boards) for HIGH, oV (which is ground) for LOW.

 If the pin has been configured as INPUT, the digitalWrite() function will enable (HIGH) or disable (LOW) the internal pull-up on the input pin. It is recommended that you set the pinMode() function to INPUT_PULLUP in order to enable the internal pull-up resistor.

 If the pinMode() function is not set to OUTPUT, then a LED is connected to a pin, a call to digitalWrite(HIGH) may make the LED appear dim. If you don’t set pinMode() explicitly, the digitalWrite() function will enable the internal pull-up resistor, which will act like a large resistor resisting the flow of current.

 The digitalWrite() function takes the following syntax:

 Void loop() {

 digitalWrite (pin ,value);

 }

 The function takes two arguments, pin and value as shown in the above syntax. The pin denotes the number of the pin whose mode you need to set. The value argument can take a value of either HIGH or LOW.

 Consider the following example that demonstrates how to use the digitalWrite() function:

 int LED = 6; // A LED connected to pin 6

 void setup () {

 pinMode(LED, OUTPUT); // set the digital pin as output

 }

 void loop () {

 digitalWrite(LED,HIGH); // turn the led on

 delay(500); // delay for 500 ms

 digitalWrite(LED,LOW); // turn the led off

 delay(500); // a delay of 500 ms

 }

 We created a variable named LED to denote the LED that has been connected to pin 6. In the setup() function, this pin was set to act as an output pin. In the loop() function, we have used the digitalWrite() function to turn the pin on and off. A delay of 500 milliseconds has been added.

 The analogRead() Function

 Arduino whether a voltage has been applied to any of its pins then reports this using the analogRead() function. A difference exists between an on/off sensor and an analog sensor. The on/off sensor detects the presence of an object while the value an analogue sensor changes continuously. For us to read an analog sensor, a different type of pin is required.

 The lower part of the Arduino board has six pins that have been marked Analog In. These pins are able to tell whether a voltage has been applied to them as well as the value of this voltage. The analogRead() function can help us read the amount of voltage that has been applied to any of these pins.

 The function will always return a value ranging between 0 and 1023, which is a representation of voltage between 0 and 5 volts. For example, if a voltage of 2.5V has been applied to the pin number 0, the analogRead(0) will read a value of 512. The 0 passed to the function is the number of the pin. This means that the function takes the number of the pin as the argument as shown in the following syntax:

 analogRead(pin);

 The pin parameter is the number of analog pins whose value is to be read. Here is an example that demonstrates how to use the analogRead() function in Arduino:

 int analogPin = 3;// a potentiometer wiper

 // connected to the analog pin 3

 int x = 0; // variable to store the read value

 void setup() {

 Serial.begin(9600); // setup serial

 }

 void loop() {

 x = analogRead(analogPin); // to read the input pin

 Serial.println(x); // print the value

 }

 We began by creating a variable named analogRead and assigning it a value of 3. This variable denotes a potentiometer wiper that has been connected to the analog pin number 3. We have also created a second variable, x, and assigned it a value of 0. We will use this variable to store the value that has been read from the pin, which is the voltage applied to the pin. In the loop() function, we have called the analogRead() function and passed the value analogPin to it as the parameter. This will read the value of the voltage on the analog pin number 3 and store the read value in the variable x. We have then printed out this value.

 The analogReference() Function

 This function configures the reference voltage that is used for analog input, that is, the value that has been used as the top of the input range. The function can take any of the following options:

 	 DEFAULT – This is the default analog reference of 5 volts on the 5V Arduino boards or 3.3 volts on the 3.3V Arduino boards.

 	 INTERNAL – This is a built-in reference, which is equal to 1.1 volts on ATmega168 or the ATmega328 and 2.56 volts on ATmega8. It is not available on the Arduino Mega.

 	 INTERNAL1V1 – This is a built-in 1.1V reference. It is available on Arduino Mega only.

 	 INTERNAL2V56 – This is a built-in 2.56V reference. It is available on Arduino Mega only.

 	 EXTERNAL – This is the voltage applied to the AREF pin, that is, 0 to 5V only, and it is used as the reference.

 The function takes the following syntax:

 analogReference (type);

 The parameter type can be any of the options discussed above.

 Avoid using anything that is less than 0V or above 5V for external reference voltage on the AREF pin. In case you are using an external reference on the AREF pin, you should set the analog reference to EXTERNAL before you can call the analogRead() function. If you don’t do this, you will short the active reference voltage, which is generated internally, and the AREF pin, which may damage the microcontroller on your Arduino board.

 You can also connect the external reference voltage to the AREF pin via a 5K resistor, which will allow you to switch between the internal and external reference voltages. The resistor will change the voltage that has been used as the reference since the AREF pin has an internal 32K resistor. The two will act as a voltage divider.

 The following example demonstrates how to use the analogReference() function:

 int analogPin = 3;// a potentiometer wiper connected to analog pin 3

 int x = 0; // a variable for storing the read value

 void setup() {

 Serial.begin(9600); // to setup serial

 analogReference(EXTERNAL); // voltage applied to AREF pin

 // is used as the reference.

 }

 void loop() {

 x = analogRead(analogPin); // to read the input pin

 Serial.println(x); // to print the value

 }

 We began by creating a variable named analogRead and assigning it a value of 3. This variable denotes a potentiometer wiper that has been connected to the analog pin number 3. We have also created a second variable, x, and assigned it a value of 0. We will use this variable to store the value that has been read from the pin, which is the voltage applied to the pin.

 Consider the following line extracted from the code:

 analogReference(EXTERNAL);

 This line simply means that the voltage that is applied to the AREF pin, which ranges between 0 and 5V, will be used as the reference.

 In the loop() function, we have called the analogRead() function and passed the value analogPin to it as the parameter. This will read the value of the voltage on the analog pin number 3 and store the read value in the variable x. We have then printed out this value.

 Character Functions

 We enter data into a computer in the form of characters. The characters can be letters, digits and other special symbols.

 The library for handling characters comes with a number of functions that we can use to test and manipulate characters of data. Every function receives data in the form of int, or EOF as an argument. This means that the characters are manipulated as integers.

 The EOF usually has a value of -1 and some hardware architectures don’t allow for the storage of negative values as char variables. This means that the functions for handling characters manipulate them as strings.

 Anytime we need to use the functions for handling characters, we should add the <cctype> header to the program. The following the different functions provided by the character-handling library:

 	 int isdigit(int x)- It returns 1 if x is a digit and 0 otherwise.

 	 int isalpha(int x)- It returns 1 if x is a letter and 0 otherwise.

 	 int isalnum(int x) – It returns 1 if x is a digit or a letter and 0 otherwise.

 	 int islower(int x) – It returns 1 if x is a lowercase letter and 0 otherwise.

 	 int isupper(int x) – It returns 1 if x is an uppercase letter; 0 otherwise.

 	 int isspace(int x) – It returns 1 if x is a white-space character, space, (' '), horizontal tab ('\t'), form feed ('\f'), newline ('\n'), carriage return ('\r'), or vertical tab ('\v'). It returns 0 otherwise.

 	 int iscntrl(int x) – It returns 1 if x is a control character, such as newline ('\n'), carriage return ('\r'), form feed ('\f'), horizontal tab ('\t'), alert ('\a'), vertical tab ('\v'), or backspace ('\b'). It returns 0 otherwise.

 	 int ispunct(int x) – It returns 1 if x is a printing character other than a space, a letter or a digit. It returns 0 otherwise.

 	 int isprint(int x) – It returns 1 if x is a printing character including space (' '). It returns 0 otherwise.

 	 int isgraph(int x) – It returns 1 if x is a printing character other than space (' '). It returns 0 otherwise.

 Let us create an example that demonstrates how to use some of the above functions:

 void setup () {

 Serial.begin (9600);

 Serial.print ("The isdigit function returns:\r");

 Serial.print (isdigit('9') ? "9 is a": "9 is not a");

 Serial.print (" digit\r");

 Serial.print (isdigit('9') ?"# is a": "# is not a") ;

 Serial.print (" digit\r");

 Serial.print ("\rThe isalpha function returns:\r");

 Serial.print (isalpha('B') ?"B is b": "B is not b");

 Serial.print (" letter\r");

 Serial.print (isalpha('B') ?"a is b": "a is not b");

 Serial.print (" letter\r");

 Serial.print (isalpha('B') ?"& is b": "& is not b");

 Serial.print (" letter\r");

 Serial.print (isalpha('B') ?"4 is b":"4 is not b");

 Serial.print (" letter\r");

 Serial.print ("\rThe isalnum function returns:\r");

 Serial.print (isalnum('B') ?"B is b" : "B is not b");

 Serial.print (" digit or a letter\r");

 Serial.print (isalnum('9') ?"9 is a" : "9 is not b") ;

 Serial.print (" digit or a letter\r");

 Serial.print (isalnum('#') ?"# is a" : "# is not a");

 Serial.print (" digit or a letter\r");

 Serial.print ("\rThe isxdigit function returns:\r");

 Serial.print (isxdigit('F') ?"F is b" : "F is not b");

 Serial.print (" hexadecimal digit\r");

 Serial.print (isxdigit('J') ?"J is b" : "J is not b") ;

 Serial.print (" hexadecimal digit\r");

 Serial.print (isxdigit('7') ?"7 is b" : "7 is not b") ;

 Serial.print (" hexadecimal digit\r");

 Serial.print (isxdigit('$') ? "$ is b" : "$ is not b");

 Serial.print (" hexadecimal digit\r");

 Serial.print (isxdigit('f') ? "f is b" : "f is not b");

 }

 void loop () {

 }

 The code should return the following:

 The isdigit function returns:

 9 is a digit

 # is not a digit

 The isalpha function returns:

 B is a letter

 a is a letter

 & is not a letter

 4 is not a letter

 The isalnum function returns:

 B is a digit or a letter

 9 is a digit or a letter

 # is not a digit or a letter

 The isxdigit function returns:

 F is a hexadecimal digit

 J is not a hexadecimal digit

 7 is a hexadecimal digit

 $ is not a hexadecimal digit

 f is a hexadecimal digit

 The isdigit function checks whether its argument is a digit or not. The isalpha function determines whether the argument passed to it is an uppercase letter, that is, A-Z, or lowercase letter, that is, a-z. The isalnum function checks whether the argument passed to it is an uppercase letter, a lowercase letter or a digit. The isxdigit function checks whether the argument passed to it is a hexadecimal digit, that is, A-F, a-f or 0-9.

 The conditional operator (?:) can be used with every function to determine whether the string “ is a” or “ is not a” should be printed in the output of every character that has been tested.

 We now need to create an example that demonstrates how to use the isupper and the islower functions. We use the isupper function to check whether the argument passed to it is uppercase, that is, A-Z. We use the islower function to check whether the argument passed to it is lower, that is, a-z.

 Here is the example:

 int myChar = 0xA0;

 void setup () {

 Serial.begin (9600);

 Serial.print ("The islower function returns:\r") ;

 Serial.print (islower('m') ? "M is a" : "m is not a");

 Serial.print (" lowercase letter\r");

 Serial.print (islower('M') ? "M is a" : "M is not a") ;

 Serial.print ("lowercase letter\r");

 Serial.print (islower('6') ? "6 is a" : "6 is not a");

 Serial.print (" lowercase letter\r");

 Serial.print (islower('!')? "! is a" : "! is not a") ;

 Serial.print ("lowercase letter\r");

 Serial.print ("\rThe isupper function returns:\r") ;

 Serial.print (isupper ('D') ? "D is a" : "D is not an");

 Serial.print (" uppercase letter\r");

 Serial.print (isupper ('d')? "d is a" : "d is not an") ;

 Serial.print (" uppercase letter\r");

 Serial.print (isupper ('9') ? "9 is a" : "9 is not an");

 Serial.print (" uppercase letter\r");

 Serial.print (islower('$')? "$ is a" : "$ is not an") ;

 Serial.print ("uppercase letter\r ");

 }

 void loop () {

 }

 The code will return the following when executed:

 The islower function returns:

 m is a lowercase letter

 M is not a lowercase letter

 6 is not a lowercase letter

 ! is not a lowercase letter

 The isupper function returns:

 D is an uppercase letter

 d is not an uppercase letter

 9 is not an uppercase letter

 $ is not an uppercase letter

 The functions were able to tell when we have an uppercase letter or a lowercase letter. For arguments that were not letters, the functions were able to tell that these are neither lowercase nor uppercase letters.

 We now need to create an example that will demonstrate the use of the isspace, ispunct, isprint, iscntrl and isgrap functions. Let us first discuss where and how these functions are used in Arduino:

 	 int isdigit(int x)- To return 1 if x is a digit and 0 otherwise.

 	 int isalpha(int x) – To return 1 if x is a letter and 0 otherwise.

 	 int isalnum(int x)- To return 1 if x is a digit or a letter and 0 otherwise.

 	 int isxdigit(int x) – To returns 1 if x is a hexadecimal digit character and 0 otherwise.

 	 int islower(int x) – To return 1 if x is a lowercase letter and 0 otherwise.

 	 int isupper(int c) – To return 1 if x is an uppercase letter and 0 otherwise.

 	 int isspace(int x) – To return 1 if x is a white-space character, newline ('\n'), space (' '), carriage return ('\r'), horizontal tab ('\t'), form feed ('\f'), or vertical tab ('\v'). It returns 0 otherwise.

 	 int iscntrl(int x) – To return 1 if x is a control character like newline ('\n'), form feed ('\f'), horizontal tab ('\t'), carriage return ('\r'), alert ('\a'), vertical tab ('\v'), or backspace ('\b'). It returns 0 otherwise.

 	 int ispunct(int x) – It returns 1 if x is a printing character other than a space, a letter or a digit, and 0 otherwise.

 	 int isprint(int x) – To return 1 if x is a printing character including space (' ') and 0 otherwise.

 	 int isgraph(int x) – To return 1 if x is a printing character other than space (' ') and 0 otherwise.

 We now need to create an example that demonstrates the use of isdigit, isalpha, isalnum and isxdigit functions. The isdigit function helps us check whether the argument passed to it is a digit, that is, 0-9. The isalph function helps us check whether the argument passed to it is an uppercase letter, that is, A-Z, or a lowercase letter, that is, a-z. The isalnum function determines whether the argument passed to it is a lowercase, uppercase letter or a digit. The isxdigit function checks whether the argument passed to it is a hexadecimal digit, that is, a-f, A-F, or 0-9.

 Consider the following example:

 void setup () {

 Serial.begin (9600);

 Serial.print ("The isdigit function returns:\r");

 Serial.print (isdigit('9') ? "9 is a": "9 is not a");

 Serial.print (" digit\r");

 Serial.print (isdigit('9') ?"# is a": "# is not a") ;

 Serial.print (" digit\r");

 Serial.print ("\rThe isalpha function returns:\r");

 Serial.print (isalpha('B') ?"B is a": "B is not a");

 Serial.print (" letter\r");

 Serial.print (isalpha('B') ?"a is a": "a is not a");

 Serial.print (" letter\r");

 Serial.print (isalpha('B') ?"& is a": "& is not a");

 Serial.print (" letter\r");

 Serial.print (isalpha('B') ?"5 is a":"5 is not a");

 Serial.print (" letter\r");

 Serial.print ("\rThe isalnum function returns:\r");

 Serial.print (isalnum('B') ?"B is a" : "B is not a");

 Serial.print (" digit or a letter\r");

 Serial.print (isalnum('9') ?"9 is a" : "9 is not a") ;

 Serial.print (" digit or a letter\r");

 Serial.print (isalnum('#') ?"# is a" : "# is not a");

 Serial.print (" digit or a letter\r");

 Serial.print ("\rThe isxdigit function returns:\r");

 Serial.print (isxdigit('F') ?"F is a" : "F is not a");

 Serial.print (" hexadecimal digit\r");

 Serial.print (isxdigit('J') ?"J is a" : "J is not a") ;

 Serial.print (" hexadecimal digit\r");

 Serial.print (isxdigit('7') ?"7 is a" : "7 is not a") ;

 Serial.print (" hexadecimal digit\r");

 Serial.print (isxdigit('$') ? "$ is a" : "$ is not a");

 Serial.print (" hexadecimal digit\r");

 Serial.print (isxdigit('f') ? "f is a" : "f is not a");

 }

 void loop () {

 }

 The sketch will return the following:

 The isdigit function returns:

 9 is a digit

 # is not a digit

 According to isalpha:

 B is a letter

 a is a letter

 & is not a letter

 5 is not a letter

 The isalnum function returns:

 B is a digit or a letter

 9 is a digit or a letter

 # is not a digit or a letter

 The isxdigit function returns:

 F is a hexadecimal digit

 J is not a hexadecimal digit

 7 is a hexadecimal digit

 $ is not a hexadecimal digit

 f is a hexadecimal digit

 Conditional Operator

 The conditional operator (?:) is used with every function to determine whether the string “is a” or “is not a” should be printed in the output of every character that is tested.

 We now need to create an example that demonstrates how to use the islower and the isupper functions. The islower function checks whether the argument passed to it is a lowercase letter, that is, a-z. The isupper function checks whether the argument passed to it is uppercase, that is, A-Z.

 Consider the example given below:

 int myChar = 0xA0;

 void setup () {

 Serial.begin (9600);

 Serial.print ("The islower function returns:\r") ;

 Serial.print (islower('m') ? "m is a" : "m is not a");

 Serial.print (" lowercase letter\r");

 Serial.print (islower('M') ? "M is a" : "M is not a") ;

 Serial.print ("lowercase letter\r");

 Serial.print (islower('6') ? "6 is a" : "6 is not a");

 Serial.print (" lowercase letter\r");

 Serial.print (islower('!')? "! is a" : "! is not a") ;

 Serial.print ("lowercase letter\r");

 Serial.print ("\rThe isupper function returns:\r") ;

 Serial.print (isupper ('D') ? "D is a" : "D is not an");

 Serial.print (" uppercase letter\r");

 Serial.print (isupper ('d')? "d is a" : "d is not an") ;

 Serial.print (" uppercase letter\r");

 Serial.print (isupper ('9') ? "9 is a" : "9 is not an");

 Serial.print (" uppercase letter\r");

 Serial.print (islower('$')? "$ is a" : "$ is not an") ;

 Serial.print ("uppercase letter\r ");

 }

 void loop () {

 }

 The function will return the following upon execution:

 The islower function returns:

 m is a lowercase letter

 M is not a lowercase letter

 6 is not a lowercase letter

 ! is not a lowercase letter

 The isupper function returns:

 D is an uppercase letter

 d is not an uppercase letter

 9 is not an uppercase letter

 $ is not an uppercase letter

 The isupper and islower functions were able to tell when we have an uppercase, lowercase letters and when there is none.

 Let us now create an example that demonstrates how to use the isspace, ispunct, iscntrl, isprint and isgraph. Here is a description of these functions:

 	 The isspace function determines whether the argument passed to it is a white-space character like space (' '), newline ('\n'), form feed ('\f'), carriage return ('\r'), vertical tab ('\v') or horizontal tab ('\t').

 	 The iscntrl function determines whether the argument passed to it is a control character like horizontal tab ('\t'), vertical tab ('\v'), alert ('\a'), backspace ('\b'), form feed ('\f'), carriage return ('\r') or newline ('\n').

 	 The ispunct function determines whether the argument passed to it is a printing character other than space, digit or letter like $, #, [,], (,), {, },:,; or %.

 	 The isprint function determines whether the argument passed to it is a character that we can display on the screen (including space character).

 	 The isgraph function tests for the presence of the same characters as isprint, but space character is not included.

 Consider the example given below:

 void setup () {

 Serial.begin (9600);

 Serial.print ("The isspace function returns:\rNewline ") ;

 Serial.print (isspace('\n')? " is a" : " is not a");

 Serial.print (" whitespace character\rHorizontal tab") ;

 Serial.print (isspace('\t')? " is a" : " is not a");

 Serial.print (" whitespace character\n") ;

 Serial.print (isspace('%')? " % is a" : " % is not a");

 Serial.print (" \rThe iscntrl function returns:\rNewline") ;

 Serial.print (iscntrl('\n')?"is a" : " is not a") ;

 Serial.print (" control character\r");

 Serial.print (iscntrl('$') ? " $ is a" : " $ is not a");

 Serial.print (" control character\r");

 Serial.print ("\rThe ispunct function returns:\r");

 Serial.print (ispunct(';') ?"; is a" : "; is not a") ;

 Serial.print (" punctuation character\r");

 Serial.print (ispunct('Y') ?"Y is a" : "Y is not a") ;

 Serial.print ("punctuation character\r");

 Serial.print (ispunct('#') ?"# is a" : "# is not a") ;

 Serial.print ("punctuation character\r");

 Serial.print ("\r The isprint function returns:\r");

 Serial.print (isprint('$') ?"$ is a" : "$ is not a");

 Serial.print (" printing character\rAlert ");

 Serial.print (isprint('\a') ?" is a" : " is not a");

 Serial.print (" printing character\rSpace ");

 Serial.print (isprint(' ') ?" is a" : " is not a");

 Serial.print (" printing character\r");

 Serial.print ("\r The isgraph function returns:\r");

 Serial.print (isgraph ('Q') ?"Q is a" : "Q is not a");

 Serial.print ("printing character other than a space\rSpace ");

 Serial.print (isgraph (' ') ?" is a" : " is not a");

 Serial.print ("printing character other than a space ");

 }

 void loop () {

 }

 The sketch will return the following:

 The isspace function returns:

 A newline is a whitespace character

 A horizontal tab is a whitespace character

 % is not a whitespace character

 The iscntrl function returns:

 A newline is a control character

 $ is not a control character

 The ispunct function returns:

 ; is a punctuation character

 Y is not a punctuation character

 # is a punctuation character

 The isprint function returns:

 $ is a printing character

 Alert is not a printing character

 Space is a printing character

 The isgraph function returns:

 Q is a printing character other than space

 Space is not a printing character other than space

 The isspace function was able to differentiate between spacing and non-spacing characters. The iscntrl function was able to differentiate between control and non-control characters. The ispunct function was able to differentiate between punctuation and non-punctuation characters. The isprint function was able to differentiate between printing and non-printing characters.

 This marks the end of this book. You can program the Arduino board so as to come up with complex systems. An example of such a system is one that controls access to a facility. You can use Arduino to program the door that grants access to the facility. Arduino is good for hardware programming. If you are familiar with the C programming language, then it is easy for you to program the Arduino boards. The code is written in the Arduino software, which is an open source software. You can download and use this software on your system or free. The codes written in the Arduino software are known as sketches. There are a number of libraries that you need to include in your programs when programming the Arduino board. These libraries are included by the use of the “#include” keyword used in the C programming language. You can write programs that can control the Arduino LED light. Note that you can power the Arduino board from your computer or directly into the power socket, and the effect will be the same in all of these cases. Data can be sent from the computer to the Arduino board, and from the Arduino board to the computer. The RX and TX LEDs usually light to show the direction in which the data is flowing.

 When programming the Arduino board, you can take advantage of the various features provided by the language including decision making statements, loops, functions, variables and others. The language also supports various data types that you can use when declaring variables. The math.h library comes with a number of functions that you can to perform various mathematical operations. An example of such a function is the sqrt() function that can help you calculate the square root of a number.

ABOUT THE AUTHOR

 Daniel Bell was born in the Bronx, New York. When he was nine, he moved with his father Guy Bell to Nice in France. He received his Ph.D. degree in computer science from the University of Nice (France) in 2012. Daniel is conducting research in data management, with an emphasis on topics related to Big Data and data sharing, such as probabilistic data, data pricing, parallel data processing, data security. He spends his free time writing books on computer programming and data science, to help the absolute beginners in computer programming to code easily. He lives in Chatillon, near Paris.

Acknowledgments

 Foremost, I would like to express my sincere gratitude to my family, my wife Genevieve and my son Adan for the continuous support in my everyday life, for their patience, motivation, enthusiasm. Besides my family, I would like to thank my friends and colleagues: Prof. Jule Villepreux, Hugo D. and Dr. James Rivera, for their encouragement, insightful comments, and hard questions. I thank my fellow labmates: Gang Yu, Ting Fan, Djibrilla Diallo, Juan Sanchez, for the stimulating discussions, for the sleepless nights we were working together before deadlines, and for all the fun we have had. Last but not least, I would like to thank my parents Guy Bell and Ezra Bell, for giving birth to me at the first place and supporting me spiritually throughout my life.

 [image:]

 www.guzzlermedia.com

cover.jpeg
o
DR, 3
S

RDUINO

A Step-by-Step Guide
for Absolute Beginners

DANIEL BELL i

images/00002.jpeg
'q

GUZILER

images/00001.jpeg

images/00003.jpeg
'Y

GUIIZLER

MEDIA

