

ARDUINO

PROGRAMMING

CRASH COURSE

FOR BEGINNERS TO PRO

A step-by-step Practical guide to Arduino Microcontroller Projects

Roger Edward

Copyright

Copyright©2020 Roger Edward

All rights reserved. No part of this book may be reproduced or used in any manner without the prior written permission of the copyright owner, except for the use of brief quotations in a book review.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper.

Table of Contents

Copyright

INTRODUCTION TO ARDUINO

What is Arduino for?

What is a Microcontroller?

What is an Arduino

Arduino Open Hardware

Arduino Free Software

Fritzing

CHAPTER TWO

ELECTRONICS

Concepts of Electronics

CHAPTER THREE

A TOUR OF AN ARDUINO HARDWARE COMPONENTS

Power Supply

Power Connections

Analog Inputs

Digital Connections

Microcontroller

Crystal Oscillator

Arduino Reset

Serial Programming Connector

The USB Socket

The USB Interface Chip

Types of Arduino Board

The Arduino Uno, Duemilanove, and Diecimila

Arduino Nano

Arduino Bluetooth

Lilypad

CHAPTER FOUR

INSTALLING THE ARDUINO SOFTWARE

Installing the Arduino Software

Installing the Arduino IDE on Windows

Installing the Drivers for Older Arduino Boards

Installing the Arduino IDE on Mac OS X

Installing the Arduino IDE on Linux

CHAPTER FIVE

OPERATING THE ARDUINO SOFTWARE

Operating your IDE Software

Arduino Data Types

Compiling and Uploading Programs

CHAPTER SEVEN

ARDUINO PROGRAMMING

Bit Operations

CHAPTER EIGHT

SERIEL PROGRAMMING

Serial Communication Using Various Languages

C/C++

Java

Ruby

Python

Perl

CHAPTER NINE

CREATING BIGGER PROJECTS WITH THE ARDUINO

Material Needed for the Project

Managing Projects and Sketches

Changing Preferences

Using Serial Ports

Numbering Systems

Using Different Serial Terminals

Serial Terminals for Windows

CHAPTER TEN

BUILDING A BINARY GAME

Materials Needed for this Project

The Breadboard

Using LED on a Breadboard

First Version of a Binary Die

Working with Buttons

Adding Your Own Button

Building a Dice Game

About the Author

INTRODUCTION TO ARDUINO

The Arduino system is develops with various types of equipment, allowing the user to fully perceive and control the physical world more than a desktop computer. Arduino allows the computer to go beyond the virtual world into the physical and interact with it.

Arduino is an open-source physical computing outlet based on a series of single-chip circuit boards, a software development environment for Arduino and Genuine development boards, and a community of active developers and users. Arduino-based devices can receive information about the environment through various sensors, and can also control various actuators.

[image:]

With the Arduino you can improve interesting active objects, receive input from different switches or sensors, and control various lights, motors, and other physical output devices. The Arduino project can be run alone or in conjunction with the software (Processing, MaxMSP) running on your computer.

You can manually assemble a simple development board or buy a pre-installed complete development board. Afterward, download the open-source Arduino Software (IDE) for free.

Arduino uses wiring as its programming language. Arduino uses a physical computing dais to process its program and multimedia environment. Through years of hard work, the software (IDE) component of an Arduino program has evolved to support many core boards and development boards manufactured by corporations such as Intel and Samsung.

You can load a program into the Arduino processor that will control all these devices according to a given algorithm. Thus, you can create an endless number of unique cool gadgets made by yourself and according to your idea.

To understand the general idea of an Arduino board, view the illustration closely. Although it does not reflect even a millionth share possibility of the Arduino board, it still gives a primary idea.

You will notice a microcontroller on the board; this component utilizes or carries out the programmed language of the Arduino software, i.e., the Wiring language. The microcontroller also aids in the Arduino development environment. An Arduino device can perform its function independently or cooperate with the software program from the monitor.

The boards can be bought and arranged, or still, you can buy the board and its component already arranged. As earlier emphasized, you can download the IDE (Arduino software) for free. The original schematic drawings (CAD files) are publicly available; users can apply them as they wish.

What is Arduino for?

Arduino was created to teach students and schoolchildren electrical engineering, programming, radio electronics, automation systems. With the help of microcontrollers, you can make not only educational projects but also really useful devices. Arduino creates automation projects, smart home devices, portable weather stations, robotic arms, and many other useful devices.

Arduino's primary goal is training. It is very exciting for children to study if they can immediately apply new knowledge in practice, and even see and touch the fruits of their labors. It is much more interesting to learn by experimenting rather than listening to dry theory.

What is a Microcontroller?

The microcontroller is the backbone of every Arduino board. Apart from the microcontroller, the several components on the board are concerned with providing the board with power and allowing it to communicate with your system or computer.

A microcontroller is popularly known as a small computer on-chip. It has everything and more than the first home computers had. The microcontroller contains a processor, a kilobyte or two of random-access memory (RAM) for saving data, a few kilobytes of erasable programmable read-only memory (EPROM) or flash memory for holding your programs. The microcontroller also possesses an input and output pins to perform other function.

The function of the input and output (I/O) pins are to link the microcontroller to the other components of your electronics in Arduino. The inputs pin can read or interpret both digital and analog plugs. With this, users can link the different sensors to their Arduino board.

The outputs can also be analog or digital. So, you can set a pin to be on or off (0 volts or 5 volts), and this can turn light-emitting diodes (LEDs) on and off directly, or you can use the output to control higher-power devices such as motors. They can also provide an analog output voltage.

That is, you can set the output of a pin to some particular voltage, allowing you to control the speed of a motor or the brightness of a light, rather than simply turning it on or off. The microcontroller is that component that contains the 28-pin chip fitted into a socket at the center of the Arduino hardware. This single-chip contains the memory processor and all the electronics for the input/output pins.

The different companies that manufacture microcontroller produce dozens of different microcontrollers grouped into different families. Some microcontrollers produced are deeply inserted into consumer products, like cars, washing machines, DVD players, etc.

CHAPTER ONE

BASIC CONCEPT OF ARDUINO

Physical Computing

Physical Computing uses electronics to model new materials for designers and artists. It involves designing and utilizing interactive objects to transmit messages to humans using sensors and actuators. It is usually controlled by instructions from the software program running inside the microcontroller. They are usually referred to as a minor processor on a single chip.

Centuries ago, using electronics meant having to confront engineers most of the time, and building circuits one small component gradually; these issues kept creative people from playing around with the medium directly. It was indeed difficult for the ordinary user because using electronics requires a degree in electronics or an extensive knowledge of how the electronic device works.

In recent years, microcontrollers have become cheaper and easier to use, allowing the creation of better tools. The progress that we have made with Arduino is to bring these tools one step closer to the novice, allowing people to start building stuff after only two or three days of a workshop.

The Arduino board and software makes it very easy and simple for people without prior knowledge of computer engineering to operate. People can now design and build any device of choice with the Arduino board without spending any extra funds.

What is an Arduino

Arduino, as earlier said, is an open-source programmable circuit board that can be unified with other projects that are either simple or complex. The hardware component of the Arduino contains a microcontroller that can be programmed to sense and control objects in the physical world.

Several educational programs utilize the Arduino worldwide to carry out their various activities. Particularly by designers and artists who want to easily prototype without having to delve too deeply into the technical details of their creations because, they are designed to be used by people without technical knowledge.

The software includes many code examples that demonstrate the ease of using the various functions and parts of the Arduino. Generally, the Arduino is very easy to use, and the underlying hardware components work with the same "perfection" that engineers use to build embedded systems.

For people who have worked with microcontrollers before, Arduino is great because of the agile development opportunities, and the possibility of rapid implementation of ideas makes it interesting.

The sensors and inputs of the Arduino can network a large array of outputs such as LEDs, motors, and displays. The pliability and low cost, Arduino is now a relatively prominent option for designers and maker spaces looking to create interactive hardware projects.

Arduino is a unique small computer board from different microcomputer because of the following features such as;

» It is compatible and works very well on different platforms such as the different types of Windows, Macintosh, and Linux.

» The software component of the Arduino is built on the Processing program IDE, which is an easy-to-use development environment used by artists and designers.

» The Arduino can be program via a USB cable, not only the serial port. This is a very vital feature especially to modern day computers.

» The hardware component of the Arduino is an open-source, as well as its software components. This means you can purchase the hardware from the market and download the software program from the Arduino official page without any fee attached

» The hardware parts of the Arduino is very cheap.

» A lot of people use the Arduino, making it very easily accessible. If there's any confusion about using the Arduino, you can be educated once and again.

» Arduino Development was established in an enlightening setting. Therefore it is great for newcomers to start learning how to operate the Arduino.

The Arduino

It is important to know that the Arduino encompasses two major parts:

1. The Hardware or Arduino board; This is the part of the bodily ingredients you toil to arrange when you figure your objects.

2. The Software or Arduino IDE; This is the section of the software program you route on your monitor. You can use the software package to create a sketch and upload it to the Arduino board. The sketch communicates instructions to the Arduino hardware components.

Arduino Open Hardware

The code you wrote is executed on the Arduino hardware components. The board itself can only react to and control electricity, which is the reason for special components that enable interaction with the real world. These components can be sensors that convert certain aspects of the physical world into electricity convert that the board can process.

But it can also be so-called actuators that take power from the board and turn it into something that changes the world. Examples of sensors are switches, accelerometers, and ultrasonic distance sensors. Actuators are things like motors, lamps, speakers, LEDs, and Displays.

There is a variation of official boards used with the Arduino IDE (software component) can, additionally as a wide range of Arduino-compatible boards used by members of the community. The most prevalent boards contain a USB connector that takes over the power supply and creates the upload connection for your software.

Arduino Free Software

Software programs, so-called sketches, are written on a computer using the Arduino development setting; this is also known as IDE (Integrated Development Environment). The IDE allows you to inscribe and edit code, and then that code is converted to instructions that the hardware components know. The IDE is broadcasting these instructions on the Arduino board as well. This process is known as Uploading.

Processing

When the hardware is linked to a monitor and keyboard, the magic happens when you operate the key and uploads the sketch to the board. The sets of code inputted via the keyboard are decoded into what is called the computer language (C-language). It further approved the code to the avr-gcc compiler; this is a vital section of the open-source computer software that transfers out the last translation into the language understood by the microcontroller.

This concluding phase is rather imperative since it’s where Arduino creates the computing task by simply walloping away as much as possible the intricacies of program writing microcontrollers.

Fritzing

Fritzing is any stress-free and open-source hardware resourcefulness that enables the electronics component to gain entree to create anything of choice. Fritzing is a free software device, a public internet site, and facilities in the lifeforce of Processing. It fosters creativity in its network and allows users to save their models, share them with others, teach others about the concept of electronics in a teaching space, and build professional PCBs.

Fritzing can be seen as an electronic design automation (EDA) tool for non-engineers: the input metaphor is inspired by the environment of designers (the breadboard-based prototype), while the output is focused on accessible means of production.

CHAPTER TWO

ELECTRONICS

This is the part of the scientific and technological discipline that is involved in the creation and practical use of various devices and appliances that are based on the change of the concentration and movement of charged particles (electrons) in a vacuum, a gas, or a solid crystalline body, and other physical phenomena.

An electronic device can include a wide variety of materials and environments where electrical signal processing takes place using different physical processes. But in any device, there is always an electrical circuit.

Concepts of Electronics

Electricity may not be evaluated with a scale or taped with a meter rule. But distinct its activities can be assessed. These movements or terms are used to describe power, voltage, current, and resistance. Power is the amount of work performed. It depends on the amount of pressure and the volume of flow.

Voltage

Voltage is the electrical pressure, a potential force, or difference in electrical charge between two points. T
 he volt of an electrical current
 can nudge t
 he
 current v
 ia
 the
 wire, e
 xcept the insulating materials
 . Voltage is measured in volts. One volt can push a certain amount of current, two volts twice as much, and so on. A voltmeter measures the difference in electrical pressure between two points in volts. A voltmeter is used in parallel.

Current

Current is an electrical charge flow moving through a wire. The current flow in a wire is pushed by voltage. Electric c
 urrent c
 an be
 calculated in amperes, or amps, for short. An ammeter measures the current flow in ampere. It is inserted into the path of current flow, or in series, in a circuit.

Resistance

Resistance competes against the flow of current in a circuit. Sometimes likened to be electrical friction. The function of resistance is to inhibit the free flow of electricity. If you check most circuits, there is the presence of electrical resistance.

More importantly, apart from inhibiting the free flow of current is that; it also converts electrical energy to other types/forms of energy (such as motion, heat, and light energy). The standard unit for measuring resistance is in ohms. The device or instrument used in the measurement process is an ohmmeter.

Ohm's law

Ohm's law represents the fundamental law of electrical engineering that links these three magnitudes: voltage, current, and resistance. Ohm’s law expresses the fact that, in an electronic route, the intensity (I) of the current is directly relational to the applied voltage (V), and inversely proportional to the resistance R encountered:

Intensity (I) = Voltage (v) / Resistance (r)

From which we obtain:

Resistance (r) = Voltage (v) / Intensity (I)

And again:

Voltage (v) = Intensity × Resistance (r)

From this last expression of Ohm's law, a new meaning of the quantities involved is obtained. The Volt represents the potential difference that is measured across a resistance of 1 Ohm crossed by the current of 1 ampere.

The voltage or potential difference is indicated by V and is measured in Volts (V);

The intensity of current or, for short, current, is indicated with I and is measured in amperes (a); Resistance is indicated by R and is measured in Ohms.

According to Ohm's law in its various forms seen so far, we can say that:

1. The current increases if volts increases. The current decreases when the volt also decreases.

2. The current passing through a device of a certain resistance generates a voltage drop across its terminals, that is a potential difference which is directly proportional to the current and to the resistance itself;

3. Current and voltage being uninterrupted relative to each other, the ratio of these two quantities is constant, gives exactly the value of the conductor resistance: Resistance = Voltage / Intensity.

First Ohm's Law:

In a metal conductor, the intensity of current (at constant temperature T) is directly proportional to the voltage applied to its ends and inversely proportional to the resistance of the conductor. Voltage = Resistance × Intensity.

So, the relationship between the voltage and the intensity of the current is constant, and this constant is called resistance.

Second Ohm's Law:

At constant temperature, the resistance (R) of a conductor wire of a given material is directly proportional to its length and inversely proportional to its section. Thus, the resistance of a conductor wire depends on its length, its section, and the innate resistance of the material it is made of (resistivity).

The Diode

An electronic component with a very particular behavior is the diode. We have seen that by applying a certain voltage to resistance, the current flowing through it corresponds to the ratio between the applied voltage and the value of the resistance itself; this law does not apply to the diode.

The diode consists of a "pn" junction, which is a semiconductor containing, adjacent to each other, two regions, one doped with "type" impurities. p "and one with type" n "impurities.

The P region, being doped with atoms lacking electrons, tends to capture electrons: as they say, it has holes or holes. The N region, being doped with atoms above electrons,

When the PN junction is inversely polarized, i.e., a negative voltage is applied to the P side, and the applied electric field attracts a positive voltage to the N side, both the holes in the P zone and the free electrons in the N zone, so the central area empties.

In this zone, which is called the "depletion zone," a potential barrier is created, which prevents the passage of current; only a very weak current circulates due to minority charges, called "drift current. This current is of the order of a few µA for germanium diodes, and a few nA for silicon diodes.

When the PN junction has directly polarized, the gaps in the P zone are pushed towards the central zone of the junction by the applied positive polarity; similarly, the free electrons of the N zone are pushed towards the central zone of the junction by the negative polarity.

If the voltage is sufficient to overcome the existing potential barrier, the holes and the electrons combine, giving rise to a current, called diffusion current, which can also become very intense. The voltage required to trigger the flow of this current is 0.2 - 0.3 V in the case of Germanium junctions and 0.5 V in the case of Silicon junctions.

CHAPTER THREE

A TOUR OF AN ARDUINO HARDWARE COMPONENTS

[image:]

This chapter is an introduction toward the Arduino hardware parts, including the background, additionally as an overview of the hardware. Arduino consists of the Arduino boards (i.e., the hardware) as well as for the programming environment (software). Let’s take a quick tour of the various components of the hardware parts.

[image:]

Power Supply

This component is found directly under the USB connector, and its a 5-volt (5V) voltage regulator. This regulates whatever voltage (between 7V and 12V) is supplied from the power socket into a constant 5V. The 5V voltage regulator chip is quite big for a surface mount component. This is so that it can dissipate the heat required to regulate the voltage at a reasonably high current. This is useful when driving external electronics.

Power Connections

[image:]

Succeeding the former is the connectors at the bottom. Attached to each is a name following the connectors. The first is Reset; this does the same thing as the Reset button on the Arduino. Rather like rebooting a PC, using the Reset connector resets the microcontroller so that it begins its program from the start.

To reset the microcontroller with the Reset connector, you momentarily set this pin low (connecting it to 0V). The other pins in this portion just provide different voltages (3.5V, 5V, GND, and 9V), check their labelling properly. GND, or ground, just means zero volts. This reference other voltage; to which all other voltages on the board are relative.

Analog Inputs

[image:]

The six pins labelled as Analog in A0 to A5 are exercised towards measuring the voltage connected to them so that the value will be utilized in a sketch. Note that they measure in voltage and not in ampere because little or no current will ever flow into them and down to the ground due to their large internal resistance. Although these inputs are labelled as an analog and are analog inputs by default, these connections can also be used as digital inputs or outputs.

Digital Connections

At the top-right indicator, sideways of the connector, are some pins labelled Digital 0 to 13. The pins can either be used inputs or outputs medium. When used as outputs, they behave rather like the power supply voltages discussed earlier in this section, except that these are all 5V and can be switch it off or on from your sketch.

You can put on the board via the sketch, and it will be at 5V, and if you turn them off, they will be at 0V. As with the power supply connectors, you must be careful not to exceed their maximum current capabilities. The first two of these connections (0 and 1) are also labelled RX and TX, for receive and transmit.

These connections are reserved for use in communication and are indirectly the receive and transmit connections for your USB link to your computer. These digital connections can supply 40 mA (milliamps) at 5V. That is more than enough to light a standard LED, but not enough to drive an electric motor directly.

Microcontroller

[image:]

It is designed to interact directly with the outside world through a program residing in its internal memory and through the use of specialized pins or those configurable by the programmer . They are available in 3 ranges of processing capacity (data bus width): 8 bit, 16 bit and 32 bit.

The wide range of command and control functions available, both analog and digital, integrated on the same chip, allows the use of MCUs to replace the much more complex and expensive traditional wired electronic boards.

Crystal Oscillator

[image:]

This is a small, silver, rectangular component on top of the microcontroller. The crystal oscillator helps Arduino in dealing with time issues. How does Arduino calculate time? The answer is, by using the crystal oscillator. The number printed on top of the Arduino crystal is 16.000H9H.

It tells us that the frequency is 16,000,000 Hertz or 16 MHz. The microcontroller can perform one operation—addition, subtraction, or another mathematical operation with the crystal oscillator.

Arduino Reset

[image:]

The Arduino reset helps to reset the Arduino all over again, cancelling every other program before. Although only stored programmed will be recollected on your device. This is a result of the storage of the data in the none volatile component of the Arduino hardware.

Serial Programming Connector

The location is close by the Reset switch in the rightward location. This is also a secondary method of programming your Arduino software.

The USB Socket

[image:]

It is located at the top-left corner of the board.

The USB Interface Chip

The USB interface chip is very close to the socket, and it is the part of the hardware component that converts signal.

Types of Arduino Board

T
 here are various
 kinds of Hardware component of the Arduino
 . They are all available depending on different microcontrollers used. However, all Arduino h
 ardware
 have one thing in common: they are programmed through the
 software (
 IDE)
 . The di
 sparities
 are founded
 on the following;

1. Quantity of inputs and outputs i.e. their level of sensors and switch

2. Speed of the device

3. Voltage and other important factors.

W
 hile some
 boards are designed to be embedded and have no programming interface (hardware), which you would need to buy separately. O
 thers
 can operate promptly from a 3.7V battery, v
 ery few requires
 5V battery.

The Arduino Uno, Duemilanove, and Diecimila

Arduino Uno is the latest and most popular series of the Arduino boards. The series includes the Diecimila (an Italian word for 10,000) and the Duemilanove (which means Italian 2011 in Italy). These older boards look very similar to the Arduino Uno. They both have the same connectors and a USB socket and are generally compatible with each other.

The most significant difference between the Uno and the earlier boards is that the Uno uses a different USB chip. This does not affect how you use the board, but it does make installation of the Arduino software easier and allows higher speeds of communication with the computer.

The Uno can also supply more current on its 3.3V supply and always comes equipped with the ATmega328. The earlier boards will have either an ATmega328 or ATmega168. The ATmega328 has more memory, but unless you are creating a large sketch, this will make no difference.

Arduino Mega

The Arduino Mega is the muscle car of Arduino boards. It boasts a huge collection of input output ports, but cleverly adds these as extra connectors at one end of the board, allowing it to remain pin-compatible with the Arduino Uno and all the shields available for Arduino.

It uses a processor with more input output pins, the ATmega1280, which is a surface mount chip that is fixed permanently to the board. So, unlike with the Uno and similar boards, you cannot replace the processor if you accidentally damage it.

The extra connectors are arranged at the end of the board. Extra features provided by the Mega include the following:

• 54 input/output pins

• 128KB of flash memory for storing sketches and fixed data (compared to the Uno’s 32KB)

• 8KB of RAM and 4KB of EEPROM

Arduino Nano

The Arduino Nano is a very useful and small device use with a solderless breadboard. If you fit pins to it, it can just plug into the breadboard as if it were a chip. The downside of the Nano is that because it is so much smaller than a Uno, it cannot accept Uno-sized shields.

Arduino Bluetooth

The Arduino Bluetooth is an interesting device as it includes Bluetooth hardware in place of the USB connector. This allows the device to even be programmed wirelessly. The Arduino Bluetooth is not a cheap board, and it is often cheaper to attach a third-party Bluetooth module to a regular Arduino Uno.

Lilypad

The Lilypad is a tiny board that can be stitched into clothing for applications that have become known as wearable computing. The Lilypad does not have a USB connection, and you must use a separate adaptor to program it. It has an exceptionally beautiful design.

Other unofficial board are listed below;

1. Roboduino

2. Freeduino

3. Seeeduino

4. Chipkit

5. Femtoduino

6. Ruggeduino

7.
 Teensy

Some of these designs just take the standard open source hardware designs of Arduino to extend or improve the Arduino in some way and sell it cheaper.

CHAPTER FOUR

INSTALLING THE ARDUINO SOFTWARE

The major component of the totality of an Arduino is not only the hardware components. The software component is another major area to understand about the Arduino. This part in the book reveals a simple approach in learning how to install the Arduino software package in your PC. It quite very easy and interesting.

[image:]

After purchasing the several component of the Arduino hardware, it is usually preinstalled with a sample Blink program that will make the little built-in light-emitting diode (LED) flash. In the board there is a LED marked L and it is wired up to one of the digital input - output sockets on the board.

It is connected to digital pin 13. This limits pin 13 to being the one used as an output. However, the LED uses only a small amount of current, so you can still connect other things to that connector.

The only requirement needed to start using your Arduino is to supply it with some power. The easiest way to do this is to plug in it into the USB port on your computer. You will need a type-A-to-type-B USB lead. This is the same type of lead that is normally used to connect a computer to a printer.

If everything is working OK, the LED should blink. New Arduino boards come with this Blink sketch already installed so that you can verify that the board works.

Installing the Arduino Software

In order to install new sketches onto your Arduino board, you need to do more than supply power to it over the USB. You need to install the Arduino software. This software gives full and comprehensive instructions to your board. You can download the Arduino software on your Windows, Linux, and Mac computers via the Arduino website (www.arduino.cc).

After downloading the software, proceed to installation in your device. Follow the instruction below to proper installation in any of your device.

Installing the Arduino IDE on Windows

The Arduino IDE runs on all the latest versions of Microsoft Windows, such as Windows 10, Windows 8.1, and Windows 7. The software comes in two flavors: as a Windows installer or as a self-contained zip archive. Check the Arduino’s download page for the latest version of either one.

If you have administrative privileges on your machine, use the installer because it installs not only the IDE, but also all the drivers you need. In this case, you usually don’t need anything else and can use the IDE right away.

However, if you don’t have administrative privileges, download the zip archive and extract it to a location of your choice. Before you first start the IDE, you must install drivers for the Arduino’s USB port. This process depends on the Arduino board you’re using.

To install drivers for recent boards, such as the Arduino Uno, plug the Arduino into a USB port first to start the automatic driver installation process. Most times this process will likely fail, and you’ll have to open the System Control Panel
 and start the Device Manager
 . The control panel is found under System and Security. In the Ports (COM & LPT) section, you’ll probably find an entry named Arduino Uno (COMxx)
 . If you can’t find that entry, search for Unknown Device in the Other Devices menu.

[image:]

Use your mouse to right-click the entry belonging to the Arduino board and choose Update Driver Software
 . Select the Browse My Computer for Driver Software option. Go to the driver’s folder of the archive you’ve extracted and select the arduino.inf file.

[image:]

In older versions of the IDE the file was named Arduino Uno.inf. After you’ve installed the driver, you can start the Arduino IDE and work with the board.

[image:]

Note; If you’re running Windows 8 you have to disable some protection mechanisms before you install the driver.

Installing the Drivers for Older Arduino Boards

Driver installation for older boards like the Duemilanove, Diecimila, or Nano is a bit different. Still, you have to plug in the board first. On Windows Vista, driver installation usually happens automatically. Lean back and watch the hardware wizard’s messages pass by until it says you can use the newly installed USB hardware.

Windows 8, Windows 7, and Windows 10 may not find the drivers on Microsoft’s update sites automatically. Sooner or later, the hardware wizard asks you for the path to the right drivers after you have told it to skip automatic driver installation from the Internet. Depending on your Arduino board, you have to point it to the right location in the Arduino installation directory— that is the drivers/FTDI USB Drivers directory.

After the drivers have been installed, you can start the Arduino executable from the archive’s main directory by double-clicking it. Please note that the USB drivers don’t change as often as the Arduino IDE. Whenever you install a new version of the IDE, check whether you have to install new drivers, too. Usually it isn’t necessary.

Installing the Arduino IDE on Mac OS X

The Arduino IDE is available as a zip file for Mac OS X.12 The IDE depends on the Java Virtual Machine, and at the time of this writing, it’s available for Java 6 (recommended) and Java 7 (experimental). Download it, double-click it, and drag the Arduino icon to your Applications folder.

If you hadn’t installed Java already, Mac OS X will ask you for permission to install it. If you’re using an Arduino Uno or an Arduino Mega 2560, you are done and can start the IDE. Before you can use the IDE with an older Arduino, such as the Duemilanove, Diecimila, or Nano, you have to install drivers for the Arduino’s serial port.

You can find the latest version online.13 Download the package for your platform (it usually has a name such as FTDIUSBSerialDriver_10_4_10_5_10_6.mpkg), double-click it, and follow the installation instructions on the screen.

When installing a new version of the Arduino IDE, you usually don’t have to install the drivers again (only when more recent drivers are available).

Installing the Arduino IDE on Linux

Installation procedures on Linux distributions are still not very homogeneous. The Arduino IDE works fine on nearly all modern Linux versions, but the installation process differs from distribution to distribution. Also, you often have to install additional software (the Java Virtual Machine, for example) that comes preinstalled with other operating systems.

It’s best to check the official documentation14 and look up the instructions for your preferred system. Now that the drivers and IDE are installed, let’s see what it has to offer.

CHAPTER FIVE

OPERATING THE ARDUINO SOFTWARE

When comparing the IDEs to other software such as Eclipse, Xcode, or Microsoft Visual Studio, the Arduino IDE is simple. It mainly consists of an editor, a compiler, a loader, and a serial monitor. The IDE is well organized with no advanced features such as a debugger or code completion.

You can change only a few preferences, and as a Java application it does not fully integrate into the Mac desktop. It’s still usable, though, and even has decent support for project management.

In the tools bar of the software, you have the

[image:]

1. Verify

2. New

3. Upload

4. Save

5. Serial Monitor

• With the Verify button, you can compile the program that’s currently in the editor. So, in some respects, “Verify” is a misnomer, because clicking the button doesn’t only verify the program syntactically, it also turns the program into a representation suitable for the Arduino board. You can invoke this function using the DR keyboard shortcut on a Mac or [image:]
 Ctrl-R on all other systems.

• Tap the Upload icon ([image:]
 U or control-U), the software runs and program the languages into the hardware components.

• The New button ([image:]
 N or Ctrl-N) open a fresh program by deleting details from the former windows. Before that happens, the IDE gives you the opportunity to store all unsaved changes.

• Open ([image:]
 O or Ctrl-O) opens an existing program from the file system.

• Save (DS or Ctrl-S) saves the current program.

• The Arduino can communicate with a computer via a serial connection. Clicking the Serial Monitor button ([image:]
 M or Ctrl-Shift-M) opens a serial monitor window that allows you to watch the data sent by an Arduino and also to send data back.

Although using the IDE is easy, you might run into problems or want to look up something special. In such cases, take a look at the Help menu. It points to many useful resources at the Arduino’s website that provide not only quick solutions to all typical problems, but also reference materials and tutorials.

Operating your IDE Software

To familiar yourself with the IDE’s most important features, we’ll create a simple program that makes a light-emitting diode (LED) blink. An LED is a cheap and efficient light source, and the Arduino already comes with several LEDs.

One LED shows whether the Arduino is currently powered, and two other LEDs blink when data is transmitted or received via a serial connection.

In our first little project, we’ll make the Arduino’s status LED blink. The status LED is plugged directly to the digital IO pin 13. This pin is like the switch between two different states; such as HIGH or LOW state. If set to HIGH, the output pin is set to 5 volts, causing a current to flow through the LED so it lights up. If set back to LOW, the current flow stops, and the LED turns off.

Follow the instructions in the image below;

[image:]

Let’s see how this works and dissect the program’s source code piece by piece. In the initial lines, distinguish two unsigned int constants using the constant keys. LED_PIN pertain to the quantity of the digital IO pin we’re using, and PAUSE defines the length of the blink period in milliseconds. Every program requires a function named setup, and ours starts in line.

A function definition will always embrace some scheme as highlighted below:

<return value type> <function name> '(' <list of parameters> ')'

The function’s name here is setup, and its return value type is void: it returns nothing. setup doesn’t expect any arguments, so we left the parameter list empty.

Arduino Data Types

• Boolean values take up one byte of memory and can be true or false.

• Char variables take up one byte of memory and store numbers from -128 to 127. These numbers usually represent characters encoded in ASCII; that is, the sample clearly depict it in c1 and c2 having alike valuation:

char
 c1 = 'A
 ';

char
 c2 = 65;

If you noticed a single quote is used for the for char literals.

• Byte variables use one byte and store values from 0 to 255.

• An Int variable needs two bytes of memory; you can use it to store numbers from -32,768 to 32,767. Its unsigned equivalent unsigned int also consumes two bytes of memory but stores numbers from 0 to 65,535.

• For bigger numbers, use long. It consumes four bytes of memory and stores values from -2,147,483,648 to 2,147,483,647. The unsigned variant unsigned long also needs four bytes but ranges from 0 to 4,294,967,295.

• Float and double are the same at the moment on virtually all Arduino hardware components, and they are utilized for storing floating-point numbers. Both use four bytes of memory and are able to store values from -3.4028235E+38 to 3.4028235E+38. On the Arduino Due, double values are more accurate and occupy eight bytes of memory.

• You need void only for function declarations. It denotes that a function doesn’t return a value.

• Arrays store collections of values having the same type:

[image:]

In the preceding example, the arrays values and more values contain the same elements. We have used only two different ways of initializing an array. Note that the array index starts at 0, and keep in mind that uninitialized array elements contain unreliable values.

• A string is an array of char values. The Arduino environment supports the creation of strings with some syntactic sugar—all these declarations create strings with the same contents.

[image:]

Strings should always be terminated by a zero byte. The moment you are using a double quotation in generating a string, the zero byte will be added automatically. That’s the reason you must include one byte to the size of the corresponding array.

Arduino Functions

The pinMode method is routinely utilized to turn pin 13 into an output pin. This ensures the pin can offer adequate power to lighten up the LED. The pin nonattendent state is INPUT; and both INPUT and OUTPUT are predefined constants.

Another mandatory function named loop begins in line 8. Use digitalWrite and pass it the number of your pin and the constant HIGH. Meaning the pin will output 5 volts until further notice, and the LED linked with the pin will light up.

The program then calls delay and waits for 500 milliseconds doing nothing. During this pause, pin 13 remains in HIGH state, and the LED continues to burn. The LED is eventually turned off when we set the pin’s state back to LOW using digitalWrite again. We wait another 500 milliseconds, and then the loop function ends. The Arduino starts it again, and the LED blinks.

Compiling and Uploading Programs

To compile a program you will need to put the following into consideration;

1. The Arduino board used

2. The serial port present

Although, the Arduino 1.6.0, recognize the different Arduino boards that are linked to the computer as you plugged in immediately.

This feature works quite well, conversely it fails other times. Therefore, there is need to know in what way to regulate the type of Arduino board used and the designation of the serial port linked also.

Identifying the Arduino type is easy, because it is printed on the board. Popular types are Uno, Duemilanove, Diecimila, Nano, Mega, Mini, NG, BT, LilyPad, Pro, or Pro Mini. However, you, are to check what microcontroller your Arduino uses—most have an ATmega328. You can find the microcontroller type printed on the microcontroller itself. When you have identified the exact type of your hardware components, choose it from the Utensils > Board menu.

Now you have to choose the serial port your Arduino is connected to from the

Tools > Serial Port menu. Presently, the Mac OS named it the X serial port and it usually start with /dev/tty.usbserial or /dev/tty.usbmodem. (On my MacBook Pro, it’s /dev/tty.usbmodem24321.) On Linux systems, its /dev/ttyUSB0, /dev/ttyUSB1, or something similar, dependent on the amount of USB ports your computer has.

On Windows systems, you must utilize Device Manager to locate the right serial port. In the Device Manager, look for USB Serial Port below the Ports (COM & LPT) menu entry.

Subsequently when you have chosen the correct serial port, click the Verify button, and the proceeding output in the IDE’s message area (the Arduino IDE calls programs sketches): Build options changed, rebuilding all Sketch uses 1,030 bytes (3%) of plug-in storing device. The highest size been 32,256 bytes.

Global variables utilizes 9 bytes (0%) of dynamic memory, leaving 2,039 bytes for local variables. Maximum is 2,048 bytes.

Meaning successful compilation of the source code into 1,030 bytes of machine code. Then uploaded into the hardware component. In case there's any error message, review properly what you have typed into the program.

Duemilanove, it’s usually 14336, for example. Also, the size of the sketch might be slightly different due to the sort of the Arduino software.

Now snap the Upload key, and shortly, the following output in the message area:

Sketch uses 1,030 bytes (3%) of program storage space. Maximum is 32,256 bytes. Global variables use 9 bytes (0%) of dynamic memory, leaving 2,039 bytes for local variables. Maximum is 2,048 bytes
 .

This is exactly the same message we got after compiling the program, and it tells us that the 1,030 bytes of machine code were transferred successfully to the Arduino. In case of any errors, check for the correct and selected Arduino type and the correct serial port in the Tools menu.

During the upload process, the TX and RX LEDs will flicker for a few seconds. This is normal, and it happens whenever the Arduino and your computer communicate via the serial port. When the Arduino sends information, it turns on the TX LED. When it gets some bits, it turns on the RX LED. Because the communication is pretty fast, the LEDs start to flicker and you cannot identify the transmission of a single byte.

As soon as the code has been transmitted completely, the Arduino executes it. In our case, this means the status LED starts to blink. It turns on for half a second, then it turns off for half a second, and so on.

CHAPTER SEVEN

ARDUINO PROGRAMMING

In reality, the Arduino programming language is nothing but C++, but it has some restrictions, and it uses a special tool suite. In this appendix, you’ll learn what your options are. Also, you’ll find a short section showing how bit operators work, because you need them often when working with sensors and other devices.

The Arduino Programming Language

The Arduino’s microcontroller does not understand normal languages inputted into the IDE. You have to input a recognizable language. This process is called cross-compiling, and it’s the usual way of creating executable software for microcontrollers.

You edit and compile the software on your PC, and then you transfer the machine code to the microcontroller. In case of the Arduino, these microcontrollers are often part of the AVR family produced by a company named Atmel.

To produce software for Atmel microcontrollers company simplified and probable; they have come up with an entire instrument chain founded on the GNU compiler tools. Most utensils slog similar to the prototypes, but in reality, they’ve been optimized for producing code for the Atmel microcontrollers.

For nearly all GNU development tools, such as gcc, ld, or as, there’s an AVR variant: avr-gcc, avr-ld, and so on. These are founded in the hardware/ tools/avr/bin of the Arduino manual.

The IDE is mainly a graphical wrapper that helps you avoid using the command-line tools directly. Whenever you compile or send a database using the IDE, it delegates all work to the AVR tools. As a serious software developer, you should turn on a more wordy output, to view all the command-line tool invocations.

Enable verbose output for both compilation and upload in the Preferences. Then load your blinking LED sketch and compile it. The command invocations look weird at first because of the names of the many temporary files that are created. Identifying the various steps and assembling or linking the various stages is essential to building a modest sketch similar to the blinking LED for instance.

One of the significant measures taken by the Arduino team is; they concealed some of the tough facts out of scene to avoid discouragement and sad looks from people with little or no programming experience. For programmers, it’s a nice thought to work in verbose mode, because the best way of learning round all the AVR tools is to see them in action.

Upload the program to the Arduino now to see avrdude in action. This tool is responsible for loading code into the Arduino and can be used for programming many other devices, too. Interestingly, the AVR tools even make it possible to use the Arduino IDE for non-Arduino projects.

There’s another difference between Arduino programming and regular C++ code. When programming for the Arduino, you don’t define main yourself, because it is already defined in the libraries provided by the Arduino developers.

You might have thought, it calls setup first and then runs the loop function in a loop. Since Arduino 1.0, it also calls serialEvent at the back end of the loop function.

Further restrictions when programming C++ on AVR microcontrollers include the following:

• You cannot use the Standard Template Library (STL) because it’s way too big for the small AVR microcontrollers.

• Exception handling isn’t supported. That’s why you see the -fno-exceptions switch often when the avr-gcc compiler is invoked.

• Dynamic memory management using new and delete isn’t supported. In addition to all that, you must observe carefully every details. So, there’s no excuse for sloppy coding.

Bit Operations

Bit operation is a very important aspect of computing. For bit manipulation, you need only a few operations. The simplest is the not operation that inverts a bit. It turns a 0 into a 1 and vice versa. Most programming languages implement the binary not operation with a ~ operator:

int x = 42; // In binary this is 101010

int y = ~x; // y == 010101

In addition, you’ll find three binary operations named AND, OR, and XOR

(eXclusive OR). A lot of the programming languages demand a consistent operatives with their definitions as depicted in the diagram below:

[image:]

With these operators, it’s possible to mask bits in a number, so you can extract certain bits. If you’re interested only in the lower two bits of a number, you can do it as follows:

int x = 42; // In binary this is 101010

int y = x & 0x03; // y == 2 == B10

You can also set one or more bits in a number using the OR operation. The following code sets the fifth bit in x regardless of whether this bit is 0 or 1.

int x = 42; // In binary this is 101010

int y = x | 0x10; // y == 58 == B111010

The bit shift operators « and » let you move bits to a certain position before you work with them. The first one moves bits to the left, and the second moves them to the right:

int x = 42; // In binary this is 101010

int y = x << 1; // y == 84 == B1010100

int z = x >> 2; // z == 10 == B1010

Shifting operations might seem intuitive, but you have to be careful when shifting signed values. However, it look alike, but binary operators aren’t the same as Boolean operators. Boolean operators such as && and || don’t operate on the bit level. They implement the rules of Boolean algebra.

Beginners are often afraid of bit operations, but there’s no reason to fear them. Microcontrollers operate on a bit level, so you have to be able to make the bits obey your will. It takes some training, but it’s not rocket science.

CHAPTER EIGHT

SERIEL PROGRAMMING

In communication with the Arduino, most people mainly used JavaScript, and in other people can still use the Processing, but most developers select further languages.

In computer connection, data are conveyed as electrical pulses, between the connected devices. These data must have a reference dairy for the voltage level, to read and accept the signals from the other devices. The transmission line that is used to send data to the recipient must be associated to the recipient’s receiving line.

With this, both the receiver and sender can permits full-duplex communication to send and receive data from one another concurrently. Connection of two device physically can be very easy but for it to really connect there must be some protocol established.

The diverse situations of a bit are characterized by varied voltage levels. Usually,
 a 0 bit is represented by 0 volts, while 5 volts stands for a 1 bit. Other procedures utilizes the 12V and 12V, correspondingly. In the diagram below, it shows the parameters that controls the serial communication:

[image:]

• The start bit designates the commencement of new data word that can be use to harmonize both the transmitter and receiver. It is always 0.

• The stop bit communicates the ending data. This bit splits two successive numbers or words. Dependent on the specific procedure arrangement. Although, the stop bit can pass more than one bit, this occur rarely.

• The data are disseminated as binary data bits; for example, letters like MOP are transmitted in numbers like 0 2 7. Various character set are accessible but when working with the Arduino, the ASCII encoding fits best. In ASCII, an uppercase M is encoded as the decimal number 77, which is 01001101 in binary. The bit transmission is moved eventually.

• The parity bit indicates whether the number of 1s in the data has been odd or even. This is a simple error-checking algorithm that is rarely used and that stems from a time when network connections were less reliable than they are today. Parity control can be “none” (no parity bit is sent), “odd” (the parity bit is set if the amount of 1s in the data bits is odd; otherwise, it is 0), or “even” (the parity bit is set if the amount of 1s in the data bits is even; otherwise, it is 0). We chose odd parity for our data, and because there are 4 bits set to 1 in 01001101, the parity bit is 0.

• The baud rate describes the transmission speed and it is measured in transmission steps per second. When working with the Arduino, typical baud rates are 9600, 14400, 19200, or even 115200. Note that the baud rate doesn’t define how much data is actually transferred per second, because you have to take the control bits into account. If your linking sceneries are 1 start bit, 1 stop bit, no parity, and 8 bits per byte, then you have to transfer 1 + 1 + 8 = 10 bits to transfer a single byte. With a baud rate set to 9600, you can then hypothetically direct 9600 / 10 = 960 bytes per second— as a minimum if every bit gets relocated in precisely one transmission step.

Serial Communication Using Various Languages

As you are using the Arduino software component, you often have to dialog via the serial port. This portion, will teach you the different programming languages you need to know. For demonstration purposes, the need of an Arduino sketch is required for better explanation:

[image:]

This program delays for the designation of the analog pin (a0, a1,…a5) and proceeds to its current value. The diagram below shows how thee monitor process or work hand in hand with the serial monitor.

[image:]

Although you have already seen a few Arduino programs using the serial port, you should pay special attention to the sketch above, because it uses one of the new features in Arduino 1.0: the serialEvent function. Arduino may demands this function automatically at the conclusion of the loop function; it can work on the data incoming at the serial port.

This nicely decouples your application’s logic from the more or less mechanical task of performing serial communication. Programs using serialEvent often follow the same pattern. They define a global variable for aggregating incoming data (pin_name in our case), and they define a global Boolean variable that indicates whether new data is available (input_available, in our case).

Whenever we read a newline character from the serial port, we set input_available to true. So, when the Arduino calls loop the next time, we know that new data has arrived, and we also know that we can find it in pin_name. After we have processed the data, we set the input string to an empty string and set input_available to false.

Back to the clients we’re going to implement. Although we use different programming languages to implement them, they all look similar: they assume the designation of the various serial port connection as a command-line argument; they constantly send the string “a0” to the Arduino to get back the current value of analog pin 0; they print the result to the console; they use a constant baud rate of 9600; and they wait for two seconds after opening the serial port, because many Arduinos reboot upon opening a serial connection.

Some Arduinos—for example, the Leonardo or the Micro—do not reboot upon opening a serial connection. When using one of these boards, your program should wait until the serial stream is open: Serial.begin(9600); while (!Serial);

For some of the clients, you need to install additional libraries. Other instances, you must apply it as an admin user on your machine. I won’t mention that explicitly in the following sections. Also, you should make sure you don’t have any serial monitor windows open when running one of the examples in the proceeding segments.

Finally, remember the full sample programs shown in the bare mechanics of serial port programming. In production code you’d at least check whether the data you read back from the Arduino has the right format.

C/C++

The Arduino may be programmed using the C++ languages, but in most cases, there is no need for the writing of such words to clients talking to the Arduino in C++ or C. However, you can adopt it for ease purpose especially when using Tod E. Kurt’s excellent arduino_serial1 as a basis.

The project implements a complete command-line tool offering more useful options. For our purposes, that’s not necessary. It’s sufficient to download the files arduino-serial-lib.h and arduino-serial-lib.c. The arduino-serial library exports the following functions:

• serialport_init opens a serial port connection. It expects the name of the serial port to be opened and the baud rate to be used. It returns a file descriptor if everything went fine, and it returns -1 otherwise.

• When you no longer need the serial port connection, you should close it using serialport_close.

• With serialport_writebyte, you can send a single byte to an Arduino connected to your computer’s serial port. Simply pass it the file descriptor returned by serialport_init and the byte to be written. It returns -1 if an error occurred. Otherwise, it returns 0.

• serialport_write writes an entire string to the serial port. It expects a file descriptor and the string to be written. It returns -1 if an error occurred. Otherwise, it returns 0.

• Use serialport_read_until to read data from a serial port. Pass it a file descriptor and a buffer to be filled with the data read. The method also expects a delimiter character, the maximum length of the buffer, and a timeout value measured in milliseconds. serial_port_read_until stops reading when it finds the delimiter character, when the buffer is full, or when its times out. If it cannot read any more data before one of these conditions is met, it returns -1. Otherwise, it returns 0.

• To make sure that all data you’ve written gets actually transferred, call serialport_flush and pass it the file descriptor of your serial port connection.

This is the step by step on how the code is communicating with the analog reader sketch. Note: You will observe that the code work only in your computer and not in the Arduino in any case:

[image:]

The first thing to do is to ingress all the libraries needed, and outline the constant for the maximum span of the lines we are going to read from the Arduino. Afterward you can describe a main function.

After you’ve ensure the correct designation of the serial port was passed on the command line, we initialize a serial port in line 15. You can allow the Arduino to snooze for about two seconds in order for the Arduino to prepare better for the next function. Afterward, you can begin the looping in line 23 where you will constantly send the string “a0” to the Arduino. You can observe the result of serialport_write, and if it was successful, we read the result sent by the Arduino in line 27. Let’s compile our little program:

maik> gcc arduino-serial-lib.c analog_reader.c -o analog_reader

Determine what serial port your Arduino is connected to (mine is connected to /dev/tty.usbmodem24321) and run the program like this:

maik> ./analog_reader /dev/tty.usbmodem24321

a0: 495

a0: 376

^C

Everything works as expected, and accessing a serial port using C isn’t that difficult. To embed this code into a C++ program, you should wrap it in a class named SerialPort or something similar.

Note that the arduino-serial library works on any POSIX-compatible system—in other words, it won’t work on Windows.

Java

The Java platform standardizes a lot, and it also defines how to access a serial port in the Java Communications API.2 But the API is only a specification that still has to be implemented. Unfortunately, at this time is with no complete or even perfect implementation available during the period of writing this book.

For many years the RXTX project3 provided a good implementation, but it hasn’t been updated for a while now. Oracle’s own implementation runs only on a few platforms, and the remaining solutions are commercial products you have to pay for.

Fortunately, the jSSC (java-simple-serial-connector) project4 comes to the rescue. It doesn’t implement the Java Communications API, but it follows a rather pragmatic approach. Likewise, it may not possess any sound with a handbell or signals, but it works on numerous stages and works perfectly with the Arduino.

jSSC is completely self-contained—which mean, there is only a need for jssc.jar file to get started with your first project. Download the most current release and make sure that jssc.jar is on your class path. Input the code below in your favorite IDE or text editor:

[image:]

[image:]

Although this program defines a class named AnalogReader, it’s not very object-oriented. We only define it because everything in Java has to live in a class

context. The main function implements the protocol for our Arduino sketch. First, you ensure the name of the serial port must be set on the command line. Then you can use this name to initialize a new SerialPort object.

To open the serial port, we call the openPort method. After a two-second pause, we configure the serial port’s parameters. In the loop that follows, we send the string “a0” to the serial port using Serial- Port’s writeString method. Afterward, we read the result by invoking the readLine function and print it to the console.

Currently, jSSC doesn’t offer a readLine function, therefore you must start writing personally. The function delivers the Arduino’s response byte by byte using the readBytes method, because jSSC doesn’t offer a method for reading a single byte. readLine appends all bytes read to the byte array named line until it detects a newline character (ASCII code 10). Finally, it converts the byte array into a String object and returns it.

Here’s how to compile and use the program:

maik> javac -cp jssc.jar AnalogReader.java

maik> java -cp jssc.jar:. AnalogReader /dev/tty.usbmodem24321

a0: 496

a0: 433

a0: 328

a0: 328

^C

AnalogReader does exactly what it’s intended to do: it permanently prints the values of the analog pin 0. Accessing a serial port in Java is a piece of cake if you use the right libraries.

Note that jSSC also allows you to write object-oriented code. It has a Serial- PortEventListener interface that makes it easy to decouple the handling of serial communication from your application’s logic. Have a look at the project’s examples to learn more about these features.

Ruby

Smooth active lingos like the Ruby provide prompt entree to your computer’s serial port and to an Arduino connected to it. Also, to start, there is a great need to mount the serialport gem: maik> gem install serialport. Using it, you can connect to the Arduino in just 30 lines of code.

[image:]

We create a new SerialPort object in line 15, passing it all the usual parameters. Afterward you allow to snooze for about two seconds. Then you start the loop and call write on the SerialPort object. To get the result back from the Arduino, we call gets, and then we print the result to the console.

With Ruby, you access to the Arduino is a very much possible since there is room for total focus on the application. More importantly, the hard and dreadful aanguages and other unkown details are not made for public view like several programming languages.

Python

Python is another dynamic programming language; it can swiftly create Arduino clients. For programming a serial port, transfer and put in the pyserial library first. There is a special installer for Windows, but usually it’s sufficient to install it like this:

maik> python setup.py install

After you’ve installed pyserial, proceed further by using it to generate a client for the analog reader sketch:

[image:]

Ensure that the name on the serial port appear clearly on the command line. Then you can make a fresh Serial object in line 10, passing it all the parameters we’d like to use for serial communication. After sleeping for minimum time, you can begin an infinite loop. While looping, you can start by sending the string “a0” to the respective serial port calling write. You can observe the result returned by the Arduino with the readline method and output the result to the console.

Perl

Perl is a common and loved programming language used by most programmers because it provision for serial communication. Some distributions arrive with libraries for user interface design of the serial port, but usually you have to install a module first.

Windows users should have a look at Win32::SerialPort.6 For the rest, Device::The installation of Perl is easy and you should really try it:

[image:]

[image:]

You must check whether the name of a serial port was passed on the command line.

Then you will create a new Device::SerialPort instance in line 11. You should configure all serial port parameters, and in line 16, we set a timeout value for read calls. If you have not set it, read would return immediately, giving the Arduino no time to respond. read_char_time sets a timeout for the waiting period between two characters.

Afterward you can sleep for two seconds. Start the sinfinite loop after sleeping. Here we send the string “a0” to the serial port and read the Arduino’s response using the read method. Read expects a maximum number of bytes to be read, and it returns the actual number of bytes read and the data it received. Finally, we output the result to the console. A typical program run looks as follows:

[image:]

That’s it! It takes only about twenty lines of Perl code in generate a client for the analog reader Arduino sketch. So, Perl is a good choice for programming Arduino clients, too.

CHAPTER NINE

CREATING BIGGER PROJECTS WITH THE ARDUINO

Over the last chapters you must have learnt very well how to create and program little project, especially from just blinking once to programming. This progression is very important because we will be going a lot deeper in this section to creating something bigger than the usual.

In creating a bigger project, you will need more than one sensor so that you can transmit data forth and back into your computer. More importantly, to transmit data with the Arduino, you’ll have to use the serial port.

This section clarifies the whole shebang you need to know about serial communication. To make things more tangible, you’ll learn how to turn your computer into a very expensive light switch that lets you control an LED using the keyboard.

Material Needed for the Project

Examples of some material needed are as follows

1. The complete Arduino hardware

2. The presence of a USB cable to attach the Arduino to your PC

3. You will also need a LED, although it can be optional at times.

4. For people using windows PC; you will need a software serial terminal like the PuTTY. For those using Linux and Mac OX a screen is needed. All of these are optional also.

[image:]

Managing Projects and Sketches

Contemporary software programmers developers have the liberty to pick their choice from assortment of advance tools that systematize tiresome and uninteresting tasks. That’s also true for embedded systems like the Arduino. You can use integrated development environments to also organize the programing. The most popular one has been created by the Arduino team.

The Arduino software component manages all files belonging to the operation. It also provides convenient entry to all devices needed to build binaries that will operate on the Arduino hardware unobtrusively.

To create new files to a project, click the Tabs button rightwards in order to unroll a new file. After clicking, a Tab will pop-up on as the menu, and then select a New Tab. You can also open an already created file again by using the sketch. Proceed to add file menu item, select existing file and input the name.

You can change the name whenever you like using the Save As command. If you do not save a sketch explicitly, the IDE stores it in a predefined folder you can look up in the Preferences menu. Whenever you get lost, you can check what folder the current sketch is in using the Sketch > Show Sketch Folder menu item.

Since Arduino 1.0, sketches have the extension ino. Older IDE versions used pde. Arduino 1.0 still supports pde files, but it will update them to ino when you save the sketch. (However, this feature can be discontinued via the Preferences menu.)

[image:]

You need to realize that you can't only create a new file but you can also view examples of some sketches. Proceed to file to know more. Note that many libraries come with examples, too. Whenever you install a new library. With time and consistent study of the manual, you will be able to understand and grab every details of this project.

The Arduino team to ease stress away from users as much as possible by subscribing to the correct settings and inputting the right keys with your monitors created the Arduino software.

Changing Preferences

For starters, it may sound fun using the default settings but as you progress using the Arduino software to give instructions on the hardware component, you will soon make certain changes to suite your idea. In the figure below is an alteration of language and other functions.

[image:]

The dialog box denotes the file name preferences.txt. It consist of different preferences. Most of the files are java file containing keys and values used. These keys controls the operators interface; such as changing of fonts, choosing the different color and other function. However, you can make certain modification the application’s behavior. You can permit extra effusive productivity for operations such as accumulating or uploading a sketch.

Earlier, the Arduino 1.0, had to manage preferences.txt and usual both build verbose and upload.verbose to true to achieve this. Today, you can change the verbose settings from the Preferences dialog box. Make sure that verbose output is enabled for compilation and upload. Also, it’s helpful to enable the “Display line numbers” option.

Load the blinking LED sketch and assemble it over and over. The output in the message panel should look like this:

[image:]

Note that the IDE updates some of the Preferences values when it shuts down. Prior to making any adjustment, you should close the Arduino software and input the changes quickly in the preferences.txt file.

Using Serial Ports

Arduino makes many stand-alone applications—projects that do not involve any additional computers—possible. Very importantly is the connection between your monitor and the hardware component of your Arduino In order to upload the software. After that, you can power it up with current from an electrical source. More often, people use the Arduino to enhance the capabilities of a computer using sensors or by giving access to additional hardware.

Usually, you control external hardware through the serial port. Therefore, there is a great need to understand it communication of the Arduino serially. Although the standards for serial communication have changed over the past years (for example, we use USB today, and our computers doesn’t have RS232 connectors), the basic working principles remain the same.

In the simplest case, we can link multiple devices using only three wires: a common ground, a line for transmitting data (TX), and one for receiving data (RX).

[image:]

Serial communication might sound old-school, but it’s still the preferred way for hardware devices to communicate. The S in USB stands for “serial”—and when was the last time you saw a parallel port. For uploading software, the Arduino has a serial port, and you can use it to connect the Arduino to other devices, too status LED using your computer’s keyboard.

To switch on the LED you can clasp the one button. In addition, to switching it off, you can clasp the two button. You will find the code in the subsequent page of this book:

[image:]

As in our previous examples, we define a constant for the pin the LED is connected to and set it to OUTPUT mode in the setup function. In line 6, we initialize the serial port using the begin function of the Serial class, passing a baud rate of 9600.

That’s all we need to send and receive data via the serial port in our program. So, let’s read and interpret the data. The loop function starts by calling Serial’s available method in line 10. This returns the number of bytes waiting on the serial port. If any data is available, we read it using Serial.read. ‘read’ returns the first byte of incoming data if data is available and -1 otherwise.

If the byte we have read represents the character 1, we switch on the LED and send back the message “LED on” over the serial port. We use Serial.println, which adds a carriage return character (ASCII code 13) followed by a newline (ASCII code 10) to the text.

If we receive the character 2, we switch off the LED. If we receive an unsupported command, we send back a corresponding message and the command we didn’t understand. Serial.print works exactly like Serial.println, but it doesn’t add carriage return and newline characters to the message.

Let’s see how the program works in practice. Compile it, upload it to your Arduino, and then switch to the serial monitor. At first glance, nothing happens. That’s because we haven’t sent a command to the Arduino yet. Make sure the drop-down menu at the bottom of the serial monitor is set to No line ending.

Enter a 1 in the text box, and then click the Send button. Two things should happen now: the LED is switched on, and the message “LED on” appears in the serial monitor window (as shown in the following image). We are controlling an LED using our computer’s keyboard!

[image:]

Play around with the commands 1 and 2, and also observe what happens when you send an unknown command. For example, when you input a capital letter A into your computer, you will be surprise that the Arduino will reply you with a command that what you have entered is not known by the Arduino. In ASCII code, A is number 65 and this is the most basic data entry for ASCII coding. This is the normal mode of Serial’s print method, and you can change it by passing a format specifier to your function calls.

To see the effect, replace line 20 with the following statements:

Serial.println(command, DEC);

Serial.println(command, HEX);

Serial.println(command, OCT);

Serial.println(command, BIN);

Serial.write(command);

Serial.println();

The output looks as follows when you send the character A again:

Unknown command: 65

41

101

1000001

A

Depending on the format specifier, Serial.println automatically converts a byte into another representation. DEC outputs a byte as a decimal number, HEX as a hexadecimal number, and so on. Note that such an operation usually changes the length of the data that get transmitted. The binary representation of the single byte 65 needs 7 bytes, because it contains seven characters.

Also note that we have to use Serial.write instead of Serial.println to output a character representation of our command value. Former versions of theArduino IDE had a BYTE modifier for this purpose, but it has been removed in Arduino 1.0.

Numbering Systems

It’s an evolutionary accident that 10 is the basis for our numbering system. If we had only four fingers on each hand, it’d be probably eight, and we’d probably have invented computers a few centuries earlier. For thousands of years, people have used denominational number systems, and we represent a number like 4711 as follows:

4×103 + 7×102 + 1×101 + 1×100

This makes arithmetic operations very convenient. While using a computers that interpret only binary numbers, it’s often good to use numbering systems based on the numbers 2 (binary), 8 (octal), or 16 (hexadecimal). The decimal number 147 can be represented in octal and hexadecimal as:

2×82 + 2×81 + 3×80 = 0223

9×161 + 3×160 = 0x93

In Arduino programs, you can define literals for all these numbering systems: int decimal = 147;

int binary = B10010011;

int octal = 0223;

int hexadecimal = 0x93;

Binary numbers start with a B character, octal numbers with a 0, and hexadecimal numbers with 0x. Note that you can use binary literals only for numbers from 0 to 255.

Using Different Serial Terminals

For trivial applications, the IDE’s serial monitor is sufficient, but you cannot easily combine it with other applications, and it lacks some features. That means you should have an alternative serial terminal to send data, and you can find plenty of them for every operating system.

Serial Terminals for Windows

PuTTY1 is an excellent choice for Windows users. It is free, and it comes as an executable that doesn’t even have to be installed. The image below reveals how to configure it for communication on a serial port.

[image:]

After you have configured PuTTY, you can open a serial connection to the Arduino. Check the images below properly and obey the instructions given to the latter for effectiveness.

[image:]

Now press 1 and 2 a few times to switch on and off the LED.

Serial Terminals for Linux and Mac OS X Linux and Mac users can use the screen command to communicate with the Arduino on a serial port. Check which serial port the Arduino is connected to in the IDE’s Tools > Board menu. Then run a command like this: screen /dev/tty.usbmodem24321 9600

The screen command expects the name of the serial port and the baud rate to be used. To quit the screen command, press Ctrl-a followed by k. (On some systems it’s Ctrl-a followed by Ctrl-k.)

We can now communicate with the Arduino, and this has great implications: whatever is controlled by the Arduino can also be controlled by your computer, and vice versa. Switching LEDs on and off isn’t too spectacular, but try to imagine what’s possible now. You could move robots, automate your home, or create interactive games.

Revelation on the functionality of Serial communication:

• The Arduino Uno’s serial enables protection of up to 64 bytes. Therefore, you can have little worries about sending huge proportion of data with high speed. Usually, the receiver sends an acknowledgment to the sender whenever it is ready to consume a new piece of data.

• The serial communication enables the communication of more than one devices unlike the normal Arduino with a stereotype port. If you need more, take a look at the Arduino Due, which has four serial ports.2

• The Universal Asynchronous Receiver/Transmitter (UART) 3 device e
 enables
 serial communication with
 the Arduino. This device handles serial communication while the CPU takes care of other tasks. This greatly improves the system’s overall performance. The UART uses digital pins 0 (RX) and 1 (TX), which means you cannot use them for other purposes when communicating on the serial port. If you need them, you can disable serial communication using Serial.end().

• With the SoftwareSerial4 library, you can use any digital pin for serial communication. It has some limitations, but it is sufficient for most applications.

CHAPTER TEN

BUILDING A BINARY GAME

In this section, you will understand how to create an electronic die. While regular dice display their results using one to six dots, ours will use LEDs instead. To connect pushbuttons and LEDs to the Arduino, you need another important electronic part: the resistor. At the end of the chapter, you’ll have many new tools in your toolbox.

Materials Needed for this Project

1. A half-size breadboard

2. Three LEDs

3. Two 10kΩ resistors

4. Three 1kΩ resistors

5. Two pushbuttons

6. Some wires of different lengths

7. You will need the hardware component of an Arduino.

8. And lastly is a USB cable to bind the Arduino hardware port to your PC.

[image:]

The Breadboard

A breadboard is like a circuit board, it does not require any soldering, instead, you simply plug them in. The Breadboards come in various types and sizes. You can connect the wire directly, which is very easy to perform. Normally, you’ll have to use an original products for your undertaking especially when connecting to the Arduino.

All breadboards are alike in their functionality. They have a lot of sockets you can use for plugging in through-hole parts or wires. That alone wouldn’t be a big deal, but the sockets are connected in a special way.

[image:]
 [image:]

As you can see, most sockets are connected in columns. If one socket of a column is connected to a power supply, then automatically all the other sockets in this column are powered, too. On the bigger board in the photo, you can also see four rows of connected sockets. This is convenient for bigger circuits.

Usually, you connect one row to your power supply and one to the ground. This way, you can distribute power and ground to any point on the board. Note that on some breadboards there are gaps between the sockets on a single row. On such breadboards you have to bridge the gaps using a wire if needed.

Using LED on a Breadboard

The LEDs we need are through-hole parts. They are named through-hole parts because they are mounted to a circuit board through holes. That’s why they usually have one or more long wires.

First, you put the wires through holes in a printed circuit board. Then you usually bend, solder, and cut them to attach the part to the board. Where available, you can also plug them into sockets as you have them on the Arduino or on breadboards.

Connect the Arduino to the breadboard using two wires. Connect pin 12 with the ninth column of the breadboard, and connect the ground pin with the tenth column. This automatically connects all sockets in column 9 to pin 12 and all sockets in column 10 to the ground. This choice of columns was arbitrary; you could’ve used other columns instead.

Plug the LED’s negative connector (the shorter one) into column 10 and its positive connector into column 9. When assembling an electronics project, parts fall into two categories: those you can mount any way you like and those that need a special direction. An LED has two connectors: an anode (positive) and a cathode (negative). It’s easy to mix them up, and my science teacher taught me the following mnemonic: the cathode is negative.

It’s also easy to remember what the negative connector of an LED is: it is shorter, minus, less than. If you are a more positive person, then think of the anode as being bigger, plus, more. You can alternatively identify an LED’s connectors using its case. On the negative side the case is flat, while it’s round on the positive side.

When you plug parts or wires into a breadboard, you have to press them firmly until they slip in. You might need more than one tries, especially on new boards, and it’s often useful to shorten the connectors with a wire cutter before plugging them into the breadboard. Ensure you can still identify the negative and positive connectors after you’ve shortened them.

[image:]

Shorten the negative one a bit more. Also wear safety glasses to safeguard the eyes when you’re cutting the connectors! The things we’ve done up until now have been straightforward. You can then add a resistor to slow the rate of electricity inside the circuit. In our case, it protects the LED from consuming too much power, because this would destroy the LED.

The pictures below are images of resistor in various stages: unprocessed, bent, and cut.

[image:]

We don’t want to fiddle around too much with the connectors, so you can build a circuit as described in the image below. That is, we use both sides of the breadboard by connecting them with a short wire. Note that the resistor bridges the sides, too.

[image:]

[image:]

We’ve built a strong foundation for our project, and in the next section we’ll build upon it.

First Version of a Binary Die

You’re certainly familiar with a regular die displaying results in a range from one to six. To emulate such a die exactly with an electronic device, you’d need seven LEDs and some fairly complicated business logic. We’ll take a shortcut and display the result of a die roll in binary.

For a binary die, we need only three LEDs to represent the current result. We turn the result into a binary number, and for every bit that is set, we light up a corresponding LED. The following diagram shows how the die results are mapped to LEDs. (A black triangle stands for a shining LED).

[image:]

We already know how to control a single LED on a breadboard. Controlling three LEDs is similar and requires only more wires, LEDs, 1kΩ resistors, and pins.

The most important difference is the common ground. When you need ground or a single LED, you can connect it to the LED directly. But we need ground for three LEDs now, so we’ll use the breadboard’s rows for the first time.

[image:]

Connect the row marked with a hyphen (-) to the Arduino’s ground pin, and all sockets in this row will work as ground pins, too. Then you can connect this row’s sockets to the LEDs using short wires.

Everything else in this circuit should look familiar, because we only had to clone the basic LED circuit from the previous section three times. Note that we have connected the three LEDs to pins 10, 11, and 12. The only thing missing is some software:

[image:]
 [image:]

This is all the code we need to implement the first version of a binary die. As usual, we define some constants for the output pins the LEDs are connected to. In the setup function, we set all the pins into OUTPUT mode. For the die, we need random numbers in the range from one to six. The random function returns random numbers in a specified range using a pseudorandom number generator.

In line 10, we initialize the generator with some noise we read from analog input pin A0. You might wonder where the constant A0 is from. The Arduino IDE defines constants for all analog pins named A0, A1, and so on. Then we actually generate a new random number between one and six and output it using the output result function. (The seven in the call to random is correct, because it expects the upper limit plus one).

The function output_result takes a number and outputs its lower three bits by switching on or off our three LEDs accordingly. Here we use the & operator and binary literals. The & operator takes two numbers and combines them bitwise. When two corresponding bits are 1, the result of the & operator is 1, too. Otherwise, it is 0. The B prefix allows you to put binary numbers directly into your source code.

For example, B11 is the same as 3. You might have noticed that the loop function was left empty, and you might wonder how such a die works. It’s pretty simple: whenever you restart the Arduino, it outputs a new number, and to roll the die again, you have to press the reset button.

Compile the code, upload it to the Arduino, and play with your binary die. You have mastered your first advanced electronics project! Enjoy it for a moment! Whenever you want to see a new result, you have to reset the Arduino. That’s probably the most pragmatic user interface you can build, and for a first prototype, this is okay.

But it’s more elegant to control the dice with your own button. That’s what we’ll do in the next section.

Working with Buttons

What exactly is a pushbutton? The images below shows three views of a typical pushbutton. It has four connectors that fit perfectly on the breadboard. Two opposite pins connect when the button is pushed; otherwise, they are disconnected.

[image:]

The following picture shows a simple circuit using a pushbutton. Connect pin 7 (chosen completely arbitrarily) to the pushbutton, and connect the pushbutton via a 10kΩ resistor to ground. Then connect the 5-volt power supply to the other pin of the button. Make sure the pushbutton’s orientation is right. Its connected pins have to bridge the gap of the breadboard.

[image:]

Overall, this approach seems straightforward, but why do we need a resistor again? The problem is that we expect the pushbutton to return a default value (LOW) in case it isn’t pressed. But when the button isn’t pressed, it would be directly connected to ground and would flicker because of static and interference.

Only a little bit of current flows through the resistor, and this helps prevent random fluctuations in the voltage at the input pin. When the button is pressed, there will still be 5 volts at the Arduino’s digital pin, but when the button isn’t pressed, it will cleanly read the connection to ground.

We call this a pull-down resistor; a pull-up resistor works exactly the other way around. That is, you have to connect the Arduino’s signal pin to power through the pushbutton and connect the other pin of the pushbutton to ground using a resistor. Now that we’ve eliminated all this ugly unstable real-world behavior, we can return to the stable and comforting world of software development.

The following program checks whether a pushbutton is pressed and lights an LED accordingly:

[image:]

We connect the button to pin 7 and the LED to pin 13 and initialize those pins in the setup function. In loop, we read the current state of the pin connected to the button. If it is HIGH, we turn the LED on. Otherwise, we turn it off. Upload the program to the Arduino, and you’ll see that the LED is on as long as you press the button.

As soon as you release the button, the LED turns off. This is pretty cool, because now we nearly have everything; we need to control our die using our own button. But before we proceed, we’ll slightly enhance our example and turn the button into a real light switch.

To build a light switch, we start with the simplest possible solution. Do not change the current circuit, and upload the following program to your Arduino:

[image:]

We begin with the usual pin constants, and in setup we set the modes of the pins we use. In line 8, we define a global variable named led state to store the current state of our LED. It will be LOW when the LED is off and HIGH otherwise. In loop, we check the button’s current state. When we press the button, its state switches to HIGH, and we toggle the content of led_state.

That is, if led_state was HIGH, we set it to LOW, and vice versa. At the end, we set the physical LED’s state to our current software state accordingly. Our solution is really simple, but unfortunately, it doesn’t work. Play around with it, and you’ll quickly notice some annoying behavior.

If you press the button, the LED sometimes will turn on and then off immediately. Also, if you release it, the LED will often remain in a more or less arbitrary state; that is, sometimes it will be on and sometimes off.

The problem is that the Arduino executes the loop method over and over again. However, the Arduino’s central processing unit is sometimes sluggish, this is likely to occur despite the pressing of the buttons. Although, when you consistently press the button it will increase the state very HIGH, and you’d constantly toggle the LED’s state (because this happens so fast, it seems like the LED is constantly on).

After removing your hands from the button, the LED is in a more or less arbitrary state. To improve the situation, we have to store not only the LED’s current state, but also the pushbutton’s previous state:

[image:]

Also, in the loop function, you must take note of the current button state, but now we not only check whether it is HIGH, but we also check whether it has changed since the last time we read it. Only when both conditions are met do we toggle the LED’s state.

So, we no longer turn the LED on and off over and over again as long as the button is pressed. At the end of our program, we have to store the button’s current state in old_button_state. Upload the new version, and you’ll see that this solution works much better than our old one. But you will still find some cases when the button doesn’t behave fully as expected. Problems mainly occur in the moment you release the button.

These problems occur because the mechanical buttons bounce for a few milliseconds when you press them. In the following figure, you can see a typical signal produced by a mechanical button. Right after you have pressed the button, it doesn’t emit a clear signal. To overcome this effect, you have to debounce the button.

It’s usually sufficient to wait a short period of time until the button’s signal stabilizes. Debouncing ensures that the input pin reacts only once to a push of the button:

[image:]

In addition to debouncing, we still have to store the current state of the LED in a variable. Here’s how to do that:

[image:]

 [image:]

This final version of our LED switch differs from the previous one in only a single line: to debounce the button, we wait for 50 milliseconds in line 21before we enter the main loop again. For the moment, this solution is sufficient, but you’ll learn about an even better one in a few minutes. That’s everything you need to know about pushbuttons for now. In the next section, we’ll use two buttons to turn our binary die into a real game.

Adding Your Own Button

Now that you know how to work with pushbuttons, you no longer have to abuse the Arduino’s reset button to control the die. You can add your own pushbutton instead. Actually, we don’t have to change the existing parts at all; we only need to add some things.

First, we plug a button into the breadboard and connect it to pin 7. Then we connect the button to the ground via a 10kΩ resistor and use a small piece of wire to connect it to the 5-volt pin. That’s all the hardware we need. Here’s the corresponding software:

[image:]

[image:]

That’s a perfect merge of the original code and the code needed to control a debounced button. As usual, we initialize all pins we use: three output pins for the LEDs and one input pin for the button. We also initialize the random seed, and in the loop function we wait for new button presses. Whenever the button gets pressed, we roll the die and output the result using the LEDs.

Building a Dice Game

What do you need?

One Arduino Uno

A USB cable

One breadboard

Seven LEDs

Seven resistors (220 Ohm each)

A button

Jump Wire (Male)

Pressing the button, the LEDs light up in sequence and then display a number. The seven-LEDs are arranged like a real cube and represent the number like on an analog cube.

The code is just as simple. The LEDs required for display on the cube are switched HIGH via a randomly generated number. Before the pins are switched HIGH, a short running light is output and then all LED pins of the cube are switched LOW. Using the delay time in the script, the running light can be changed at a speed before the number is displayed. Delay 50 is fast, Delay 300 is slow

The code and wiring is pretty simple. Seven-LEDs are connected to the Arduino in a cube shape via 220-Ohm resistors. The button is connected to pin five with a pull-down resistor, which receives a HIGH signal when pressed.

Instead of copying code, you should use functions or classes. This way your code will become more compact and more readable. As a bonus, it will be much easier to change your code, because when you copy code you have to remember all the places you’ve copied it to when you have to make a change. If you’ve isolated the code in a single place, you have to change it only once.

So, we won’t copy our debounce logic, but we’ll use the Bounce2 library1 that was written in instances like this. Look for the library2 and unpack its
 contents
 inside your computer. For a
 Mac computer:
 /Documents/Arduino/libraries. While for Windows: or My Documents\Arduino\libra

[image:]

This is the code below;

 [image:]

Explaining the code

Since we already had all of this and all the components already seem familiar, just summarized again: Arrays, for loops, if conditions and the creation of your own functions. The biggest innovation is the random () function. Up to two parameters can be passed to this function and it returns a random number. The function is called in line 14 of the program. cube represent(random(1,7));What this command says is that a parameter is passed to the function cubeDisplay () . However, this parameter is not already firmly defined, but is the return value of another function.random(1,7)returns a random one between 1 and 7. We can therefore remember that we can also call another function as a parameter for a function, as long as this function has a return value that the first function can use. It is important to say that line 14 is only called up if a) the tilt switch has been activated and b) a for loop first runs in line 13 so that there is still a little movement in the LEDs.

But what does cube represent () do with the parameter? This function goes from lines 21 to 60. This function does the main work with the LEDs, because it transforms a number into a representation of the cube shape. Because as you may have noticed, dice don't have the normal numbers from 1 to 6 but points. In lines 21 to 24, it is first ensured that all LEDs are off. In the next if conditions, the LEDs that are needed to display the numbers as dots are switched on. Et voila. Cube is ready.

The Bounce2 library declares a class named Bounce, and you have to create a Bounce object for every button you want to debounce. That’s what happens in lines 11 and 12.

In the setup method, we initialize all our pins and set the random seed. We also initialize the serial port, because we’ll output some debug messages. In lines 20 to 23, we initialize the two Bounce objects. The attach method connects a Bounce object to a certain pin. With the interval method you can set a button’s debounce delay in milliseconds.

Our loop function has been reduced to two function calls. One is accountable
 for dealing with guess button pushes, and the other one handles pushes of the start button. In handle_guess_button, we use the Bounce class for the first time. To locate the current state of our guess_button object, we have to call its update method.

Afterward, we read its current status using the read method. If the button was pressed, its state is set to HIGH, and we increment the guess variable. To make sure that the guess is always in the range between 1 and 6, we use the modulus operator (%) in line 36. This operator divides two values and returns the remainder. For 6, it returns values between 0 and 5, because when you divide a number by 6, the remainder is always between 0 and 5.

Add 1 to the result, and you get values between 1 and 6. Finally, we output the current guess using the three LEDs, and we also print it to the serial port. Handling of the start button in handle_start_button works similar with the handling of the guess button. When the start switch is pressed, the serial port does the calculation and shows the result. Then we check whether the user has entered a guess (guess may be more than zero in actual reality) and whether the user has guessed the correct result.

We can issue the statement directly to the serial port. However, when the user assumed rightly, use the hooray method afterwards. hooray lets all three LEDs blink several times. Wait for about two seconds for the operation to restart again, by resetting the current guess to zero. All this process are prior before the uploading of the IDE program to the Arduino.

The end result of the current value of the guess variable will be rreleased out whenever the guess button is tapped. Tap the start switch, and the new result appears. The diagram shows the normal output of the binary die monitor.

[image:]

I
 f you follow the step accordingly
 , you completed your first really complex Arduino project. You needed a breadboard, LEDs, buttons, resistors, and wires, and you wrote a nontrivial piece of software to make all the physical components come to life.

About the Author

Roger Edward is a freelance technology writer, programmer and computer educator in the United States. He has a passion for open source software and hardware like the Raspberry Pi and Arduino microcontrollers. As an early adopter of the Raspberry Pi and Arduino microcontrollers, he has written several books and articles on the capabilities and flexibility of these microcontrollers.

His book and publications give users a simplified and step-by-step approach toward using the Raspberry Pi and Arduino. He has also received several awards and accolades from top organizations for a job well done in the Technological industries.

OEBPS/Image00057.jpg
BinaryDice/MoreReliableSwitch/MoreReliableSwitch.ino
const unsigned int BUTTON_PIN = 7;
const unsigned int LED_PIN = 13;

void setup() {
pinMode(LED_PIN, OUTPUT);
pinMode(BUTTON_PIN, INPUT);

}

int old_button_state = LOW;

int led_state = LOW;

void loop() {
const int CURRENT_BUTTON_STATE = digitalRead(BUTTON_PIN);
if (CURRENT BUTTON_STATE != old_button_state & CURRENT BUTTON_STATE == HIGH) {
if (led_state = LOW)
led_state = HIGH;
else
led_state = LOW;
digitalWrite(LED_PIN, led_state):
}
old_button_state = CURRENT_BUTTON_STATE:
}

OEBPS/Image00058.jpg
Button pressed Button released
. }
ov J_‘M u_‘ﬂ\

OEBPS/Image00056.jpg
BinaryDicefUnraliableswitch/UnraliableSwitchino
tne1 const unsigned int BUTTON PIN = 7;
const unsigned int LEDPIN = 13;

void setup() {
pintode(LED_PIN, OUTPUT) :
pintode (BUTTON_PIN, INPUT):

¥
int led_state = LOW;
void loop() {
const int CURRENT_BUTTON_STATE = digitalRead (BUTTON_PIN);
if (CURRENT_BUTTON_STATE == HIGH) {
if (led_state — LOW)
Ted_state = HIG
else
1 Ted_state = LOW;
digitalWrite(LED_PIN, led_state);

¥
¥

OEBPS/Image00010.jpg

OEBPS/Image00054.jpg

OEBPS/Image00011.jpg
Get familiar
with the IDE and
the programming

language by
practicing

Buy Install Install

your Arduino Arduino IDE the libraries

OEBPS/Image00055.jpg
BinaryDice/SimpleBution/SimpleBution.no
const unsigned int BUTTON_PIN
const unsigned int LED_PIN

void setup() {
pinhode (LED_PIN, OUTRUT):
pinhode (BUTTON_PIN, INPUT):
¥
void Toop() {
const int BUTTON_STATE = digitalRead (BUTTON_PIN) ;

if (BUTTON_STATE == HIGH)
digitalWrite(LED_PIN, HIGH):
else

digitalWrite(LED_PIN, LOW);

OEBPS/Image00008.jpg

OEBPS/Image00052.jpg
15 void loop() {
-}

- void output_result(const long result) {
digitalWrite(LED_BITO, result & BOO1);
20 digitalwWrite(LED_BIT1, result & BO10O);
digitalWrite(LED_BIT2, result & B100);
-}

OEBPS/Image00009.jpg

OEBPS/Image00053.jpg
Side

Front

o
S ANG

.4 //a
P

OEBPS/Image00006.jpg

OEBPS/Image00050.jpg

OEBPS/Image00007.jpg

OEBPS/Image00051.jpg
Line 1

- const unsigned int LED_BIT1
- const unsigned int LED_BIT2

5

10

BinaryDice/BinaryDice/BinaryDice.ino
const unsigned int LED_BITO = 12;

void setup() {
pinMode(LED_BITO, OUTPUT):
pinMode(LED_BIT1, OUTPUT):
pinMode(LED BIT2, OUTPUT):

randomSeed (analogRead(A0)) :
long result = random(1l, 7);
output_result(result);

OEBPS/Image00048.jpg
BinaryDice/Blink/Blink.ino
const unsigned int LED_PIN = 12
const unsigned int PAUSE = 50

void setup() {
pinMode(LED_PIN, OUTPUT):
]

void Toop() {
digitalWirite(LED_PIN, HIGH):
delay (PAUSE) ;
digitalWirite(LED_PIN, LOW):
delay (PAUSE) ;

¥

OEBPS/Image00049.jpg

OEBPS/Image00014.jpg
s 105

Omorze » ncudeinioay v Swewth e Bun

N

el

b FronussOme
B tibnies & sinacat

5 ardinoint
MCompre % s amastoe

= ot
Stk O Ao, Drverip

Datemoaties

e
s
nwmms
nmams

ety Catog
SeupIformaton
P
Sopteaton
Compressd s

OEBPS/Image00015.jpg
Upload ~ Open

Verify New Save Serial Monitor

OEBPS/Image00012.jpg
File Action View Help

@9 mHml e

Py -
» {8 Computer
b Disk drives
» B, Display adapters
&L DVD/CD-ROM drives
» U5 Human Interface Devices
b Keyboards
» -4 Mice and other pointing devices
» - Monitors
» 4 Network adapters
417" Ports (COM & LPT)
¥ Arduino Uno (COM4)
7§ Communications Port (COM1)
¥ Intel(R) Active Management Technology - SOL (COM3)
» [Processors
[P Security Devices
b Sound, video and game controllers
1 & Storage controllers
» 80 System devices
5~ Universal Serial Bus controllers
»-@ USB Virtualization

OEBPS/Image00013.jpg
Device.

File Action View Help

@m0l EmEE %S

= =
488 Computer
- Dik dives
B, Diplay adapters
3 DVD/CD-ROM drivs
> o;, Human Interfoce Devices
= Keyboards
» p‘j\ Mice and other pointing devices
B Monitors
+4 Networkadapters
-lip Other devices
{[p Unknown device|
473" Ports (COM &LPT)
73" Communications Port (COML)
7 Intel) Active Management Technalogy - SOL (COMS)
{3 Processars
1P Securiy Devices
& Sound, video and game controllers
»< Sorage controllrs
58 System devices
3@ UniversalSerial Bus controllers
5§ USBVirtualization

OEBPS/Image00046.jpg

OEBPS/Image00047.jpg

OEBPS/Image00043.jpg

OEBPS/Image00044.jpg
A
I

............................

OEBPS/Image00041.jpg
Basic options for your PuTTY session

‘Speciy the destination you want to connect to
Serial e Speed
com3 9600

Connection type:
©ORaw O Tenet ORogn ©SSH @ Seral

Load, save or delete a stored session
Saved Sessions

Defaut Settings. Load

Close window on ext:
© Aways O Never @ Only on clean extt

OEBPS/Image00000.jpg
0.0,
ARDUIND

PROGRAMMING CRASH COURSE
FOR BEGINNERS TO PRO

A Step-by-Step Practical Guide to Arduino
Microcontroller Projects

Contains
Several

< Do It Yourself
= Projects

Roger Edward

OEBPS/Image00042.jpg

OEBPS/Image00039.jpg
o0 0 /dev/tty.usbmodem?24311

LED on
LED of f
LED on
LED off
LED on
LED off
LED off
LED off
LED on
LED on
LED on
LED on
LED off
LED off
LED on

@ Autoscroll [No line ending ﬂ [9600 baud ﬂ

OEBPS/Image00040.jpg

OEBPS/Image00037.jpg
GND | GND
Device#1 TX - TX Device #2
RX - RX

OEBPS/Image00038.jpg
Line 1

10

15

2

Welcome/Ledswitch/Ledswitch.Ino
const unsigned int LED_PIN = 13
const unsigned int BAUD_RATE = 9600;

void setup() {
pinMode (LED_PIN, OUTPUT);
Serial.begin(BAUD_RATE);
|]

void loop() {
if (Serial.available() > 0) {
int command = Serial.read();
if (command == '1') {
digitalWrite(LED_PIN, HIGH);
Serial.println("LED on");

} else if (command == '2°) {
digitalWrite(LED_PIN, LOW);
Serial.println("LED off");

} else {
Serial.print("Unknown command:
Serial.println(command) ;

OEBPS/Image00005.jpg

OEBPS/Image00003.jpg
-
e ARDUINO

OEBPS/Image00004.jpg
USB connector Power port Microcontroller Analog input pins Digital pins

OEBPS/Image00001.jpg
0.0,
ARDUIND

PROGRAMMING CRASH COURSE
FOR BEGINNERS TO PRO

A Step-by-Step Practical Guide to Arduino
Microcontroller Projects

Contains
Several

< Do It Yourself
= Projects

Roger Edward

OEBPS/Image00045.jpg

OEBPS/Image00002.jpg

OEBPS/Image00036.jpg
ene HelloWorld | Arduine 160

HelloViorid
L canst unsignec int LED_PIN = 13;
2 canst unsigned int PAUSE = 500;
3

4 void setw() {

5 pinede(LED_PIN, OUTPUT);
[

7

& vola Loop0)

9 GlgLtolirite(LED PIN, HIGH);

10 celoyCPAUSED;
1L olgitoliriteCLeD PN, Lon;
L deloyCPAUSE;

B3

OEBPS/Image00032.jpg
maik> perl analog_reader.pl /dev/tty.usbmodem24321
a0: 49

366
a0: 320
~c

OEBPS/Image00033.jpg

OEBPS/Image00030.jpg
maik> perl -MCPAN -e ‘install Device::SerialPort’
Then use it like this:

SerialProgramming/Perl/analog_reader.pl
use strict;

- use warnings;
- use Device::SerialPort;

my $num_args = $2ARGV + 1;

- 1f ($num_args !'= 1) {

-}

10

die "You have to pass the name of a serial port.”;

my $serial_port = $ARGV[O];

- my $arduino = Device::SerialPort->new($serial_port);
- $arduino->baudrate(9600);
- $arduino->databits(8);

OEBPS/Image00031.jpg
- $arduino->parity(“none");

15 $arduino->stopbits(1);
- Sarduino->read const_time(1);
- Sarduino->read char_time(1);

- sleep(2);
20 while (1) {
$arduino->write("ad\n");
my ($count, $line) = $arduino->read(255);
print $line;
-}

OEBPS/Image00028.jpg
Line 1

maik> gem install serialport
Using it. you can connect to the Arduino in just 30 lines of code.
SerialProgramming/Ruby/analog_reader.rb

require 'rubygems’
require 'serialport’

if ARGV.size != 1
puts "You have to pass the name of a serial port."
exit 1

end

port_name = ARGV[8]
baud_rate = 3600

data_bits = 8

stop_bits = 1

parity = SerialPort::NONE

arduine = SerialPort.new(
port_name,
baud_rate,
data_bits,
stop_bits,
parity
)

sleep 2

while true
arduino.write “38\n"
sleep 0.01
1line = arduino.gets.chomp
puts line

end

OEBPS/Image00029.jpg
/SerialProgramming/Python/analog_reader.py
Line1 import sys
- import time
- import serial

5 if len(sys.argv) != 2:
print “"You have to pass the name of a serial port.”
sys.exit(1)

- serial_port = sys.argv[1]

10 arduino = serial.Serial(
serial_port,

9600,
serial.EIGHTBITS,

- serial.PARITY_NONE,

15 serial.STOPBITS_ONE)

- time.sleep(2)

- while 1:
arduino.write("a@in")
line = arduino.readline().rstrip()

20 print line

OEBPS/Image00026.jpg
SerialProgramming/Java/AnalogReader.java
import jssc.SerialPort;

import jssc.SerialPortlist;
import jssc.SerialPortException;

public class AnalogReader {
public static void main(String[] args) throws Exception {
if (args.length = 1) {
System.out.println(
"You have to pass the name of a serial port."
);
System.exit(1);
}

try {
SerialPort serialPort = new SerialPort(args[©]);
serialPort.openPort();
Thread.sleep(2000);
serialPort.setParams(
SerialPort.BAUDRATE_9600,
SerialPort .DATABITS_S,
SerialPort STOPBITS_1,
SerialPort.PARITY_NONE
);

while (true) {
serialPort.writeString(*afln");
System.out.println(readLine(serialPort));
}
}
catch (SerialPortException ex) {
System.out._println{ex);
}
}

private static String readlLine(SerialPort serialPort) throws Exception {
final int MAX_LINE = 10;
final byte NEWLINE = 10;

bytel] line = new byte[MAX_LINE];
int 1 = 9;

OEBPS/Image00027.jpg
byte currentByte = serialPort.readBytes(1)[0];
while (currentByte != NEWLINE) {
line[1++] = currentByte;
currentByte = serialPort.readBytes(1)[0];
}
return new String(line);
}
}

OEBPS/Image00034.jpg
00 NV B WN

e}

10
1
12
13

00 HelloWorld | Arduino 1.6.0

Helloworld

const unsigned int LED_PIN = 13;
const unsigned int PAUSE = 500;

void setup() {

pinMod(LED_PIN, OUTPUT);

void loop(Q) {

}

digitalWrite(LED_PIN, HIGH);
delay(PAUSE);
digitalWrite(LED_PIN, LOW);
delay(PAUSE);

New Tab O N
Rename
Delete

Previous Tab ¥+
Next Tab AW £

HelloWorld

OEBPS/Image00035.jpg
LXE) Preferences

Sketchbook location:

/Users/maik/Documents/Arduino Browse
Editor language: (System Default [%) (requires restart of Arduino)
Editor font size: |10 (requires restart of Arduino)

Show verbose output during: (] compilation (] upload
¥ Display line numbers

™ Verify code after upload

[Use external editor

¥ Check for updates on startup

¥ Update sketch

s to new extension on save (.pde -> .ino)
¥ Save when verifying or uploading

More preferences can be edited directly in the file
/Users /maik Library/Arduino15 preferences.txt
(edit only when Arduino is not running)

OEBPS/Image00021.jpg
b aANDb aORb aXORb

~|o| =0

a&b alb anb
0 0 0

=[=lolo
o

1 1
1 1
1 0

OEBPS/Image00065.jpg
ece Jdovitty.usbmodom2431 1

@ Autoscroll [No line ending [¥] (0600 baud [¥]

OEBPS/Image00022.jpg
st Bt stob Bit

OEBPS/Image00019.jpg
int values[2]; // A two-element array
values[0] = 42; // Set the first element
values[1] = -42; // Set the second element
int more_values[] = { 42, -42 };

int first = more_values[0]; // first — 42

OEBPS/Image00063.jpg
Line 1

BinaryDice/DiceGame/DiceGame.ino
#include <Bounce2.h>

const
const
const
const
const
const
const

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

int guess = 0O;
Bounce start_button:
Bounce guess_button:

void setup() {

int
int
int
int
int
int
int

LED_BITO = 12:
LED BIT1 = 11:
LED_BIT2 = 10:

GUESS_BUTTON_PIN
START_BUTTON_PIN

BAUD_RATE = 9600:

DEBOUNCE_DELAY

pinMode(LED _BITO, OUTPUT):
pinMode(LED_BIT1, OUTPUT):
pinMode(LED_BIT2, OUTPUT):
pinMode (START_BUTTON_PIN, INPUT):
pinMode (GUESS_BUTTON_PIN. INPUT):
start_button.attach(START_BUTTON_PIN):
start_button.interval (DEBOUNCE_DELAY)
guess_button.attach(GUESS_BUTTON_PIN):
guess_button.interval (DEBOUNCE_DELAY) :
randomSeed(analogRead(A©9)) :
Serial.begin(BAUD_RATE):

Il
~n
LI 1)

OEBPS/Image00020.jpg
n', ‘o', 10" };

char stringl[8]
char string2[]
char string3[8]
char string4[]

{an,
"Arduino”;
"Arduino”;
{ 65, 114, 100, 117, 165, 110, 111, 0 };

OEBPS/Image00064.jpg
- woid loopl) {
handle_guess_button();
handle_start_button();

-}

- woid handle_guess_button() {

if (guess_button.update()) {

if (guess_button.read() == HIGH) {
guess = (guess % 6) + 1;
output_result(guess);
Serial _print(“Guess: ");
Serial.printlniguess);

35

}

-}

}

- woid handle_start_button() {
if (start_button.update()) {
if (start_button.read() == HIGH) {

as

55

.

}

const int result =

random(1, 7);

output_resultiresult);
Serial _print("Result: *);
Serial _printlniresult);

if (guess = 8) {

if (result == guess) {
Serial.println{"You win!");

hooray();
} else {

Serial.println{"You lose!");

}
¥
delay(2608) ;
guess = 0;
b g

- woid output_resulticonst long result) {

digitalWrite(LED_BITO, result & BGG1);
digitalWrite(LED_BIT1, result & BO16);
digitalWrite(LED_BIT2, result & B166);

void hooray() {
for (unsigned int 1 = 0; 1 < 3; 1++) {
output_result(7);
delay(508);
output_result(8);
delay(508);
}

OEBPS/Image00017.jpg

OEBPS/Image00061.jpg
BinaryDice/DicaWithButton/DiceWithButton.ino

const unsigned int LED_BITO = 12;
const unsigned int LED BITI = 11;
const unsigned int LED BIT2 = 10;

const unsigned int BUTTON_PIN = 7;

void setup() {
pinMode (LED_BITO, OUTRUT);
pinMode (LED BITL, OUTRUT);
pinhode (LED_BIT2, OUTPUT)
pinhode (BUTTON_PIN, INPUT;
randonseed (analogRead (A0)
]

OEBPS/Image00018.jpg
Welcome/HelloWorld/HelloWorld.ino
Line1 const unsigned int LED PIN = 13;
- const unsigned int PAUSE = 500;

- void setup() {
5 pinMode(LED PIN, OUTPUT);
-}

void loop() {
- digitalWrite(LED_PIN, HIGH);
10 delay(PAUSE) ;
- digitalWrite(LED PIN, LOW);
delay(PAUSE) ;
H

OEBPS/Image00062.jpg
int current_value = 0;
int old_value
void loop() {
current_value = digitalRead(BUTTON_PIN):
if (current_value != old_value & current_value
output_result(randon(1, 7))
delay(50);

HIGH) {

¥
old_value = current_value;
¥
void output_result(const long result) {
digitalWirite(LED BITO, result & BOO1):
digitalWirite(LED BITI, result & BO10):
digitalWirite(LED BIT2, result & B100):
¥

OEBPS/Image00059.jpg
tne

BinaryDice/DebounceButton/DebounceButton.ino
const unsigned int BUTTON_PIN = 7
const unsigned int LED_PIN = 13;
void setup() {

pintode(LED_PIN, OUTRUT):

pinhode (BUTTON_PIN, INPUT):
]

int old_button_state = LON:
int led_state = LOW:

void loop() {

OEBPS/Image00016.jpg

OEBPS/Image00060.jpg
const int CURRENT_BUTTON_STATE = digitalRead (BUTTON_PIN);
if (CURRENT_BUTTON_STATE != old_button_state &
CURRENT_BUTTON_STATE == HIGH)

€
if (led_state — LOW)
led_state = HIGH:
else
led_state = LOW;
digitalWrite(LED_PIN, led_state);
delay(50)
¥
old_button_state = CURRENT_BUTTON_STATE:

OEBPS/Image00025.jpg
Line 1

SerialProgramming/C/analog_reader.c
#include <stdio.h>

- #include <unistd._h>
- #include <termios._h>
- #include "arduino-serial-lib.h"

W

10

#define MAX_LINE 256

int main(int argc, char* argv[]) {
int timeout = 1609;

if (argc == 1) {
printf("You have to pass the name of a serisl port.\|n");
return -1;
}
int baudrate = B9609;
int arduino = serialport_init(argv[l], baudrate);
if (arduino == -1) {
printf("Could not open serial port %s.|n", argv[l]);
return -1;
}
sleep(2);
char line[MAX_LINE];
while (1) {
int rc = serialport_write(arduino, "201n");
if (re = -1) {
printf("Could not write to serial port.|n");
} else {
serialport_read_until(arduinc, line, 'In’, MAX_LINE, timeout);
printf("%s”, line);
}
}
serialport_close(arduino);
return ©;

OEBPS/Image00023.jpg
SerialProgramming/AnslogReader/AnslogReaderno.
const unsigned int BAUD_RATE = 5600;
const unsigned int NUWPINS

String pin_name =
boclesn input_availsble = false;

void setup() {
Serial bagin(BAUD_RATE) ;
B

void Toop() {
if (input_available) {
4F (pin_name.length() > 1 56
(pin_namelo] = 'a* || pin_namelo]

)

const unsigned int pin
iF (pin < MM_PINS) {
Serialprint (pin_nane) ;
Serial print(
Serial println(znalogRead(pin));
¥etse
Serial.print (“Unknown pin:);
Serial println(pin);
b
¥ etse €
Serialprint(“Unknown pin nase: ");
Serisl_println(pin_nane) ;

in_name. substring(1) toTnt();

pin_nans =
input_available = false;
B
B

void serialevent() {
while (serial available()) {

const char ¢ = Serisl.resd();
iF (e = "1n)
input_available = trus;

etz
pin_nane += c;

OEBPS/Image00024.jpg
ece Houttyusbmoden24511

@ Autoscroll [Newiine T5) (9600 bavd %)

