

[image: cover.eps]

Android™ 3 SDK Programming For Dummies®

Visit www.dummies.com/cheatsheet/androidsdk to view this book's cheat sheet.

Table of Contents

Introduction

About This Book

Conventions Used in This Book

Foolish Assumptions

How This Book Is Organized

Part I: Getting the Android SDK to Work

Part II: Building the Core of an Android Application

Part III: Making Your Applications Fit for the Enterprise

Part IV: Enhancing the Capabilities of Your Android Application

Part V: Effectively Developing, Testing, and Publishing Apps

Part VI: The Part of Tens

Icons Used in This Book

Where to Go from Here

Part I: Getting the Android SDK to Work

Chapter 1: Taking a Quick Look at Mobile Applications on Android

Writing Apps for a Mobile Platform

Seeing What Android Has to Offer

Doing the Sample Application Thing

Understanding the Android System Architecture and the Android Application Model

Understanding the hardware aspects of an Android device

Working with the Linux operating system

Taking advantage of native libraries

The Android Runtime

The Android Application Framework

Understanding the Android Application Model

Applications

App widgets

Services

Activities

Views

Fragments

Menus and the Action Bar

Shared preferences

Files on internal and external storage

Content providers

Resources

Intents and intent filters

Tasks

Context

Designing Android Applications

Chapter 2: Setting Up an Android Development Environment

Setting Up Java

Setting Up Eclipse

Setting Up Android Development Components

Android SDK Starter Package and the Android SDK Components

Eclipse plug-in for Android

Verifying the Development Environment

Creating an emulator

Creating and running a sample program

Understanding the files in the sample project

Importing, Running, and Debugging Tic-Tac-Toe

Running on an emulator

Setting up debugging and running on an Android device

Chapter 3: Making Apps Using the Android SDK

Walking Through the Eclipse Project for Tic-Tac-Toe

Developing the Tic-Tac-Toe Application

Understanding the Different Types of Android Programs

Understanding Activities

Specifying activities in the AndroidManifest.xml file

Implementing activities

Implementing an Activity’s User Interface

Laying out a view

Implementing the user interface logic by using event listeners

Implementing the user interface by implementing your own View class

Handling user interactions in the activity itself

Initiating actions from menus and the Action Bar

Setting application preferences

Building Rich User Interfaces for Larger Screens Using Fragments

Understanding fragments

Embedding fragments in activity layouts

Implementing fragments

Incorporating fragments into activity behavior

Managing the Activity Life Cycle

Coordinating activities

Starting activities using intents and intent filters

Saving the transient state of activities

Using tasks to manage the behavior of groups of activities

Implementing Services

Managing Persistent Application Data

Using Shared Preferences to save persistent data

Using files

Employing SQLite

Sharing data across applications through content providers

Part II: Building the Core of an Android Application

Chapter 4: Determining the Appropriate SDK for Your Application

Exploring the Variety of Android Devices and SDKs

Understanding display characteristics

Recognizing there’s more than one version of the SDK

Examining the Differences between SDK Versions

Android 1.5 — Cupcake

Android 1.6 — Donut

Android 2.0 — Eclair

Android 2.2 — Froyo

Android 2.3 — Gingerbread

Android 3.0 — Honeycomb

And beyond

Dealing with API Levels

Chapter 5: Designing a User-Friendly Application

Things to Know Before Creating a User Interface

Understanding views

Taking a detailed look at the View hierarchy

Working with views and layouts

Sampling Some Android Layouts

Mocking up a contact display

Examining the XML code closely

Mocking up a simple calculator

Deciphering the structure of a table

Using Greedy widgets that take up multiple columns

Adding non-TableRow elements

Keeping things consistent

RelativeLayout: Flexibility du Jour

The FrameLayout layout

Choosing the Right Layout

Chapter 6: Enhancing Your Layout with Widgets, Styles, and Themes

Beholding the Power of the Framework: Built-In Views

Working with a push button

Creating Tic-Tac-Toe using push buttons

Pretty in pink: Creating custom buttons

Simplifying Attribute Settings with Styles

Creating your own style

Adding inheritance to a style

Taking advantage of the built-in Android styles

Using Themes to Maintain a Consistent Style

Providing compatibility for older devices

Differentiating activities by using specific themes

Chapter 7: Designing Your Application’s Logic and Data

Understanding Best Practices in Application Design

Applying object-oriented design

Applying design patterns

Understanding software frameworks

Illustrating Android App Design by Using the Tic-Tac-Toe Example

Discovering classes, responsibilities, and collaborators for Tic-Tac-Toe

Walking through scenarios to discover collaborators and missing classes and responsibilities

Defining method signatures

Incorporating your design into the Android Application Model

Part III: Making Your Applications Fit for the Enterprise

Chapter 8: Making Your Application Fast and Responsive

Becoming Familiar with Nonfunctional Requirements

Designing Your App at Multiple Levels

Optimizing Application Performance

Using the Profiler for Code Optimization

Maximizing Battery Life

Minimizing data services

Minimizing location services

Ensuring Responsiveness in Your Apps

Understanding the SDK Components Used in This Chapter

The Android thread model and components

Power management components

Chapter 9: Making Your Application Safe and Secure

Recognizing the Importance of Security

Looking at Security Holistically

Defining the Threat Model for an Android Application

Understanding the Android Security Model

Protecting SQLite Databases

Minimizing the Security Footprint of Your App

Going Beyond Permissions

Part IV: Enhancing the Capabilities of Your Android Application

Chapter 10: Channeling the Outside World through Your Android Device

Launching a Browser from Your App

Embedding a Browser in Your Android Application

Providing Maps and Location-Based Services

Installing the necessary development components for writing map apps

Displaying a map by using MapView

Calling a geocoding web service and navigating the map

Determining the location of your device (or, wherever you go, there you are)

Building Them Right — Design Considerations for Web and Location-Based Apps

Checking for connectivity

Using threading

Understanding the SDK Components Used in This Chapter

SDK components for incorporating web pages into your application

SDK components for maps

SDK components for finding locations

Chapter 11: Harnessing the Capabilities of Your Android Device

Integrating E-Mail, SMS, and Telephony into Your App

Playing Audio and Video and Capturing Images

Capturing and playing audio

Recording and playing video

Displaying and capturing images

Bringing In the Outside World by Using Sensors

Listing, understanding, and monitoring the sensors on your Android device

Registering with the sensor manager and receiving sensed values

Understanding the SDK Components Used in This Chapter

SDK communication components: SMS, e-mail, and telephony

SDK components for handling media

SDK components for handling sensors

Other SDK components for handling media

Part V: Effectively Developing, Testing, and Publishing Apps

Chapter 12: Effectively Using Your Integrated Development Environment

Eclipse and Android: A Beautiful Friendship

Gaining perspective in Eclipse

Customizing Eclipse for Android

Observing, Debugging, and Tracking an Android App Using Eclipse Perspectives

Getting Serious about Testing — Using the Android Testing Framework

Understanding the SDK Components Used in This Chapter

The Android logging framework

The testing framework API in Android

Chapter 13: Selling Your Application on the Market

Preparing Your App for the Market

Testing your application

Naming and versioning your application

Globalizing your application

Dealing with devices that have limited capabilities

Setting permissions requests

Signing your application

Using embedded maps

Publishing on the Android Market

Creating a developer account

Creating a merchant account

Understanding the Android Market license agreements

Uploading your application to the Android Market

Taking Advantage of Other Marketplaces for Android Apps

The Amazon Appstore for Android

Other marketplaces for Android apps

Becoming Successful in the Market

Fee or free?

Good citizenship: Providing good service

A few more hints

Part VI: The Part of Tens

Chapter 14: The Ten Best Developer Resources for Android

Learning More About Android Development

Seeking out information at the Android Developers home page

Getting advice from experts at the Google I/O sessions

Taking Advantage of Android Resources On the Web

Finding window dressing at Speckyboy.com

Finding sample code at the Google Code site directory

Finding Android Development Help from Experts and Others Like You

Android Developers Google Groups

StackOverflow.com

The Android forums at Phandroid.com

Pondering the Direction of Android Technology

Gizmodo.com

TalkAndroid.com

Looking for Help When You Don’t Know Where to Start

Chapter 15: The Ten Most Illustrative Applications for Android

Angry Birds (Rovio Mobile Ltd.)

Sudoku Free (Genina.com)

Pandora (Pandora Internet Radio)

Voice Recorder (Mamoru Tokashiki)

AppAlarm LITE (episode6)

Evernote (Evernote Corporation)

Cardio Trainer (WorkSmart Labs, Inc.)

RunKeeper (FitnessKeeper Inc.)

Yelp (Yelp.com)

Places (Google Inc.)

Cheat Sheet

		
			
				Android™ 3 SDK Programming For Dummies®

				by Rajiv Ramnath, PhD

				with Roger Crawfis, PhD, and Paolo Sivilotti, PhD

			

			
			
				
				
					[image: jwsinctitlepage_fmt]
				

			

			
				Android™ 3 SDK Programming For Dummies®

				Published by
John Wiley & Sons, Inc.
111 River Street
Hoboken, NJ 07030-5774

				www.wiley.com

				Copyright © 2011 by John Wiley & Sons, Inc., Hoboken, New Jersey

				Published by John Wiley & Sons, Inc., Hoboken, New Jersey

				Published simultaneously in Canada

				No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

				Trademarks: Wiley, the Wiley logo, For Dummies, the Dummies Man logo, A Reference for the Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not be used without written permission. Android is a trademark of Google, Inc. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

				LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

				For general information on our other products and services, please contact our Customer Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

				For technical support, please visit www.wiley.com/techsupport.

				Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Not all content that is available in standard print versions of this book may appear or be packaged in all book formats. If you have purchased a version of this book that did not include media that is referenced by or accompanies a standard print version, you may request this media by visiting http://booksupport.wiley.com. For more information about Wiley products, visit us at www.wiley.com.

				Library of Congress Control Number: 2011937916

				ISBN 978-1-118-00825-6 (pbk); ISBN 978-1-118-14634-7 (ebk); ISBN 978-1-118-14635-4 (ebk); ISBN 978-1-118-14636-1 (ebk)

				Manufactured in the United States of America

				10 9 8 7 6 5 4 3 2 1

				[image: wileycopyrightlogo_fmt]

				About the Authors

				Dr. Rajiv Ramnath is Director of Practice at the Collaborative for Enterprise Transformation and Innovation (CETI), Associate Director for the Institute of Sensing Systems, and Associate Professor of Practice in the Department of Computer Science and Engineering at The Ohio State University. He was formerly Vice President and Chief Technology Officer at Concentus Technology Corp., in Columbus, Ohio, and led product-development and government-funded R&D – notably through the National Information Infrastructure Integration Protocols program funded by Vice President Gore’s ATP initiative. He is now engaged in developing industry-facing programs of applied R&D, classroom and professional education (he has won two teaching awards while at OSU), and technology transfer. His expertise ranges from wireless sensor networking and pervasive computing to business-IT-alignment, enterprise architecture, software engineering, e-Government, collaborative environments and work-management systems. He teaches software engineering at OSU and is heavily involved in industry-relevant and inter-disciplinary curriculum development initiatives. Dr. Ramnath received his Doctorate and Masters’ degrees in Computer Science from OSU and his Bachelors degree in Electrical Engineering from the Indian Institute of Technology, New Delhi. Rajiv is also a member of the Association of Computing Machinery. You can contact him at ramnath@acm.org.

				Roger Crawfis is an Associate Professor at The Ohio State University in the Department of Computer Science and Engineering, an Adjunct Professor in the Biomedical Engineering Department, and an Adjunct Professor in the Advanced Computing Center for Art and Design (ACCAD). Roger received a BS degree in computer science, as well as a BS degree in Applied Mathematics from Purdue University in 1984. He received his MS and PhD in Computer Science from the University of California, Davis in 1989 and 1995, respectively. From 1984 to 1996, he was a researcher at the Lawrence Livermore National Laboratories, where he led the research efforts in scientific visualization. His research interests lie in the areas of computer graphics, high-performance computing and rendering, game technologies, scientific visualization and medical imaging. He serves or has previously served on the Editorial Board for the IEEE Transactions on Visualization and Computer Graphics, the IEEE Visualization conference series, the Eurographics/ACM visualization conference series and many smaller workshops. Roger has authored nearly 100 scientific publications, and is actively involved in the Scientific Visualization community. He is a member of the IEEE Computer Society and ACM SIGGRAPH.

				Paolo Sivilotti is an Associate Professor in the Department of Computer Science and Engineering at The Ohio State University. He received his Ph.D. and M.S. degrees in Computer Science from Caltech (1997, 1993), and a B.Sc.H. in Biochemistry and Computing Science from Queen’s University (1991). His research interests lie at the intersection of distributed systems and software engineering, with a focus on techniques for the creation of high-confidence distributed software. His work has been recognized with three Best Paper awards at international conferences. He has also earned his department’s Outstanding Teaching award three times.

				
				
				Dedication

				This book is dedicated to my wife, Priya, and son, Arman.

				 – Rajiv Ramnath

				To my grandchildren who keep me young enough to pursue these undertakings.

				 – Roger Crawfis

				To my wife and children, for their support and inspiration.

				 – Paolo Sivilotti

				
				Authors’ Acknowledgments

				We would like to sincerely thank our project editor Blair Pottenger and our acquisitions editor Kyle Looper. Your efforts helped keep the book on track and finally published.

				Our technical editor and former graduate student Krista Dombroviak also gets our sincere thanks. It couldn’t have been easy “grading” the work of your former professors, and doing such a careful, thoughtful job — while in the midst of planning your wedding! We think editing is in your blood; maybe a new career in editorship waits?

				We would like to thank CETI graduate student Zoya Ali for all the help she gave us in preparing examples, and doing all kinds of background research for the book. Thank you, Zoya!

				Thank you also to the other graduate and undergraduate students at CETI — in particular, Tom Lynch, Mike Herold, Chris Dean and Alex Stevens — who reviewed parts of the book essentially by using it as reference material for their coursework and projects.

				We thank Sprint and Motorola for so kindly making a range of devices available for us to test on. Several of the insights in the book on testing came from experience gained by working on these devices.

				Last but not least, here’s a shout out to all the mostly anonymous folks on the Web who ask and answer questions in the Android forums. We have found so much useful information and tips to solve problems that we would otherwise have to research and discover on our own. We can’t thank you enough! All of us are resolved to give back by contributing actively to these forums.

				Finally, and simply put, we couldn’t have written this book without all of you. Thank you all so much!

				
				Publisher’s Acknowledgments

				We’re proud of this book; please send us your comments at http://dummies.custhelp.com. For other comments, please contact our Customer Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

				Some of the people who helped bring this book to market include the following:

				Acquisitions, Editorial, and Vertical Websites

				Project Editor: Blair J. Pottenger

				Acquisitions Editor: Kyle Looper

				Copy Editors: Becky Whitney, Teresa Artman

				Technical Editor: Krista Dombroviak

				Editorial Manager: Kevin Kirschner

				Vertical Websites Project Manager: Laura Moss-Hollister

				
				Vertical Websites Project Manager: Jenny Swisher

				Supervising Producer: Rich Graves

				Vertical Websites Associate Producers: Josh Frank, Marilyn Hummel, Douglas Kuhn, and Shawn Patrick

				
				Editorial Assistant: Amanda Graham

				Sr. Editorial Assistant: Cherie Case

				Cover Photo: ©istockphoto.com / yewkeo; ©istockphoto.com / Viktoriya Sukhanova

				Cartoons: Rich Tennant (www.the5thwave.com)

				Composition Services

				Project Coordinator: Nikki Gee

				Layout and Graphics: Sennett Vaughan Johnson, Lavonne Roberts, Corrie Socolovitch

				Proofreaders: Laura Bowman, Melissa Cossell

				Indexer: Sharon Shock

				Publishing and Editorial for Technology Dummies

				Richard Swadley, Vice President and Executive Group Publisher

				Andy Cummings, Vice President and Publisher

				Mary Bednarek, Executive Acquisitions Director

				Mary C. Corder, Editorial Director

				Publishing for Consumer Dummies

				Kathy Nebenhaus, Vice President and Executive Publisher

				Composition Services

				Debbie Stailey, Director of Composition Services

			

			
			
		

	
		
			
				Introduction

				The Android operating system now powers 32 percent of the smartphones in the United States. Android has not only a plurality of users but also a well-designed Java-based SDK to make developing apps straightforward and fun. With that, welcome to Android 3 SDK Programming For Dummies!

				About This Book

				This book explains the workings of the latest version of the Android SDK (version 3.1 when this book was printed). The book is aimed at the following audiences of software developers:

				[image: check.png] You have experience in developing other kinds of Java applications but not those for a mobile device. If this is you, don’t worry — this book serves as a mobile applications primer and discusses resource conservation, network disconnection, location changes, and hardware-software interaction, for example.

				[image: check.png] You have mobile application development experience and are looking to develop an Android application equivalent to an app on another platform (such as the iPhone). You will be able to quickly understand the Android programming model (which is similar to, but also different from, the iOS and BlackBerry models) and then navigate to the chapters in the book that you’re most interested in.

				[image: check.png] You have Android experience and are looking to upgrade a program written for an earlier version of Android. You can easily identify the changed or new capabilities in the various versions of the Android SDK. If you’re looking to identify what additional application functions or user experiences can be provided in a new release, this book helps you in that area as well.

				This book explains to you how to build exciting, engaging Android apps. You can find out how to make high-quality apps that are fit for the enterprise or the consumer market because they perform well, are bug-free, and behave well even under stressful situations (such as when network failure occurs or a device runs out of power). We include a chapter that describes how to make the app available on the Android Market (see Chapter 13) and by way of other avenues so that you can make your app available to the masses.

				High quality cannot be achieved without proper design. We therefore devote a chapter to the proper design of object-oriented Android applications built on the Android framework (see Chapters 7, 8, and 9). We also include a chapter that tells you how to make the best use of the Android SDK within the Eclipse integrated development environment, or IDE (see Chapter 12), with a heavy emphasis on the unit-testing framework provided by the SDK and integrated into Eclipse.

				To put the explanations of the SDK in context, we provide, and use, a complete working example built around a Tic-Tac-Toe game application.

				No For Dummies book would be complete without “The Part of Tens,” so we close this book with two of these chapters (Chapters 14 and 15): The first lists Android resources, and the second lists what we believe are ten of the top Android applications now on the market.

				Throughout this book, we use our own extensive development experience to distill the extensive Android documentation available on the web into a form that’s necessary in order to understand the SDK. However, this book certainly isn’t a replacement for the SDK documentation. We try, as much as possible, therefore, to cover the essential areas and then point you to the web for additional details.

				Conventions Used in This Book

				This book guides you through a discussion of the Android SDK and shows you how to build high-quality applications by using it. The conventions we use in the book are described in this list:

				[image: check.png] Code examples appear in monofont so that they stand out better. The code you see looks like this:

				public void onClick(View v){…}

						The source code for the Tic-Tac-Toe example is on this book’s companion website, at www.dummies.com/go/android3sdkprogramming. From time to time, we provide updates to the code and post other material that you might find useful.

				[image: check.png] URLs appear in monofont, like this:

				http://en.wikipedia.org/wiki/Tictactoe

				[image: check.png] Sidebars provide you with background information about certain topics. This information can be helpful, but you don’t have to read it to be able to understand the topic.

				[image: check.png] Chapters that delve into the specific capabilities of the SDK are organized into two broad parts (each consisting of several sections):

					•	The “how-to” section describes various capabilities and provides examples.

					•	The section titled “Understanding the SDK Components Used in This Chapter” describes in greater detail key classes from the SDK and provides links to detailed information about these classes available in the Android documentation on the web.

				Foolish Assumptions

				The common denominator for anyone reading this book is an interest in developing high-quality apps for Android. One thing you’ll already need to have is a good knowledge of Java — because we don’t explain how to use it. If you don’t know how to use Java, we recommend the introductory Java For Dummies, 5th Edition, by Barry Burd, and Java All-in-One For Dummies, 3rd Edition, by Doug Lowe. We also assume that you have used at least one IDE to develop software, and, ideally, Eclipse. Though we cover some basic Eclipse information (see Chapter 12), we focus on how to use the Android-specific capabilities within Eclipse (available via the add-on ADT Plug-in For Eclipse).

				How This Book Is Organized

				This book is divided into several parts, to help you conveniently find the information you need.

				Part I: Getting the Android SDK to Work

				This part of the book talks about getting set up to develop programs using the Android SDK. Chapter 1 is an overview of the unique needs and capabilities of mobile applications and the Android framework — its components and its application model. Chapter 2 gets you started using the Eclipse IDE and its Android extensions via the Tic-Tac-Toe sample application. Chapter 3 also uses the Tic-Tac-Toe sample application to introduce you to the components of the Android Application Model; if you read only one chapter in this book, this chapter is the one we suggest.

				Part II: Building the Core of an Android Application

				Part II builds on Part I by showing you the elements you need in order to design and build the core of your application. Chapter 4 tells you how to choose the correct SDK level, Chapters 5 and 6 address user interface components in depth, and Chapter 7 shows you how to properly design an Android application using object-oriented design techniques and how to fit the basic design into the Android framework.

				Part III: Making Your Applications Fit for the Enterprise

				Though Part II talks about building the right application, Part III tells you all about building the app right. Chapter 8 helps you make your app fast and responsive (which, by the way, aren’t the same qualities, as you will see), and Chapter 9 talks about security. Without speed, responsiveness, and security, your app won’t be successful when it’s released, however cool its features might be.

				Part IV: Enhancing the Capabilities of Your Android Application

				Part IV is all about which SDK components may be used to add advanced capabilities to your app. Thus, Chapter 10 covers integrating the web and location services into your app. Chapter 11 covers using audio, video, and (most importantly) sensors.

				Part V: Effectively Developing, Testing, and Publishing Apps

				In Part V, we discuss Eclipse again (in Chapter 12) to cover in more detail the Android add-ons to Eclipse. In particular, we describe the unit testing and performance optimization capabilities that Eclipse on Android gives you. Chapter 13 focuses on the endgame: After you develop your app, you presumably want to make it commercially available.

				Part VI: The Part of Tens

				No For Dummies book is complete without “The Part of Tens.” Chapter 14 covers the top ten developer resources on the web, and Chapter 15 describes the best of the Android applications, not so much to advertise them as to give you examples of how these cool apps (and they are cool) leverage the Android SDK.

				Icons Used in This Book

				Little pictures in the margin of tech books help you find certain types of information such as tips or warnings quickly. Here are the ones you should look for in this book:

				[image: tip.eps]	Tips are like little advice columns that provide advice about the current topic or other great things you can do to push your Android 3 SDK programming experience to the next level.

				[image: remember.eps]	Remember icons signal either a pertinent fact that relates to what you’re reading at the time (but is also mentioned elsewhere in the book) or a reiteration of a particularly important piece of information that’s, well, worth repeating.

				[image: warning_bomb.eps]	Warning icons alert you to potential pitfalls, so don’t ignore them.

				[image: technicalstuff.eps]	This icon marks information that goes beyond the basics.

				Where to Go from Here

				You can read Android 3 SDK Programming For Dummies in either of two ways:

				[image: check.png] Read the chapters in sequential order, from cover to cover. If this book is your first real exposure to Android SDK terminology, concepts, and technology, this method is probably the way to go.

				[image: check.png] Read selected chapters or sections of particular interest to you in any order you choose. The chapters have been written to stand on their own as much as possible.

				Please note that some special symbols used in this eBook may not display properly on all eReader devices. If you have trouble determining any symbol, please call Wiley Product Technical Support at 800-762-2974. Outside of the United States, please call 317-572-3993. You can also contact Wiley Product Technical Support at www.wiley.com/techsupport.

			

		

	
		
			
				
					Part I

					Getting the Android SDK to Work

				
					
						[image: 9781118008256-pp0101.tif]
					

				

					In this part . . .

					This part of the book gets you ready to start developing programs using the Android SDK. Chapter 1 is an overview of the unique needs and capabilities of mobile applications, as well as an overview of the Android framework (its components and its application model). Chapter 2 gets you started on the Eclipse IDE and its Android extensions via the Tic-Tac-Toe sample application. Chapter 3 also uses the Tic-Tac-Toe sample application, but this time to introduce you to the components of the Android Application Model.

				

			

		

	
		
			
				Chapter 1

				Taking a Quick Look at Mobile Applications on Android

				In This Chapter

				[image: arrow] Knowing what makes mobile application development interesting, challenging, and different from web and desktop app development

				[image: arrow] Understanding Android development platform advantages

				[image: arrow] Seeing how Android applications make use of Android’s capabilities

				[image: arrow] Overviewing Android application design

				Mobile devices are everywhere. For cellphones alone, the current ownership level in the United States has more than quadrupled from approximately one phone per every four people in 1998 to (as of 2011) a little less than one phone per person, with 35 percent of these phones being smartphones (http://edition.cnn.com/2011/TECH/mobile/07/11/pew.smartphone.report.gahran/), such as the Apple iPhone and the BlackBerry — and, of course, Android devices, which can run powerful applications that can truly make a difference in how people live, work, and play. Many folks already use smartphones just as they used to use computers: They create and edit documents; interact with others via e-mail, telephone, and chat; play highly entertaining games; and shop and manage money. Even schools, which used to ban cellphones in the classroom, are considering delivering educational material to students via smartphones. In other words, because the smartphone is ubiquitous and becoming increasingly robust, you might say that it’s now our primary computing and communication device.

				The smartphone is more than simply a computing and communication device, however. Because this mobile device goes everywhere with you, letting you be constantly connected so you can work and interact with others, at all times, and because it can remember with whom you talk, where you’ve been, and how much you spend, it has intimate knowledge of you. Mobile applications can therefore take advantage of this intimate relationship between the device and its users to provide personalized, circumstance-specific, highly targeted services, and services that users will love.

				Writing Apps for a Mobile Platform

				We assume that you’ve probably written applications for other platforms, such as desktop or laptop computers or the web. A lot of this experience will carry over to writing applications for mobile devices — including cellphones, tablets, and PDAs. However, writing applications for mobile devices is different because you’re venturing into a whole new world that requires you to consider the potential problems we describe in the following list.

				[image: remember.eps]	Yes, you face challenges, but keep in mind that mobile platforms such as Android are the next great frontier of opportunity for application developers. We (and this book) will help you master specific techniques for dealing with these issues, and we will help you master them:

				Don’t let the following list of troublesome issues intimidate you:

				[image: check.png] Tiny keyboards: Smartphone and PDA keyboards make data entry very difficult. Data entry is no easy task, and touchscreen virtual keyboards, which you press with your thumbs, are prone to data entry errors and require using smart spell checking.

						What to do? Of course, sometimes data entry is most of what an application requests (think Twitter or e-mail apps), but if it isn’t, try to limit data entry by prefilling commonly used default values, providing pull-down lists the user can select from, and so on.

				[image: check.png] Limited “real estate”: The display on today’s smartphones varies considerably, particularly on Android phones, which come in many shapes and sizes. The largest area you can work with is around 5 inches, diagonally.

						What to do? Working with small displays obviously creates challenges as well as opportunities for developers. A well-designed application allows users to move intuitively in the program (without getting confused by a maze of screens) and to use controls (buttons, for example) that are large enough to press confidently but that are placed in a way to help avoid inadvertent clicks.

				[image: check.png] A profusion of devices: Any Android application you come up with should be able to run on a range of devices with varied capabilities: that is, on every device that runs the appropriate version of the Android platform. Figure 1-1 shows a few of the form factors that mobile devices come in.

						What to do? Applications should function well on smaller Android displays and on the largest ones (refer to the preceding Bullet1). Applications should also work — and work well — on devices with touchscreens, those with only hardware buttons, and so on.

					

				
					Figure 1-1: The various shapes and sizes of Android phones.

				

					[image: 9781118008256-fg0101.eps]

				[image: check.png] Limited storage: Even though mobile devices are powerful computers, they can store only about one-tenth of the information that PCs can, in both memory and persistent storage (flash or disk).

						What to do? Don’t try to store large quantities of images, music, or (especially) video, lest a device run out of space pretty darn quick!

				[image: check.png] Unreliable networks: It’s a fact of life: Mobile devices periodically lose network connectivity. And even when a device has a stable connection, the amount of data that can be sent or received varies based on the strength of the connection.

						What to do? Buffer incoming data when the network connectivity is good. Save outgoing data locally. Receive and transmit data on a separate background thread.

				[image: check.png] Device unavailability: A mobile device is turned on and off depending on its user’s circumstance (for example, boarding a plane). Or, the device might suffer damage (by being dropped) or slowly degrade in terms of computing speed, and even shut down, as battery life is consumed.

						What to do? Your application must deal with all these situations, for example, by periodically “check-pointing” its state and by having low-power modes of operation (for example, a video-playing app might switch to only playing audio when the battery is low).

				[image: check.png] A range of use environments: Mobile devices, understandably, are used in many varied locations: rooms with low ambient lighting or sports stadiums with high levels of background noise, for example.

						What to do? Your applications must be able to adapt to these types of situations. For example, your app may lower the brightness of the screen by detecting when the ambient light is low, or it may increase its audio volume when background noise is high.

				Seeing What Android Has to Offer

				Many types of smartphones and mobile devices abound in today’s market: iPhone, BlackBerry, the new WebOS devices from Palm, and Android-based phones, of course.

				So what makes the Android platform so popular, especially considering that it’s a relative newcomer to this market? To begin with, Android is an open source, Linux- and Java-based, software framework for mobile and portable devices that was created by a group of industry players (the Open Handset Alliance), with one notable member — Google.

				This means that there are several benefits for you to develop on the Android platform, as follows:

				[image: check.png] Wide acceptance: Android has “legs” — it’s inside millions of devices from a range of vendors and is also a major platform for application developers. Thus, your app has a ready-made market.

				[image: check.png] Openness: The Android platform is a truly open platform in that all capabilities of the device are available to you. In fact, you can replace existing capabilities on a phone (such as e-mail) with your own applications. In other words, your app can become the “go-to” app for millions of users.

				[image: check.png] No cost: That’s right — the Android platform is free. You can provide applications on it without paying for the right to do so, or for the development platform.

				[image: check.png] Built-in, reusable capabilities: Android has lots of existing capabilities and services you can reuse. It has built-in support for rich graphics, location finding, and data handling that you can use in your application. In other words, you don’t have to code from scratch all the capabilities of your application.

				[image: check.png] Java: Android applications are written in Java, one of the most widely used modern programming languages. You’re probably already familiar with Java and have access to all its capabilities, so you can get started with developing applications today!

				[image: check.png] Framework-based guidance for developers: Because Android is a framework — not just a toolkit composed of a set of libraries — it imposes a structure on applications by using an application model (defined in the later section “Doing the Sample Application Thing). And in return for this imposition, you receive a lot of benefit. For example, you get to follow a systematic path in designing a robust application, which frees you to focus on providing rich capability rather than on figuring out the application structure and high-level design, or on nonfunctional tasks, such as managing your application’s life cycle. (You know what we mean — the starting-it-up stuff and the restoring-its-state-after-shutdown stuff, for example).

				Doing the Sample Application Thing

				It’s time now to describe how framework-based guidance helps you build cool applications more easily. As we mention in the earlier section “Seeing What Android Has to Offer,” Android provides this guidance by imposing an application model that constrains and guides how you have to build your application — and, in return, gives it capabilities that you don’t have to program from scratch. We will describe the application model through the lens of a simple game application: Tic-Tac-Toe.

				Let’s start by describing Tic-Tac-Toe. Our Tic-Tac-Toe game works just like the simple two-player game everyone knows: Each player claims a symbol — usually an O or an X — and attempts to alternately place the symbol in empty locations in a 3 x 3 grid, so as to place three of the same symbol adjacent to each other in a straight line, either in a row or column or across a diagonal. Figure 1-2 shows a sample sequence of plays.

					

				
					Figure 1-2: A sample sequence of plays in Tic-Tac-Toe.

				

					[image: 9781118008256-fg0102.eps]

				For simplicity’s sake, our Tic-Tac-Toe application allows only one player to play against the device.

				We want the application to offer the following game-related functionality:

				[image: check.png] Allow the user to create a profile, consisting of a playing name, who goes first in the game — the user or the computer (Chapter 3).

				[image: check.png] Allow the user to start and play the game: That is, present the Tic-Tac-Toe board, allow the user to alternate moves with the computer, and display the resulting updates to the board (Chapter 3).

				[image: check.png] Identify when the game has progressed to a draw, a victory for the user, or a victory for the computer and display the results (Chapter 3).

				[image: check.png] Allow the user to exit the game at any time (Chapter 3).

				[image: check.png] Record and save the results of a completed game, such as whether it was a loss or a win (Chapter 3).

				All these functionalities are obviously needed in order to play the game. But we aren’t done yet. If the application is intended for the Android Market, it needs to be robust: safe, secure, and maintainable, for example. Thus, we show you how to give the app these additional benefits:

				[image: check.png] Make the user’s game data private by creating player accounts (Chapters 3 and 9).

				[image: check.png] Simplify debugging the game by having the program log its execution to a file (Chapter 12).

				[image: check.png] Make the game crash resistant so that it can begin where it left off after a forced shutdown (Chapter 3).

				Finally, because we’re also using this game as a means for illustrating how to leverage Android’s capabilities, we give the game even more features so that it:

				[image: check.png] Invokes external services, such as location services (Chapter 10)

				[image: check.png] Lets the user send the results of a game by e-mail to an address book contact (Chapter 11).

				[image: check.png] Allows the user to play music from a library in the background and record music as well (Chapter 11).

				It’s robust, n’est-ce pas?

				Understanding the Android System Architecture and the Android Application Model

				In this section, we show you how an Android device is put together (also known as its system architecture), how an Android application runs on the Android system, and how the system architecture relates to the Android Application Model.

				The system architecture of an Android device (shown in Figure 1-3) is composed of the following components, each layered on the other, in the order below:

				[image: check.png] Linux kernel: Every Android device runs the Linux operating system (OS), also known as the Linux “kernel.” The Linux kernel acts as an abstraction and management layer for the hardware. In other words, it presents the different Android devices in a standard way so that folks like you can develop an application just once and be able to run it on all Android devices. The kernel also provides the basic system services such as security, memory management, process management, networking, and drivers for devices (such as the touchscreen, keyboard, and so on).

				[image: check.png] Libraries: These are “native,” device-specific C/C++ libraries that are used by the operating system as well as the various components of Android. These libraries are of two kinds: (a) C and C++ libraries that are considered to standard components of Linux (such as libc, socket-based networking, and so on), and (b) libraries that provide Android-relevant capability (such as a lightweight database known as SQLite and OpenGL-based graphics).

				[image: check.png] Android runtime: These are both native applications and Java libraries that enable the development of Java applications for Android.

				[image: check.png] Application framework: This is a set of standard Java classes that you will use to develop your app.

				[image: check.png] Applications: These are the apps themselves. These include apps that come with every Android device (such as e-mail, the browser, and so on) and apps that developers (such as you) write.

					

				
					Figure 1-3: The Android system architecture.

				

					[image: 9781118008256-fg0103.eps]

				Understanding the hardware aspects of an Android device

				Before we describe the software components, it is important for you to understand what the device itself is. Essentially, every mobile device is a computer, composed of a set of hardware components: processor, memory, input/output (I/O) devices (such as a keyboard, touchpad, and screen), and storage (disks and flash, for example). Android devices are hardware devices that, like most mobile devices — except, say, the iPhone, whose hardware configuration is controlled completely by Apple — come in a multitude of shapes and sizes and consist of many different kinds of components. For example, one Android device might come supplied with a touchscreen and no keyboard, and another might come supplied with a pullout keyboard and a separate, numeric keypad.

				Working with the Linux operating system

				Folks do a lot of work to write an application program, even if all they have to work with is the hardware. As you might imagine, the problem is worse for mobile devices because so many different kinds of them exist. Think about your application having to run in a similar manner and make all its capability available on all these diverse devices. Hence, Android makes use of a piece of software known as the operating system (OS), which provides a device-independent interface to the hardware through what are known as drivers (we don’t get into drivers in this book, other than to mention that several of the important drivers are listed in Figure 1-3). The OS also provides a standard interface to computing capabilities (such as starting and stopping programs) that the application developer and the program can use.

				Thus, operating systems make writing and running applications easier, and they’re especially helpful — in fact, essential — on mobile devices. On Android, the OS is the Linux Kernel, an open source (hence, free!), industrial-strength product that has achieved wide acceptance.

				[image: remember.eps]	Unless you really and truly want to, you will never see Linux, nor will your program. However, you must recognize that it’s there — Android does certain things in certain ways because it runs on Linux. For example, on Linux, every running program is assigned a process. Thus, when an Android program is started, a Linux process becomes active. This process takes over an area of the screen on the device and allows the user to interact with the application. If another application is started, it pushes the first application to the background. At this point, the process assigned to the first application may be (arbitrarily) terminated by the operating system to save device resources. Before this happens, the application is notified by the Android runtime to save its state.

				Note that the Linux operating system we’re talking about is the OS that manages the device on which your apps run. This is different from the operating system that manages the personal computer on which you develop apps (such as Windows, the MacOS, and, actually, Linux as well).

				Taking advantage of native libraries

				Layered on Linux are native C and C++ libraries compiled for the specific hardware of the device. Many of these libraries are the ones that come standard with Linux — such as libraries to manipulate strings or perform mathematical operations — although some have been rewritten specifically for use on mobile devices. Also, some libraries are specifically available on Android devices. The Android folks wrote these libraries because they wanted to provide higher-level, and hence more easily programmable, interfaces to certain kinds of functionality. Also, because they wanted this functionality to run fast, they implemented the libraries natively for better performance — they wrote the libraries in C or C++ and then compiled them into machine code that runs directly on the hardware. If these libraries had been written in Java, their code would be interpreted by a program known as a Java virtual machine and would run quite a bit slower. The native libraries that are provided are described in this list:

				[image: check.png] libc: The standard C library

				[image: check.png] SSL: The Secure Socket Library for secure, encrypted communications

				[image: check.png] SGL: The library in which Android’s 2D graphics capability is built

				[image: check.png] OpenGL/ES: 2D and 3D graphics that follow a programming model known as OpenGL

				[image: check.png] Surface Manager: A window manager that manages the display

				[image: check.png] WebKit: An open source web browser engine that powers the built-in Android browser (and an Android framework component known as WebView)

				[image: check.png] FreeType: A library for rendering fonts

				[image: check.png] Media Framework: For playing and recording video and music (provided as software components known as codecs)

				[image: check.png] SQLite: A database that can be used for persistent storage by an application

				Note that the capabilities of these native libraries are provided by way of Java, so you don’t have to know C or C++ to use them. In fact, as with the Linux operating system, you might not even realize that these libraries exist. But, once in a while, you see certain ways of doing things that exist because certain functionality is implemented in C or C++, and not in Java.

				The Android Runtime

				This piece of the system architecture, another software program, is a Java virtual machine that lets you write and run Android programs in Java rather than in C or C++. Android uses a special, optimized implementation of a JVM known as the Dalvik Virtual Machine. It’s supported by the core Java libraries that let you, for example, manipulate strings and make I/O and mathematical calculations in Java. Taken together, these components make up the Java Runtime Engine on Android.

				The Android Application Framework

				Using only the Dalvik Virtual Machine, you can write Java programs for Android. But the Android folks didn’t stop there: To help you out, they added a set of components written in Java, known collectively as the Android Application Framework (or simply the Android framework). These major components of the Android framework are described in the following list:

				[image: check.png] Activity Manager: A container for all Android applications that have been written in Java. It manages the “life cycle” of all Android applications. That is, it handles the start-up and shutdown aspects of an Android application and the other, in-between, states as well. (We cover these states later, in Chapter 3.)

				[image: check.png] Fragment Manager: A fragment represents a portion of the user interface of an activity. You can combine multiple fragments in a single activity to build multi-part user interfaces as well as reuse fragments in multiple activities (see Chapter 3 for more on fragments). The Fragment Manager manages fragments and also provides a programming interface to fragments.

				[image: check.png] Content Providers: Encapsulate data that needs to be shared between applications. The Contacts application on an Android device is a content provider. Content providers are further discussed in Chapter 3.

				[image: check.png] Resource Manager: Provides access to the resources used by your program — such as literal strings that can be displayed in several different languages or bitmaps representing pictures that your application might use as backgrounds.

				[image: check.png] Location Manager: Provides location information about the device, such as its GPS coordinates.

				[image: check.png] Notification Manager: Allows your application to present events to the user (usually while he is busy doing something else) so that he can take action on it.

				Just for completeness, we describe the other components as well. However, you are unlikely to directly use these framework components in your program.

				[image: check.png] The Window Manager and the View System together manage the user interface (UI). The Window Manager manages the physical rendering and display of the UI across applications. The View System provides the UI components (widgets) to build the UI, manages the hierarchy of views, and manages the handling of user events.

				[image: check.png] The Package Manager holds information about the applications loaded on the system (such as the device features it needs).

				[image: check.png] The Telephony Manager provides information regarding the telephony services on the device and some types of subscriber information, and also can be set up to provide notification of telephony state changes.

				[image: check.png] The XMPP Manager requires some explanation. The Extensible Messaging and Presence Protocol (XMPP) is an open XML technology for instant messaging (IM) and online presence detection. Android apparently used a variation of this to provide remote debugging capability, but the platform doesn’t appear to support this.

				Having this system architecture allows the Android designers to provide the final layer — a set of built-in, base Java packages, Java classes, and interfaces, known as the Android Application Model. When you write your Android program, you (must) start by inheriting from these base classes and/or writing your own classes that implement the interfaces in the Android Application Model. By doing so, you’re building your Android application in a certain way — a way that will make your application robust and make developing it easier.

				Understanding the Android Application Model

				In this section, we take a more in-depth look at the Android Application Model. We start by looking at its components: applications, tasks, services, activities, intents, views, app widgets, fragments, menus (and the action bar), content providers, resources, shared preferences, and context. There are also add-on support capabilities, specifically, capabilities to write files on internal and external storage, and a lightweight database called SQLite. We describe these components and capabilities in the following sections and explain what you use them for.

				Applications

				You may already be intuitively familiar with the concept of an application: a program that interacts with the user to perform a set of related tasks. An Android application or app is an application that is intended to be the primary focus of the user (and, as a consequence, take over the entire screen of the device). The Tic-Tac-Toe game in the example earlier in this chapter is an application.

				A standard application — the Home application — is the initial application you see when the Android device starts up. The screen it displays is known as the Home screen. All other applications are started from the Home application, with each application running in its own process, in its own Java virtual machine.

				App widgets

				App Widgets are miniature application views that can be embedded in other applications and receive periodic updates. When the App Widget is embedded in the Home application, it is also known as a Home screen widget. Note that you may see the term widget used to describe any UI component (such as a pull-down list or radio button). Do not confuse these (generic) widgets with App Widgets.

				Services

				Services are programs that run in the background but don’t interact with the user. Services can be used to do something continuously in the background (such as play music) while other things are taking place in the foreground (such as editing a document). Using our Tic-Tac-Toe app, we show you a music player service that plays music in the background (see Chapter 11).

				Activities

				An activity represents one cohesive step within an Android application along with its UI. An application can have multiple activities. Sample activities in the Tic-Tac-Toe example, earlier in this chapter, are the user entering the application, setting preferences, playing the game itself, and turning on and off background music.

				The Android Application Model prescribes that each cohesive step be implemented by an activity. A step implemented by an activity is treated specially by the Android framework in that built-in mechanisms are provided in order to save and restore its state, including the state of its UI, such as mouse position and highlighted fields. Also, Android maintains a navigation history of all activities that are currently active. Switching from one activity to another adds a new entry to the navigation history. Thus, a user can move to an earlier activity by pressing the Back key on his Android device.

				Views

				An application presents information to the user in several different ways, using several different screens. Each application screen presented to a user is a view. Thus, a view is a basic building block for UI components. It occupies a rectangular area on the screen and is responsible for drawing and event handling. A view can contain other views, in which case it’s known as a view group. In this chapter’s Tic-Tac-Toe example, the start-up screen, the screen for collecting and displaying the user profile, and the game-playing screen are all views.

				Fragments

				Starting with the release of Android 3.0, the Android SDK introduced a new paradigm and a set of components — both called fragments — for building complex user interfaces. The main reason for introducing fragments was to take advantage of the larger screens in tablets. Fragments enable the separation of the UI of an activity from the activity. A fragment has its own life cycle and receives its own input events, and you can add or remove fragments while the activity is running. In Tic-Tac-Toe we use fragments to combine the login and the account creation functionality into one multi-pane screen (see Chapter 3).

				Menus and the Action Bar

				Every Android phone sports a Menu button — either a physical button or a button labeled Menu on the user interface. This Menu button can be tied into functionality that needs to be always available while the activity is in progress (for example, in Tic-Tac-Toe, you can exit a game at any time through a Menu selection). Because an application-specific menu is a standard part of every app’s UI, we consider the menu to be part of the Android Application Model (rather than just another UI component, like a drop-down list or radio button).

				Starting from Android 3.0 (once again to take advantage of tablets), menu items can also be displayed on an Action Bar that is a standard part of the user interface of any activity. You can also add context menus, which pop up whenever a user presses and holds an item onscreen.

				Shared preferences

				The Android framework provides you with various ways to persistently store application data: That is, the data is preserved even if the application dies. For small bits of primitive application data (such as integers, strings, Booleans, floats, and longs) used to maintain the application “configuration” (such as the name of the user, the language selected, the level of a game, the names of the icons to be used for game pieces, and so on), the Android framework provides you with a simple, built-in capability to persistently save these data as name-value pairs. The components that provide this capability are collectively known as Shared Preferences. For larger pieces of data (such as a document created by the app), additional mechanisms are provided, which we describe below.

				Files on internal and external storage

				You can save files directly on the Linux file system. Files can be saved on the internal storage of an Android device or on its external storage. Internal storage is always on the permanent storage available on the device. External storage can be the permanent storage on the device as well as removable storage such as on a regular and micro-SD card or a USB drive. By default, files written to internal storage are private to your application and cannot be read or written by other applications or the user. Files on external storage can be accessed by any application, are visible to the user, and can be manually removed, renamed, or moved.

				Content providers

				Your application might need to create data that will be used by another application (and vice versa). Within the Android Application Model, content providers manage data that needs to be accessible to, and shared by, all applications. In the Tic-Tac-Toe game example in this chapter, we show you how to gain access to the content provider of the Contacts in order to register a user (see Chapter 3).

				Resources

				A resource is a text string or bitmap value that’s needed by your application. Rather than define and use the string directly in the program, you can choose to declare it as a resource.

				When you do so, a program accesses the string indirectly, through the name of the resource, which is mapped to its actual value in a separate resource file. This indirection lets you have different resource mapping files with different values for the resources so that, for example, you can have the program display labels in different languages without having to change and recompile the program code. Thus, your program can use a resource, but its actual value might be different at the different times when the program runs.

				Resources are useful for internationalizing an application. For example, a user in Germany sees all labels, prompts, and error messages in German, but a user in the United States can be shown these elements in English — all without the program having to change. Resource examples in the Tic-Tac-Toe game are the bitmap image used for the game background, the messages posted by the game, the labels on entry fields, and the names of the menus and menu items.

				Intents and intent filters

				An intent is an abstract description of an operation to be performed. Its main use is to launch one activity from another. The requesting activity sends out the intent to Android whenever it needs the capability. The Android system then finds the appropriate activity to respond to it.

				Activities that want to provide services to other objects define intent filters. For example, the Tic-Tac-Toe splash screen, which is the starting activity in the app, declares an intent filter specifying that it’s the activity that will respond when Tic-Tac-Toe is “launched” from the Home screen.

				Android is supplied with a set of predefined, built-in intents, such as sending e-mail. Whenever a user clicks the Send Email icon in Tic-Tac-Toe, for example, the “send e-mail” intent is broadcast. An application with an activity that has an intent filter corresponding to this intent, such as the (built-in) e-mail program on Android, is launched in response to the sending of this intent. We show this in Chapter 11.

				Tasks

				A task is a group of activities, arranged in a stack. When one activity starts another, the second activity is pushed on top of the task stack and then starts running. When the Back button is pressed, Android returns the user to the previous activity in the stack (which can be the activity that started the current one, but not necessarily so, as you shall see).

				In most cases, a task is composed of activities from the same application, though this doesn’t have to be the case in Android. In fact, an activity can launch an activity in another application, if it needs that capability and doesn’t want to implement it itself. Android makes it appear to the user that both activities are part of the same application — though they aren’t. Incidentally, note that a task is an entity managed by Android; though you can never directly refer to it in your program, you can control its behavior.

				Context

				A context object, managed by Android, provides access to global information about the environment in which an application runs. In Java terms, the implementation of this abstract class is provided by the Android system. It allows access to application-specific resources and classes as well as to operations, such as launching activities and broadcasting and receiving intents.

				Designing Android Applications

				Now that you have been introduced to the Android Application Model and the Android framework, we quickly walk you through how an Android application may be designed — at a high level. As with most rewarding endeavors, designing a good Android app involves planning ahead and defining all major components before trying to build them. Android helps by prescribing the major parts of your application and ensuring that if you define your parts in this manner, they all work together well. In other words, when you’re designing an Android application, think about it in terms of the components of the Android Application Model. In other words, follow the steps laid out below:

					1.	Decide whether you’re building an application or a service that runs independently.

					2.	Identify the separate steps that the application needs to implement, and design each one as an activity. Consequently, identify which state needs to be initialized as well as saved for each activity (in addition to the UI state).

					3.	Identify the screens for each activity that then become views. Incidentally, an activity (if it’s complex) can have multiple views.

					4.	Identify the persistent data that your application must maintain. The data can be stored as shared preferences, if the data can consist of a few bits of name-value pairs, or in files — either on the device or on removable storage, such as an SD or MicroSD card.

					5.	Identify the sources and repositories of data that you want to share across applications. They will be the content providers.

					6.	Identify any displayable information, such as status and error messages, menu items, labels on entry fields, and bitmaps. These will become resources.

					7.	If you would like to incorporate functionality that has been conveniently provided by another application into your app, you’ll need to define and send out appropriate intents.

					8.	Conversely, if you would like to provide functionality in your app that other apps can invoke, you have to define appropriate intent filters for your activities.

					9.	If you want to provide the user with a standard menu or an activity-specific menu of capabilities, perhaps to allow the behavior of your application to be modified while it’s running, define one or more menus.

				After you write your high-level design, you’re ready for detailed design and implementation. We show you how to do that through our Tic-Tac-Toe example application as well. To begin with, in Chapter 2, we show you how Tic-Tac-Toe is compiled, installed, and run. Then, in Chapter 3, we show you how the Android framework was used in the game. Finally, in Chapter 7, we show you how the game may be designed using well-established object-oriented principles and then layered on the Android Application Model. After all this, you’ll be ready to tackle building your own app.

			

		

	
		
			
				Chapter 2

				Setting Up an Android Development Environment

				In This Chapter

				[image: arrow] Setting up your development environment

				[image: arrow] Importing and building the sample application

				[image: arrow] Running the application on an Android emulator

				[image: arrow] Installing and running the application on an Android device

				An Android application is developed and tested on a computer running Windows, Mac OS X, or Linux and then installed on an Android device for further testing, or for real-world use. This chapter walks you through the tools you need to have on your computer and helps you start using them. We use our sample Tic-Tac-Toe application in this chapter as well.

				Android applications are mostly developed in Java. (If you’re a glutton for punishment — as some of us freely admit that we are — you can develop Android applications in C or C++ instead, but we don’t cover that topic in this book.) Also, if you’re a Java purist, you can just use a text editor and the command line interface (CLI) to do your development.

				Nowadays, however, most folks like to make their lives a little easier (or at least that’s the story the software tool developers want developers to believe), so they use an integrated development environment (IDE) for their Java development. The most widely accepted IDE in the Java developer community is Eclipse. Also, the Open Handset Alliance (in particular, Google) has provided a set of tools that can be integrated into Eclipse that significantly helps with Java development for Android. These tools include the Android SDK Starter Package, the Android SDK Components, and the Eclipse plug-in for Android.

				In this chapter, we show you how to install these tools in the order you need to do so. Because installing add-ons to Eclipse is often tricky, we also show you how to verify whether you have installed them correctly. Then we show you how to import and run the source code of the Tic-Tac-Toe application. If you’re ready, “Read on, MacDuff!”

				Setting Up Java

				Your first task in setting up Java is to verify whether you have Version 1.5 or higher of the Java Development Kit (JDK). To do this, you work from the command line interface inside a cmd (Windows), Terminal (Mac), or shell (Linux) window. In order to bring up such a window interface, do as follows:

				[image: check.png] Windows: Choose Start⇒Run. In the dialog box that opens, enter cmd as the name of the program you want to run.

				[image: check.png] Mac OS X: Open the Terminal application by double-clicking its icon (you can find the Terminal application in the path Applications/Utilities on your hard drive).

				[image: check.png] Linux: A window running a Linux shell is usually already on your screen because that’s how Linux users primarily interact with their computers.

				In this window, enter javac -version at the command prompt. Note: You enter javac (not java, which invokes the Java runtime) to invoke the Java compiler. If you see a message similar to the following, you’re good to go:

				javac version “1.6.0_22”

				If your Java version starts with 1.5, that’s also fine. However, if you have an earlier version, you don’t have the correct JDK installed on your machine. If you get an error message, that probably means one of two things. It could mean that the JDK is installed but not in your system’s path, which are the directories in which the system looks to find programs. It could also mean that the JDK isn’t even installed (this is most likely to happen with only Windows and Linux; Macs come pre-installed with Java, and you only have to update the installation).

				If the JDK is not on your path, you need to add it as described here: http://www.java.com/en/download/help/path.xml. Again, this problem is unlikely to occur on a Mac because Macs come pre-installed with Java. However, if the problem does occur, follow the instructions for Linux on the link provided.

				If the JDK is old, or not installed, you have to download the JDK. Go to www.oracle.com/technetwork/java/javase/downloads/index.html and follow the instructions there. You might be asked to set up an account or log in, but this step is optional.

				[image: tip.eps]	Be sure to select Development Kit during the installation process because only the Java Runtime Environment (JRE) is installed (by default) and it isn’t enough.

				After you successfully install the JDK, add to your PATH environment variable the bin subdirectory of the directory in which the Java software has been installed. Incidentally, and especially if you’ve installed Java in the past, note that after Oracle’s purchase of Sun Microsystems, part of the download site and process changed — and might also change later. This information was current only at the time this book was written.

				On Mac OS X, Java and the JDK are preinstalled by Apple, so you shouldn’t have to do anything. If the version is too old or you want to upgrade to the latest version, choose Software Update from the Apple menu and begin the Java upgrade from there.

				After you handle the necessary installations, try the verification step again to make sure that everything is up to snuff.

				Setting Up Eclipse

				As we say in the introduction to this chapter, the most widely accepted IDE in the Android developer community is Eclipse. You can download Eclipse from

				http://eclipse.org/downloads

				Select for your platform the latest version of the Eclipse IDE for Java Developers. (At the time this book was written, the latest version was Helios.) Then complete the download of the package. It’s in ZIP format, so extract the files into a suitably named directory. After you extract the files, you see something like what is shown in Figure 2-1.

					

				
					Figure 2-1: Executables in the Eclipse Install directory.

				

					[image: 9781118008256-fg0201.eps]

				To verify that Eclipse has been installed correctly, simply navigate to the installed directory, locate the Eclipse.exe program, and double-click to run it. If the program starts up, give it a location in which to store its workspaces and then open the Eclipse Workbench. If the Resource perspective (see Figure 2-2) opens, you’re ready to work with Eclipse.

					

				
					Figure 2-2: The Eclipse Resource perspective.

				

					[image: 9781118008256-fg0202.eps]

				[image: tip.eps]	While you’re at it, create a shortcut (an alias on the Mac) for Eclipse on your desktop so that you don’t have to navigate to its location every time you need to start it up.

				Setting Up Android Development Components

				We now show you how to install the Eclipse components needed for Android development. These components are discussed in-depth in the following sections.

				Android SDK Starter Package and the Android SDK Components

				Follow these steps to download and install the Android SDK Starter Package and the Android SDK Components:

					1.	Download the Android SDK Starter Package from http://developer.android.com/sdk/index.html.

					2.	Like the Eclipse package, the starter package is a ZIP file, so go ahead and extract it into a directory.

				[image: tip.eps]		Make a note of the directory path because you will need it later.

					3.	If you’re on Windows, look for the program named SDK Manager.exe in the installation directory and run this program. On Mac and Linux, look for the program named android in the tools directory (see Figure 2-3) and run this program. If you’re doing this for the first time, you see a list of packages (see Figure 2-4).

					

				
					Figure 2-3: Android SDK directory (Macintosh).

				

					[image: 9781118008256-fg0203.eps]

					4.	Select Accept All.

						The SDK components are installed. Note that this installation may take a while, so be patient.

				[image: tip.eps]		You can also selectively get and install packages by selecting only the packages you really want (see Figure 2-4).

					

				
					Figure 2-4: Android SDK Components.

				

					[image: 9781118008256-fg0204.eps]

				This part of the process has no separate verification step, so just hang in there for now!

				Eclipse plug-in for Android

				Google provides an Eclipse component (known as a plug-in) for Android development. This Android Development Tools (ADT) plug-in adds powerful extensions that help you create and debug Android applications easily.

				Specifically, the ADT plug-in:

				[image: check.png] Gives you access to other Android development tools from inside the Eclipse IDE

						For example, ADT lets you take screen shots, manage port forwarding for remote debugging, set breakpoints, and view threads and process information directly from Eclipse.

				[image: check.png] Provides the New Project Wizard, which helps you quickly create and set up all the basic files you need for a new Android application

				[image: check.png] Automates and simplifies the process of building your Android application

				[image: check.png] Provides an Android code editor that helps you write valid XML code for the various configuration files needed by your Android application

				[image: check.png] Lets you export your project into a signed installable (known as an APK, for Android PaCKage), which can be distributed to users.

				You can read more about the ADT plug-in at http://developer.android.com/guide/developing/eclipse-adt.html.

				Here’s how to install the ADT:

					1.	Start Eclipse.

					2.	(Optional) If you’re prompted to provide a workspace directory, identify a directory where you want Eclipse to place all your code (or pick the default).

					3.	Choose Help⇒Install New Software.

					4.	In the Work With entry field, type https://dl-ssl.google.com/android/eclipse and then click Add.

					5.	In the Add Repository dialog box that opens, name the site (Android Development Tools, for example) and then click OK. You see Developer Tools listed in the pane beneath it, as shown in Figure 2-5.

					

				
					Figure 2-5: Installing the ADT plug-in.

				

					[image: 9781118008256-fg0205.eps]

					6.	Select all the tools and proceed with the installation by clicking Next.

						The installation continues. It takes some time, so be patient.

					7.	When you’re asked whether you want to restart Eclipse, do it.

				To easily verify that everything has been installed correctly, run a sample program on an emulator from a template that ADT provides. The next section shows you how.

				Verifying the Development Environment

				In this section we show you how to verify that the development environment has been installed correctly by creating and starting an emulator and then running a sample program on it.

				Creating an emulator

				The first part of verifying the development environment is to create an emulator that serves as a (virtual) device on which the test application will run. Follow these steps:

					1.	From the Eclipse menus, choose Window⇒Android SDK and AVD Manager. Note: You might have to set the path to the Android SDK directory (Figure 2-2).

					2.	Select Virtual Devices and then click the New button.

					3.	In the dialog box that opens (see Figure 2-6), enter a name for the virtual device. The name must consist of alphabetic characters (a–z, A–Z), numbers (0–9), the underscore (_), the hyphen (-), and the period (.).

					4.	Set the target to an Android version. In our example, we have set it to Android 3.1 – API Level 12. You may leave the other parameters (such as the SD card size, skin, and so on) alone.

					5.	Click the Create AVD button.

						The device is created and you see the Virtual Devices screen again.

					6.	From the list of devices, select the device you just created and click Start.

						The device starts running. Stay patient; starting a new device takes time.

					

				
					Figure 2-6: Creating an emulator.

				

					[image: 9781118008256-fg0206.eps]

				Creating and running a sample program

				ADT has a simple program example you can use to ensure that your development environment is set up correctly.

					1.	From the Eclipse menu, choose File⇒New⇒Project.

					2.	From the New Project screen, open Android and select Android Project.

					3.	Enter a project name and then select an Android version (we have used Android 3.1) as the build target.

					4.	Enter a name for the application (any string is allowed, we used Hello Android), the package (you must follow the Java rules for naming packages, we used com.wiley.androidfordummies.HelloAndroid), and the main activity (we used HelloActivity).

				[image: remember.eps]		You must follow the Java rules for naming classes.

					5.	Click Finish.

						An Android project is created (see Figure 2-7).

					

				
					Figure 2-7: Eclipse project for the Hello World Android test program.

				

					[image: 9781118008256-fg0207.eps]

					6.	Right-click the project you just created and choose Run As⇒Android Application.

						Be patient (again). After a while, you see a screen similar to the one shown in Figure 2-8, with the name you gave your main activity in place of the displayed string “Hello World HelloActivity.” Note: If you get an error (for example, something like “Unable to open class file …\R.java: No such file or directory,” try restarting Eclipse).

					

				
					Figure 2-8: The Hello World Android program running in the emulator.

				

					[image: 9781118008256-fg0208.eps]

				If you completed all the steps in this section, your installation was successful.

				Understanding the files in the sample project

				Before we discuss our Tic-Tac-Toe example, we want to walk you through the purpose of the various files created in the hierarchy of the sample project (refer to Figure 2-7):

					1.	The name of the project — in this case, HelloAndroid — is the top level in the project hierarchy.

					2.	The src directory is where all the application source code — the code you will write — is located. For the simple HelloAndroid application, the ADT plug-in generated the code for you. You can see that this code is inside the package you specified for this application.

					3.	We step out of order here, for just a moment, to say that the res directory contains resources used by the sample program. These resources include an XML file that specifies the layout of its screen (main.xml) and string constants (strings.xml) used by the program. Also, in the various drawable directories (drawable-hdpi, drawable-mdpi, and drawable-ldpi) are icons used by the program for Android devices with high (hdpi), medium (mdpi), and low (ldpi) density screens, respectively.

					4.	When an application runs, the Android framework doesn’t use XML files directly from the res folder. Instead, it generates code in the form of a resource (R) class, in which these values are embedded. This class is placed in the gen directory, which is the place for source code generated by the ADT plug-in specific to your application.

					5.	Under Android 2.2 are the Android support libraries (covered in Chapter 1), in the form of JAR files.

					6.	The critically important AndroidManifest.xml file describes the single externally visible component of the sample application — its main activity. If this application had additional services or activities, they would be described here.

					7.	The default.properties file is another auto-generated file. You will see that it contains an entry for the target Android version you specified.

				Importing, Running, and Debugging Tic-Tac-Toe

				So far, we’ve walked you through setting up your development environment. That was the complicated part. The rest, as they say, is downhill from here!

				Running on an emulator

				The next steps are to install and run the sample Tic-Tac-Toe application, both on the emulator and then on an actual Android device. To do this, first copy the Tic-Tac-Toe project from this book’s companion website (www.dummies.com/go/android3sdkprogramming) into a suitable directory. Then follow these steps:

					1.	From the Eclipse menu, choose File⇒Import.

					2.	Open the General tree and select Existing Projects into Workspace.

					3.	Set the Root directory (see Figure 2-9) by browsing to the location where you saved the Tic-Tac-Toe project.

					

				
					Figure 2-9: Importing Tic-Tac-Toe into Eclipse.

				

					[image: 9781118008256-fg0209.eps]

					4.	Select the Copy Projects into Workspace check box (refer to Figure 2-9).

					5.	Click Finish.

						The Tic-Tac-Toe project is imported into your Eclipse workspace.

					6.	Right-click the newly imported project and choose Android Tools⇒Fix Project Properties.

						This step cleans up configuration information in your project so it can run in the Eclipse environment it is in.

					7.	Run Tic-Tac-Toe, just as you ran the template program.

						Voilà! Tic-Tac-Toe appears on the emulator (see Figure 2-10). Knock yourself out playing the game!

					

				
					Figure 2-10: Playing Tic-Tac-Toe on the emulator.

				

					[image: 9781118008256-fg0210.eps]

				Setting up debugging and running on an Android device

				Testing and debugging on a physical device are straightforward tasks although they require a few more configuration steps. You start by declaring your application as “debuggable” in its manifest:

					1.	In Eclipse, view the manifest.

					2.	On the Applications tab, set the Debuggable field to true.

						Alternatively, if you prefer to edit the XML directly, add android:debuggable=”true” as an attribute to the <application> element in the AndroidManifest.xml file.

					3.	Turn on USB debugging from the Home screen of your device by pressing the Menu button, choosing Applications⇒Development, and then selecting the USB Debugging check box.

					4.	Set up your system to detect the device:

					•	Mac OS X: Don’t do anything.

					•	Windows: Install the adb USB driver for the Android debugger.

				[image: technicalstuff.eps]		We don’t go into the details because the Windows USB driver documentation at http://developer.android.com/sdk/win-usb.html is quite clear.

					•	Linux: Add a rules file that contains a USB configuration for every type of device you use for development.

				[image: tip.eps]		You can verify that your device is connected by running the command adb devices from your SDK tools/ directory. If your device is properly connected, you see your device name listed.

				After declaring your application as debuggable, you install and run the program, running or debugging as usual from Eclipse. You see the Device Chooser dialog box (see Figure 2-11), which lists available emulators and connected devices. Select the device on which you want to install and run the application, and you will see the Tic-Tac-Toe splash screen appear (see Figure 2-12). That’s it!

					

				
					Figure 2-11: Device Chooser dialog box in Eclipse.

				

					[image: 9781118008256-fg0211.eps]

					

				
					Figure 2-12: Tic-Tac-Toe splash screen on an HTC EVO device.

				

					[image: 9781118008256-fg0212.tif]

			

		

	
		
			
				Chapter 3

				Making Apps Using the Android SDK

				In This Chapter

				[image: arrow] Implementing a basic Android application

				[image: arrow] Understanding the Android Application Model

				[image: arrow] Creating a sample Tic-Tac-Toe application

				If you read only one chapter in this book, this chapter is the one we suggest. We use the Tic-Tac-Toe sample application to illustrate the various components of the Android SDK and the Android Application Model. If you read this chapter in its entirety, you should have a working knowledge of all Android SDK components and capabilities. The main concept, however, is the Android Application Model: It gives you a sense of how other built-in components (such as activities, views, menus, preferences, intents, and intent filters) and capabilities (such as files and SQLite) work together within this model.

				One quick note before we get into this chapter. To fully understand what is presented here, you must be familiar with the system architecture of an Android device and an Android application and the application model that Android applications must conform to, and you must know how to install the development tools, create a project for the application, recognize the various code and configuration files in the project, import code into the project, and, finally, build and run an application. We have covered these elements in Chapters 1 and 2, so either read them before reading this chapter, or refer back to them as needed.

				[image: remember.eps]	Also, the code examples in this chapter are from two Eclipse projects, namely, Tic-Tac-Toe and Tic-Tac-Toe-Using-Fragments (which you can download from the website for this book: www.dummies.com/go/android3sdkprogramming). In order to follow along with the examples, you may want to import and open these projects and browse their structure, the various source code, and other types of files as we present and discuss them (see Chapter 2 for how to import projects). We show you where to look for its files in the next section, “Walking Through the Eclipse Project for Tic-Tac-Toe.”

				Walking Through the Eclipse Project for Tic-Tac-Toe

				If you haven’t already imported the code for the tic-tac-toe game, select the Downloads tab at www.dummies.com/go/android3sdkprogramming and download it. There are two projects that are of relevance to this chapter — Tic-Tac-Toe and Tic-Tac-Toe-Using-Fragments. Import both projects. Now open Tic-Tac-Toe. After you do this, you will see the elements shown in Figure 3-1.

					

				
					Figure 3-1: The Tic-Tac-Toe project in Eclipse.

				

					[image: 9781118008256-fg0301.eps]

				This list describes the project elements shown in Figure 3-1:

				[image: check.png] The src tree: src stands for source. Expand this tree to see all developer-written source code (.java) files for the Tic-Tac-Toe project.

				[image: check.png] The gen tree: gen stands for generated. You see one file containing Java code (R.java, generated by the Android Development Tools, or ADT, plug-in for Eclipse) consisting of references to all resources defined in the program.

				[image: check.png] The Android SDK level tree: This tree contains the libraries that make up the Android SDK (as Java .jar files). The label on this tree is the version of the Android SDK you’re building against. Our project is building against the 3.0 version of the SDK with the Google API add-ons for maps; hence this tree is labeled Google APIs [Android 3.0].

				[image: check.png] The assets tree: The assets tree is used to hold application-specific types of resources for use by the application. (Resources are simply files containing data needed by your apps.) You most likely don’t need to use this tree because most of the standard resource types you need (such as icons, strings, and menus) are placed in the res tree, described in the following bullet. You haven’t used any assets in Tic-Tac-Toe.

				[image: check.png] The res tree: res stands for resources. This tree contains the resources used by the Tic-Tac-Toe app. The res tree has additional sub-trees, as follows:

					•	layout: Contains files that specify the layouts of various screens in Tic-Tac-Toe.

					•	drawable: Holds icons used by the program, such as for Android devices with high- (hdpi), medium- (mdpi), and low- (ldpi) density screens, respectively.

					•	menu: Indicates the layout and values of the program menus.

					•	values: Holds several files, such as strings.xml and colors.xml, where the values for all constants (such as strings and colors) are defined. The R.java file in the gen subtree is generated from the information stored in this res tree.

				[image: check.png] The AndroidManifest.xml file: We refer to this important configuration file several times in this chapter. For now, suffice it to say that it contains configuration information about the Tic-Tac-Toe application and all its externally visible components, such as its activities and services.

				[image: check.png] The default.properties file: This auto-generated file stores all project settings.

				Read on for details about developing the Tic-Tac-Toe application.

				Developing the Tic-Tac-Toe Application

				Our Tic-Tac-Toe example plays just like regular tic-tac-toe on paper, but is limited to a human playing the computer.

				In addition to showing you how to implement game-playing functionality by using the Android SDK, we use our tic-tac-toe game to illustrate the full range of Android capabilities. Because we designed this game to have features in addition to simple game play, it can also

				[image: check.png] Remain resilient to program termination: If your device crashes or is terminated by Android, for example, resources can be conserved.

				[image: check.png] Separate your score from other people who use the device: It can implement a user ID plus a password-based account using a SQLite database.

				[image: check.png] Play background music: The music can soothe you so that you don’t become too agitated by losing or too excited by winning.

				[image: check.png] Let you look up your friends’ contact information in your address book: Then you can send them e-mail or call them to gloat about your victories.

				Understanding the Different Types of Android Programs

				The primary kind of Android program that you will write is an application (or app). An app is intended to be the primary focus of the user. As a consequence, an app takes over and uses most of the entire screen of the device.

				The initial program that starts up when an Android device is turned on is also an app — known as the Home app. All other applications (or apps) are launched (started) from the Home application. The Home application’s user interface (UI) is known as the Home screen. Just like the UI for any app, the Home screen takes over most of the screen real estate on the device. Whenever an app is launched from the Home screen, the launched app’s UI will take over the Home screen.

				Services are programs that run in the background and need no UI of their own. You use services for activities such as playing music and automatically keeping track of user locations. To illustrate services within the context of Tic-Tac-Toe, we created an add-on — a music playback service named MyPlaybackService.

				A third kind of Android program is an App Widget. We don’t cover App Widgets in the book, but only mention them here for completeness. App Widgets are (seemingly) constantly running programs embedded in the user interface of an app and used to display changing information from the app, such as the time, the weather, or the user’s location. You can think of an App Widget as a small, view-only user interface coupled to a service. When the App Widget is embedded in the Home application, it is also known as a Home screen widget.

				Understanding Activities

				After you understand the different types of Android programs, your next step in the application development process is to design and implement the activities in the application. As we explain in Chapter 1, an Android activity represents a cohesive step in an Android application and its corresponding user interface. In other words, activities are the building blocks of an Android application.

				Figure 3-2 shows a selected portion of the activity flow through the Tic-Tac-Toe application.

					

				
					Figure 3-2: Tic-Tac-Toe activity and screen flow.

				

					[image: 9781118008256-fg0302.eps]

				Below is a description of the Tic-Tac-Toe activities themselves:

				[image: check.png] SplashScreen: The first activity that runs in Tic-Tac-Toe. It first displays a picture, but then — when the user taps anywhere on the splash screen — it launches the next activity, which is Login, and disappears.

				[image: check.png] Login: Allows the user to log in and then launches the GameOptions activity and exits. If the user has no account, Login lets her create one by launching the Account activity. The user then notices two behaviors:

					•	If the user proceeds to creating a new account (or decides not to create an account and taps the Cancel button), the user returns to this login page.

					•	However, after the user successfully logs in, he can’t return to the login page unless he restarts Tic-Tac-Toe. This behavior is logical, of course, but it also serves to illustrate how the Android Activity Manager manages activities. We touch on managing activities in the “Managing the Activity Life Cycle” section later in this chapter.

				[image: check.png] Account: Allows the user to create an account (required in order to play the game). To create an account, the user must provide a username and password, and the password must be entered correctly in both the Password and Confirm Password fields.

				[image: check.png] GameOptions: The entry point into game-related actions. From here the user can launch the following (sub) activities (presented in the order in which they appear in the GameOptions user interface):

					•	GameSession: Encapsulates and manages Tic-Tac-Toe game play. This activity is launched when the user starts a new game.

					•	Audio: Allows the user to play and record audio. (This activity invokes the built-in audio recorder on the device.)

					•	Video: Allows the user to play and record video. (This activity invokes the built-in video recorder.)

					•	Images: Allows the user to view images. (This activity invokes the built-in camera.)

					•	Settings: Allows the user to specify a “playing” name and decide whether to play first (or let the computer play first). If no playing name is set, it defaults to the username of the account.

					•	Help: Provides information about how to play the game.

					•	WhereAmI: Allows the user to show points of interest or his own location on a map.

					•	Sensors: Shows how the built-in sensors on the device work (such as the accelerometer and the light sensor).

				Specifying activities in the AndroidManifest.xml file

				Every activity must have an entry in the AndroidManifest.xml file. Listing 3-1 shows a snippet of this file with the most useful entries for three activities in Tic-Tac-Toe: SplashScreen, Login, and Account.

				Listing 3-1: Declaring Activities in the Manifest File

				<activity android:name=”.SplashScreen”

				 android:label=”@string/app_name”

				 android:launchMode=”standard”	

				 android:screenOrientation=”portrait”>

				 <intent-filter>

				 <action android:name=”android.intent.action.MAIN”/>

				 <category android:name=”android.intent.category.LAUNCHER”/>

				 </intent-filter>

				</activity>

				

				<activity android:name=”.Login”

				 android:label=”@string/app_name”

				 android:launchMode=”standard”

				 android:screenOrientation=”portrait”

				 android:permission=

				 “com.wiley.fordummies.androidsdk.tictactoe.LAUNCHACTIVITY”>

				 <intent-filter>

				 <action

				 android:name=”com.wiley.fordummies.androidsdk.tictactoe.Login”>

				 <category android:name=”android.intent.category.DEFAULT” />

				 </intent-filter>

				</activity>

				

				<activity android:name=”.Account”

				 android:label=”@string/app_name”

				 android:launchMode=”standard”

				 android:screenOrientation=”portrait”>

				</activity>

				

				As you can see, each activity is specified in an <activity> . . . </activity> XML block (or element). Every activity element defines a set of attributes: in this case, its name, launch mode, and screen orientation. (Note: These are the main attributes, but many others exist.) The name attribute is the same as the name of the Java class that implements it. The launch mode (see the later section “Managing the Activity Life Cycle”) can be standard, singleTop, singleTask, or singleInstance.

				The SplashScreen and Login activities have an <intent-filter> element, which describes the invocation messages that the activity will respond to and handle. These invocation messages may originate from within the containing Tic-Tac-Toe application or another application, including the Home application. We explain this concept in the “Starting activities using intents and intent filters” section, later in this chapter.

				Implementing activities

				Every activity in an application is implemented by a Java class. This Java class must extend the Activity base class of the Android framework. To illustrate, look at the declaration of the Login and Game classes:

				public class Login extends Activity implements OnClickListener{

				 ...

				 ...

				}

				public class GameSession extends Activity {

				 ...

				 ...

				}

				Note that Login, in addition to being a subclass of Activity, implements OnClickListener while GameSession does not. The reason is that Login implements its own user interface, whereas Game delegates the interactive component of its user interface (the Tic-Tac-Toe board) to the Board class. So now, let us show you how the user interface of an activity is implemented.

				Implementing an Activity’s User Interface

				Activities within Android applications interact with users by displaying information and accepting input by way of a user interface. In Android, the UI is implemented by using objects of the View and ViewGroup classes. These and their related classes and subclasses are defined in the android.view package.

				The Android SDK provides an extensive, built-in collection of UI components, also known as widgets (not to be confused with Home screen widgets) — such as scrollable windows, entry fields, buttons of various types, check boxes, and pull-down lists — that can be composed into a view. You can see, later in this chapter, a couple of examples of using these UI components, and you can find more detail about implementing UIs in Chapter 5.

				Laying out a view

				The Android SDK provides a way to specify the layout of a view without any programming by means of an XML file known as a layout file. Each entry in the layout file specifies either an aspect (such as the width and height) or a component (such as a button) of the user interface. The layout file for the Login activity is shown in Listing 3-2. It is named login.xml and resides in the layout sub-tree of the Tic-Tac-Toe project, within the res tree. Note: We matched the names of activities and other view classes with the names of their layout files. You don’t have to match them, but doing so helps to clarify the correspondence between the activity class and its layout file.

				Listing 3-2: Layout File for the login Activity

				<?xml version=”1.0” encoding=”utf-8”?>

				<ScrollView xmlns:android=”http://schemas.android.com/apk/res/android”

				 android:background=”@color/background”

				 android:orientation=”horizontal”

				 android:layout_width=”match_parent”

				 android:layout_height=”match_parent”

				 android:padding=”20dip”>

				 <LinearLayout android:orientation=”vertical

				 android:layout_width=”match_parent”

				 android:layout_height=”match_parent”>

				 <TextView android:text=”@string/login_title”

				 android:layout_height=”wrap_content”

				 android:layout_width=”wrap_content”

				 android:layout_gravity=”center”

				 android:layout_marginBottom=”15dip”

				 android:textSize=”20.5sp”/>

				 <TextView

				 android:text=”Enter Username”

				 android:layout_height=”wrap_content”

				 android:layout_width=”wrap_content”

				 android:layout_gravity=”left”

				 android:textSize=”15.5sp”/>

				 <EditText

				 android:id=”@+id/username_text”

				 android:singleLine=”true”

				 android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”/>

				 <TextView

				 android:text=”Enter Password”

				 android:layout_height=”wrap_content”

				 android:layout_width=”wrap_content”

				 android:layout_gravity=”left”

				

				
				 android:textSize=”15.5sp”/>

				 <EditText

				 android:id=”@+id/password_text”

				 android:singleLine=”true”

				 android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”/>

				 <Button

				 android:id=”@+id/login_button”

				 android:text=”Login”

				 android:layout_marginTop=”20dip”

				 android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”/>

				 <Button

				 android:id=”@+id/cancel_button”

				 android:text=”Exit”

				 android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”/>

				 <Button

				 android:id=”@+id/new_user_button”

				 android:text=”New User”

				 android:layout_marginTop=”10dip”

				 android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”/>

				 </LinearLayout>

				</ScrollView>

				

				You can see that the layout file consists of the elements described below:

				[image: check.png] An outermost ScrollView element: Indicates that the highest-level (or root) window in this view is a scrollable window. This outermost window is a container — it contains other user interface elements.

				[image: check.png] A LinearLayout element: This is nested inside the ScrollView, and it is also a container that indicates that its component elements are to be displayed in the order they are placed in the container. Nested inside the LinearLayout element are the following elements:

					•	TextView: This element corresponds to and describes the title “Tic-Tac-Toe Awaits!” (which is defined in res/values/strings.xml).

					•	TextView: This element corresponds to and describes the string Enter Username (which is defined in res/values/strings.xml).

					•	EditText: This element is a specification of the entry field where the user would enter a username.

					•	TextView: This element is a specification of the string Enter Password. Note that we have put the string directly in the layout file (just to show you that values of literals do not have to be in a separate file).

					•	EditText: This element is a specification of the entry field where the user would type in a password.

					•	Button: This element is a specification of the Login button.

					•	Button: This element is a specification of the Exit button used to exit the login screen (and, therefore, the game).

					•	Button: This element is a specification of the New User button used to enroll a new user.

				The screen components that are specified in the layout file are shown in Figure 3-3.

					

				
					Figure 3-3: The user interface of the Login activity.

				

					[image: 9781118008256-fg0303.eps]

				The Android SDK has many more types of views than ScrollView (such as HorizontalScrollView), more layouts in addition to LinearLayout (including AbsoluteLayout, FrameLayout, and RelativeLayout), and more widgets in addition to TextView, EditText, and Button. Note the nested nature of the layout. Essentially, two base classes define views: the ViewGroup base class for UI elements that can contain other elements and the View base class for terminal UI components. The suitable composition of container classes that extend ViewGroup (such as LinearLayout) and elementary widgets that have View as their base class allow views to be nested to any appropriate level.

				The layout files for the activities in an application are translated into Java code that resides within the resource R class in the res subtree in the project. This translation reduces the overhead of generating the view from its XML specification every time.

				In the following section, we show you how to implement the functionality behind a view.

				Implementing the user interface logic by using event listeners

				An event listener is an object that is registered with a user interface and which responds to user events such as mouse clicks. In the Android SDK, an activity can act like an event listener object for events in its view. The following code segment, extracted from the Login class, shows how this is done:

				public class Login extends Activity implements OnClickListener{

				 ...

				 private EditText userNameEditableField;

				 private EditText passwordEditableField;

				

				 @Override

				 public void onCreate(Bundle savedInstanceState) {

				 super.onCreate(savedInstanceState);

				 setContentView(R.layout.login);

				 userNameEditableField=(EditText)findViewById(R.id.username_text);

				 passwordEditableField=(EditText)findViewById(R.id.password_text);

				 View btnLogin=(Button)findViewById(R.id.login_button);

				 btnLogin.setOnClickListener(this);

				 View btnCancel=(Button)findViewById(R.id.cancel_button);

				 btnCancel.setOnClickListener(this);

				 View btnNewUser=(Button)findViewById(R.id.new_user_button);

				 btnNewUser.setOnClickListener(this);

				 }

				 ...

				}

				The Login activity extends the Activity base class (as any activity should), and also implements the OnClickListener interface. This interface implements an activity that intends to interact with the user. Note the onCreate(Bundle) method of the Login activity. The Android framework calls this method when the activity is created. (For more on the activity life cycle, see the “Managing the Activity Life Cycle” section, later in this chapter.) In this onCreate(Bundle) method, the call to setContentView(R.layout.login) creates and initializes the user interface for Login.

				After the view for the activity is created, variables such as userNameEditableField and btnCancel are initialized to refer to the various widgets in the view (such as the field just below the Enter Username string in which the username is entered, and the Cancel button). Note how the reference to the widget is found by passing the resource that corresponds the id of the widget (such as R.id.cancel_button) to the findViewById(...) method. Finally, the Login activity (that is, this) is set as a listener on every button element the user interacts with (such as Login, Cancel, and NewUser). Whenever the user clicks on one of these buttons, the button object calls a standard method, named onClick, on each listener object (for example, on the Login activity object).

				The onClick method for the user interface of the Login activity is shown here:

				public void onClick(View v) {

				 switch (v.getId()) {

				 case R.id.login_button:

				 checkLogin();

				 break;

				 case R.id.cancel_button:

				 finish();

				 break;

				 case R.id.new_user_button:

				 startActivity(new Intent(this, Account.class));

				 break;

				 }

				}

				The logic of the onClick(…) method is simple. The following list describes what happens when the user taps the buttons:

				[image: check.png] Login: Calls checkLogin(…), which verifies the username and password and then launches the GameOptions activity

				[image: check.png] Cancel: Simply finishes the current activity

				[image: check.png] New User: Launches the Account activity to let the user create a new account

				The pattern for handling other types of events is similar. These events can qualify as a touch (physically touching a touchscreen or clicking the mouse button on the emulator) or a key being pressed. You simply implement the onTouch(View) or the onKey(View) listener method in the activity and register it with the appropriate view by using setOnTouchListener and setOnKeyListener, respectively.

				Implementing the user interface by implementing your own View class

				The View base class can directly handle events. Therefore, you can also implement UI functionality by implementing your own View class, extending View (or one of its subclasses, such as Activity) and overriding one or more existing callback methods of the View to listen for specific events that occur within it.

				To illustrate this concept, here’s an example from the GameSession activity and the Board view in Tic-Tac-Toe. We start with the GameSession class, which is declared simply as a subclass of Activity, like this:

				public class GameSession extends Activity {

				...

				}

				Note that GameSession implements no other interface, such as onClickListener. Take a look at its layout file (named gamesession.xml in the res/layout directory) in Listing 3-3.

				Listing 3-3: Layout of the GameSession Activity with 	Board As an Embedded View

				<?xml version=”1.0” encoding=”utf-8”?>

				<LinearLayout

					xmlns:android=”http://schemas.android.com/apk/res/android”

					android:layout_width=“match_parent“

					android:layout_height=“match_parent“

					android:orientation=“vertical“

					android:background=“#676767“

					android:gravity=“center_horizontal“

					android:padding=“20dip“>

				 <com.wiley.fordummies.androidsdk.tictactoe.Board

				 android:id=“@+id/board“

				 android:layout_width=“match_parent“

				 android:layout_height=“280dip“

				 />	

				 <TextView

				 android:id=“@+id/gameInfo“

				 android:layout_width=“match_parent“

				 android:layout_height=“wrap_content“

				 android:text=“Loading...“

				 android:gravity=“center_vertical“

				 android:paddingLeft=“10dip“

				 />

				 <TextView

				 android:id=“@+id/scoreboard“

				 android:layout_width=“match_parent“

				 android:layout_height=“wrap_content“

				 android:gravity=“center_vertical“

				 android:paddingLeft=“10dip“

				 />

				</LinearLayout>

				

				This layout file can be considered to have three components: a LinearLayout ViewGroup containing a view element referring to a class named Board, a TextView field titled game info, and another TextView field titled scoreboard. The Board class referred to in the view element is a subclass of View and is declared as follows:

				public class Board extends View {

				...

				}

				Board has been specialized from its parent View class by overriding the ontouchEvent(MotionEvent) method inherited from View and by giving this method an implementation that’s specific to the Tic-Tac-Toe app. This method is shown in Listing 3-4.

				Listing 3-4: The onTouchEvent Callback in Board View

				 public boolean onTouchEvent(MotionEvent event) {

				 if(!this.enabled) {

				 System.out.println(“Board.onTouchEvent: Board not enabled”);

				 return false;

				 }

				 int posX = 0;

				 int posY = 0;

				 int action = event.getAction();

				 switch (action){

				 case MotionEvent.ACTION_DOWN:

				 float x = event.getX();

				 float y = event.getY();

				 System.out.println(“coordinates: “ + x + “,” + y);

				 if(x > width && x < width * 2) posX = 1;

				 if(x > width * 2 && x < width * 3) posX = 2;

				

				 if(y > height && y < height * 2) posY = 1;

				 if(y > height * 2 && y < height * 3) posY = 2;

				

				 gameSession.humanTakesATurn(posX, posY);

				 break;

				 }

				 return super.onTouchEvent(event);

				 }

				}

				

				This onTouchEvent(…) callback receives the x,y coordinate positions of every touch, converts those x,y positions into the coordinates (0, 1, or 2) of the Tic-Tac-Toe square, and then calls the humanTakesATurn(…) method of the GameSession object with these coordinates. The Board view is created by the GameSession activity in its onCreate(…) method. This method also passes its GameSession activity to Board, which then enables Board to invoke humanTakesATurn(…) on GameSession.

				Handling user interactions in the activity itself

				Because an Activity is also a View, it can itself implement some of its own UI functionality. The requirement to do so arises if the activity must deal with user interaction outside the boundaries of any UI components in its view, such as in grayed-out areas near the edges. An example is in the SplashScreen activity in the Tic-Tac-Toe app, where any touch, no matter where it happens on the screen, is a signal from the user to interrupt the splash screen and continue. Take a look now at the code for the SplashScreen activity shown in Listing 3-5:

				Listing 3-5: The SplashScreen Activity

				public class SplashScreen extends Activity {

				 protected boolean active=true;

				 protected int splashTime=5000;

				 protected int timeIncrement=100;

				 protected int sleepTime=100;

				

				 /** Called when the activity is first created. */

				 @Override

				 public void onCreate(Bundle savedInstanceState) {

				 super.onCreate(savedInstanceState);

				 setContentView(R.layout.splash);

				

				 // thread for displaying the SplashScreen

				 Thread splashThread=new Thread() {

				 @Override

				 public void run() {

				 try {

				 int elapsedTime=0;

				 while(active && (elapsedTime < splashTime)) {

				 sleep(sleepTime);

				 if(active) elapsedTime=elapsedTime + timeIncrement;

				 }

				 } catch(InterruptedException e) {

				 // do nothing

				 } finally {

				 finish();

				 startActivity(new Intent(

				 “com.wiley.fordummies.androidsdk.tictactoe.Login”));

				 }

				 }

				 };

				 splashThread.start();

				 }

				

				 @Override

				 public boolean onTouchEvent(MotionEvent event) {

				 if (event.getAction()==MotionEvent.ACTION_DOWN) {

				 active=false;

				 }

				 return true;

				 }

				}

				

				When the SplashScreen activity is created, a new thread is launched. The thread sleeps for splashTime milliseconds while periodically awaking to check an active flag to see whether it needs to quit. At the same time, the original application thread (which, of course, was never authorized to knock off work) is still running. This main thread makes the activity active and then waits in an event loop for the user to interact with the splash screen. When the user interacts with it (specifically, by touching the screen before the timer runs out), an onTouch event is generated. This event is trapped by the onTouchEvent(MotionEvent) method in the Activity class, which in turn sets the (active) splash screen flag to false. This, in turn, terminates the timer and causes the splash screen activity to finish and start the next activity, which is Login.

				Initiating actions from menus and the Action Bar

				You can use menus and, starting in Android 3.0, the Action Bar to provide functionality similar to a sidebar that a user can access while using the primary capabilities of the app. Think of a capability as allowing the user to exit a game or find help at any time while playing the game. In this section, we discuss menus first and then the Action Bar.

				Programming Options menus

				Every Android device has a button labeled Menu that can be used to open an application menu known as an Options menu. A menu (activated by the Menu button) is considered a standard part of the user interface of an activity. Applications (and their activities) should make good use of menus because they’re interface components that are always available when an activity is running, regardless of what it is doing. Finally, note that you can have different menus for different activities.

				To implement menus, you must follow these three steps:

					1.	Define the onCreateOptionsMenu() or onCreateContextMenu() callback method (or both) in the class that implements your activity.

					2.	Declare the menu items, which you can do in XML. At the appropriate time, Android automatically calls this method to create the menu.

					3.	Implement the methods onOptionsItemSelected() and onContextItemSelected() in your activity.

				That’s it. Menus handle their own events, so you don’t need to implement event handlers. Note that a menu is linked to the activity it belongs to in the onCreateOptionsMenu(…) method. (See Listing 3-6, later in this section.)

				Tic-Tac-Toe implements menus in the activities GameSession and GameOptions. Here’s the layout file (named menu.xml) for the menu in the GameOptions activity:

				<?xml version=”1.0” encoding=”utf-8”?>

				<menu xmlns:android=”http://schemas.android.com/apk/res/android”>

				 <item android:title=”Settings”

				 android:id=”@+id/menu_settings”

				 android:icon=”@android:drawable/ic_menu_preferences”

				 />

				 <item android:title=”Help”

				 android:id=”@+id/menu_help”

				 android:icon=”@android:drawable/ic_menu_info_details”

				 />

				 <item android:title=”Exit”

				 android:id=”@+id/menu_exit”

				 android:icon=”@android:drawable/ic_menu_close_clear_cancel”

				 />

				 <item android:title=”Contacts

				 android:id=”@+id/menu_contacts”

				 android:icon=”@android:drawable/ic_menu_view”

				 />

				</menu>

				This layout file defines four obvious items: Settings, Help, Exit, and Contacts. Their identifiers are menu_settings, menu_help, menu_exit, and menu_contacts, respectively. The following icons for these items are standard in the Android SDK:

				@android:drawable/ic_menu_info_details

				@android:drawable/ic_menu_preferences

				@android:drawable/ic_menu_close_clear_cancel

				@android:drawable/ic_menu_view

				The layout file is compiled into resources specified in the R class in the gen subtree of the Android project. You can see references to the R class in the code shown in Listing 3-6, which shows the menu-relevant code from the GameOptions activity.

				Listing 3-6: Handling Menus in the GameOptions Activity

				public class GameOptions extends Activity implements OnClickListener{

				...

				public boolean onCreateOptionsMenu(Menu menu) {

				 super.onCreateOptionsMenu(menu);

				 MenuInflater inflater=getMenuInflater();

				 inflater.inflate(R.menu.menu, menu);

				 return true;

				}

				

				public boolean onOptionsItemSelected(MenuItem item) {

				 switch (item.getItemId()) {

				 case R.id.menu_settings:

				 startActivity(new Intent(this, Settings.class)); return true;

				 case R.id.menu_help:

				 startActivity(new Intent(this, Help.class));

				 return true;

				 case R.id.menu_exit:

				 quitApplication();

				 return true;

				 case R.id.menu_contacts:

				 startActivity(new Intent(this, ContactsView.class));

				 return true;

				 }

				 return false;

				}

				...

				}

				

				In this chunk of code, the onCreateOptionsMenu(Menu) method creates the menu. You don’t have to specifically call this method in any of your code: The Android runtime automatically calls it at the appropriate time, passes in the correct menu object to be created, and sets up the current activity as a listener on the menu. MenuInflater inflater=getMenuInflater() is a (factory) method that’s called to get an object that can initialize this menu object with its items specified in the menu.xml file, which in turn is done by using inflater.inflate(R.menu.menu, menu).

				When the user taps the menu and selects an item, onOptionsItemSelected(MenuItem) is called and the selected item is passed to it. In this method, the switch statement directs execution to launching either the Settings, the Help, or the Contacts activity — or, if Exit has been selected, the code that terminates the Tic-Tac-Toe app (see the method quitApplication(..)).

				[image: remember.eps]	In addition to menus launched using the Menu button (known as Options menus), you can add Context menus that open whenever the user selects an item by pressing and holding the mouse button or trackball (or by holding down a finger on a device with a touchscreen). You can also add sub-menus to menus that appear as a floating list of menu items when the user touches a menu item that contains a sub-menu. For more on Context menus and sub-menus, see http://developer.android.com/guide/topics/ui/menus.html.

				Using the Action Bar

				Starting in Android 3.0, users have access to contextual options, navigation, widgets, and other types of content on the Action Bar, which is displayed at the top of the screen and is always visible when an application is running.

				[image: remember.eps]	For the code examples in this section, refer to the Eclipse project Tic-Tac-Toe-Using-Fragments.

				The coding for Action Bar items is exactly the same as for menus. All you do is implement the onCreateOptionsMenu(Menu) and onOptionsItemSelected(MenuItem) methods in exactly the same way as you do for menus. The difference is that you can then make a menu item appear on the Action Bar (rather than on the menu) by declaring the menu item with the additional attribute android:showAsAction with the value “ifRoom”, “never”, “withText”, or “always”. You can also combine these directives. In the example below, the Help menu from menu.xml has been declared as a menu to be shown on the Action Bar. The result of doing this is shown in Figure 3-4 where you can see the Help menu on the Action Bar, and the result of selecting it.

				<item

				 android:title=”Help”

				 android:id=”@+id/menu_help”

				 android:icon=”@android:drawable/ic_menu_info_details”

				 android:showAsAction=”always|withText”

				/>

					

				
					Figure 3-4: Putting menu items on the Action Bar.

				

					[image: 9781118008256-fg0304.eps]

				Setting application preferences

				Most mobile applications have different modes of working, depending on user preferences. For example, a route-finding application might ask users to set their home locations, on the assumption that most user-requested routes begin from home. Also, games have preferences such as character icons and game levels. Because preferences are common features in mobile applications, Android provides you with built-in ways to set and read them as name-value pairs.

				We illustrate this capability by using an example from Tic-Tac-Toe. Take a look at the Settings activity, which is an example of an activity that sets preferences. The Settings activity is started when a user taps the Settings menu item in the GameOptions activity. We show its implementation in Listing 3-7.

				Listing 3-7: An Implementation of Settings, a PreferenceActivity

				package com.wiley.fordummies.androidsdk.tictactoe;

				import android.content.Context;

				import android.os.Bundle;

				import android.preference.PreferenceActivity;

				import android.preference.PreferenceManager;

				

				public class Settings extends PreferenceActivity {

				 private final static String OPT_NAME=”name”;

				 private final static String OPT_NAME_DEF=”Player”;

				 private final static String OPT_PLAY_FIRST=”human_starts”;

				 private final static boolean OPT_PLAY_FIRST_DEF=true;

				

				 @Override

				 protected void onCreate(Bundle savedInstanceState){

				 super.onCreate(savedInstanceState);

				 addPreferencesFromResource(R.layout.settings);

				 }

				 public static String getName(Context context) {

				 return PreferenceManager.getDefaultSharedPreferences(context)

				 .getString(OPT_NAME, OPT_NAME_DEF);

				 }

				 public static boolean doesHumanPlayFirst(Context context) {

				 return PreferenceManager.getDefaultSharedPreferences(context)

				 .getBoolean(OPT_PLAY_FIRST, OPT_PLAY_FIRST_DEF);

				 }

				}

				

				You can see that the onCreate(...) method is building the user interface for this activity in this line:

				addPreferencesFromResource(R.layout.settings)

				The user interface for this activity is then specified in an XML file named settings.xml, like this:

				<?xml version=”1.0” encoding=”utf-8”?>

				<PreferenceScreen xmlns:android=http://schemas.android.com/apk/res/android

				 android:title=”Settings”

				 android:background=”@color/background”>

				 <EditTextPreference android:key=”name”

				 android:title=”Player Info”

				 android:summary=”Select your name”

				 android:defaultValue=”Player 1”/>

				 <CheckBoxPreference android:key=”human_starts”

				 android:title=”Human Plays First”

				 android:summary=”Check box to play first”

				 android:defaultValue=”true” />

				</PreferenceScreen>

				Note the difference between the names of the XML elements in this file and the names of other kinds of activities in layout files: They all end with Preference. Every element specifies four attributes of the preference:

				[image: check.png] The name-value pair that defines the preference

				[image: check.png] The form in which the preference is displayed

				[image: check.png] A helpful description of the preference

				[image: check.png] The default value of the preference

				In the preceding XML file, therefore, the first preference is the name of the human player, which is a string to be displayed as an editable text field, with a default value of Player 1. The second preference is a Boolean value that specifies whether the human or the machine plays first. Whoever plays first uses the X symbol, and the human plays first, by default.

				Back to the code itself — the first thing to notice about this code is (drum roll, please) that there’s no code to save preferences! This process is handled automatically by the Android framework, by making Settings a subclass of the PreferenceActivity class, which implements all necessary callbacks to store the values.

				However, the Settings activity still needs to make available methods to read preferences. In the Tic-Tac-Toe app, Settings does this by providing two static methods (see Listing 3-7):

				[image: check.png] getName(..): Gets the name of the player

				[image: check.png] doesHumanPlayFirst(..): Returns true if the player starts first and false if the machine is supposed to play first

				These methods use two methods of the PreferenceManager class to get the preference values, namely getString(…) and getBoolean(…). The first parameter to these methods is the name of the preference. It should be the same as the value of the android:key attribute for the corresponding element in the settings.xml file. The second parameter to these methods (such as the Boolean variable OPT_PLAY_FIRST_DEF) is the default value to return if the key doesn’t exist.

				Building Rich User Interfaces for Larger Screens Using Fragments

				Until Android 3.0, an activity and its user interface were coupled together. In the release of Android 3.0, the Android SDK introduced a new paradigm and a set of components, or fragments, for building user interfaces. The main reason for introducing fragments is to take advantage of the larger screens on Android tablets.

				In this section, we explain what fragments are and show you a couple of examples. One quick thing; for the code examples in this section, refer to the Eclipse project Tic-Tac-Toe-Using-Fragments.

				Understanding fragments

				Fragments enable the separation of the user interface of an activity from the activity itself. A fragment has its own life cycle and receives its own input events. You can add or remove fragments while the activity is running, which lets you design a more complicated (and, possibly, better) interface, with its own flow. Of course, the user interface has to tie into the activity, but it ties into it in limited and well-defined ways that allow you to design both items separately. (The notion of separating the user interface life cycle and the business logic of the application isn’t new. If you have done web development using Enterprise Java — specifically, using Java Server Faces — you should be quite familiar with this concept.)

				Think of a fragment as representing a part of the user interface of an activity. You can use multiple fragments to build a user interface consisting of multiple stand-alone parts (known as a multi-pane user interface). You can also reuse a fragment in more than one activity.

				Fragment capability is supplied by a new set of components related to the user interface — namely, Fragment, its subclasses (DialogFragment, ListFragment, PreferenceFragment, and WebViewFragment), and its related classes (FragmentActivity, FragmentManager, and FragmentTransaction). Fragment-based functionality isn’t in only the 3.0 and later versions of the Android SDK. Along with Android 3.0, Google also released the Android Compatibility Library (ACL), which lets you develop fragment-based user interfaces using SDK versions 1.6 through 2.3.3. Figure 3-5 shows how to add the ACL (and other, additional libraries) into the build path of your project. (We describe this process in more detail in Chapter 2.)

					

				
					Figure 3-5: The Tic-Tac-Toe project with the ACL in its build path.

				

					[image: 9781118008256-fg0305.eps]

				Let us now show you an example of how to use fragments from (what else?) the Tic-Tac-Toe app (once again, refer to the Eclipse project named Tic-Tac-Toe-Using-Fragments with regard to all the code examples in this section). The example first demonstrates the use of a fragment in creating a multi-pane interface for larger screens by showing you how to combine into a single activity the Login and New Account functionality, when the application is used in Landscape mode (such as on a tablet). However, when the application is in Portrait mode (on a smaller device, for example), the login and account creation are split across two activities. Figure 3-6 shows the user interface for the two modes.

					

				
					Figure 3-6: The user interface in Landscape and Portrait modes, for logging in and creating a new account.

				

					[image: 9781118008256-fg0306.eps]

				By looking at these screens, you can clearly see how the Tic-Tac-Toe app provides login and new account-creation capabilities in different ways in the two orientations. In the next example, we show you how it’s done in a way that reuses the fragment. This example also illustrates a couple of other concepts: how a fragment can be incorporated into the user interface declaratively (via layout files) or programmatically (via coding). We also touch on how the life cycle of the fragment and the activity interact.

				You start, though, by looking at the AndroidManifest.xml file. To create different looks and implementations for Portrait and Landscape modes, you must first set the android:screenOrientation attribute for the activity to be either unspecified or sensor. You set the specification of the login activity this way:

				<activity

				 android:name=”.Login”

				 android:label=”@string/app_name”

				 android:launchMode=”standard”

				 android:screenOrientation=”unspecified”

				 …

				>

				Embedding fragments in activity layouts

				To understand the details of how to use fragments, you first have to incorporate the fragment in the layout of the activity. To see how it’s done, look in res/layout-land/login.xml for the landscape layout of the Login activity, shown in Listing 3-8.

				[image: tip.eps]	The listings in this section are rather long, so we removed several entries that aren’t relevant to this discussion. Of course, the entire chunk of code is available in the source code provided.

				Listing 3-8: Landscape Layout File for the Login Activity

				<?xml version=”1.0” encoding=”utf-8”?>

				<LinearLayout

				 xmlns:android=”http://schemas.android.com/apk/res/android”

				 …

				 android:orientation=”horizontal”

				 android:layout_width=”match_parent”

				 android:layout_height=”match_parent”

				 android:textSize=”15.5sp”>

				 <ScrollView

				 xmlns:android=”http://schemas.android.com/apk/res/android”

				 …

				 android:orientation=”vertical”

				 android:layout_width=”200dip”

				 android:layout_height=”300dip”>

				 <LinearLayout

				 android:orientation=”vertical”

				 android:layout_width=”match_parent”

				 android:layout_height=”match_parent”>

				 <TextView

				 android:text=”Login”

				 …/>

				 <TextView

				 android:text=”@string/enter_username”

				 …/>

				 <EditText

				

				 android:id=”@+id/username_text”

				 …/>

				 <TextView

				 android:text=”Enter Password”

				 …/>

				 <EditText

				 android:id=”@+id/password_text”

				 …/>

				 <Button

				 android:id=”@+id/login_button”

				 android:text=”Login”

				 …/>

				 <Button

				 android:id=”@+id/cancel_button”

				 android:text=”Exit”

				 …/>

				 </LinearLayout>

				 </ScrollView>

				 <fragment class=”com.wiley.fordummies.androidsdk.tictactoe.AccountFragment”

				 android:id=”@+id/titles” android:layout_weight=”1”

				 android:layout_width=”0px”

				 android:layout_height=”match_parent”

				 android:background=”#00550033”/>

				</LinearLayout>

				

				Note the use of the fragment element in the layout file; note specifically how the class attribute has been initialized to the name of a fragment class. (We describe this class itself in the following section.) While you’re looking at layout files, look at the one for the login activity while in Portrait mode (see Listing 3-9). You see that the first part of the file is quite similar to the previous one, except that the fragment element for adding a new user is missing (because a separate Account activity handles creating a new user) and a New User button is added (that launches the Account activity).

				Listing 3-9: Portrait Layout File for the Login Activity

				<?xml version=”1.0” encoding=”utf-8”?>

				<ScrollView

				 xmlns:android=”http://schemas.android.com/apk/res/android”

				 …

				 android:orientation=”vertical”

				 android:layout_width=”match_parent”

				 android:layout_height=”match_parent”

				 android:textSize=”15.5sp”

				 …>

				 <LinearLayout

				 android:orientation=”vertical”

				
				

				 android:layout_width=”match_parent”

				 android:layout_height=”match_parent”>

				 <TextView

				 android:text=”@string/login_title”

				 …/>

				 <TextView

				 android:text=”@string/enter_username”

				 …/>

				 <EditText

				 android:id=”@+id/username_text”

				 …/>

				 <TextView

				 android:text=”Enter Password”

				 …/>

				 <EditText

				 …/>

				 <Button

				 android:id=”@+id/login_button”

				 android:text=”Login”

				 …/>

				 <Button

				 android:id=”@+id/cancel_button”

				 android:text=”Exit”

				 …/>

				 <Button

				 android:id=”@+id/new_user_button”

				 android:text=”New User”

				 …/>

				 </LinearLayout>

				</ScrollView>

				

				Look at the layout of AccountFragment in Landscape mode (shown in Listing 3-10) and Portrait mode (shown in Listing 3-11).

				Listing 3-10: Landscape Layout File for AccountFragment

				<?xml version=”1.0” encoding=”utf-8”?>

				<LinearLayout

				 xmlns:android=”http://schemas.android.com/apk/res/android”

				 …

				 android:orientation=”vertical”

				 android:layout_width=”match_parent”

				 android:layout_height=”match_parent”

				 android:textSize=”15.5sp”>

				 <LinearLayout

				 android:orientation=”vertical”

				 …

				 <TextView

				 android:text=”New Account”

				 …/>

				

				 <TextView

				 android:text=”Username”

				 …/>

				 <EditText

				 android:id=”@+id/username”

				 …/>

				 <TextView

				 android:text=”Password”

				 …/>

				 <EditText

				 android:id=”@+id/password”

				 …/>

				 <TextView

				 android:text=”Confirm Password”

				 …/>

				 <EditText

				 android:id=”@+id/password_confirm”

				 …/>	

				 <LinearLayout

				 android:orientation=”horizontal”

				 …>

				 <Button

				 android:id=”@+id/cancel_button”

				 android:text=”Clear”

				 …/>

				 <Button

				 android:id=”@+id/done_button”

				 android:text=”Create”

				 …/>

				 </LinearLayout>

				 </LinearLayout>

				</LinearLayout>

				

				Listing 3-11: Portrait Layout File for AccountFragment

				<?xml version=”1.0” encoding=”utf-8”?>

				<LinearLayout

				 xmlns:android=”http://schemas.android.com/apk/res/android”

				 android:background=”@color/background”

				 android:orientation=”horizontal”

				 android:layout_width=”match_parent”

				 android:layout_height=”match_parent”

				 android:padding=”20dip”>

				 <LinearLayout

				 android:orientation=”vertical”

				 …>

				 <TextView

				 android:text=”New Account”

				 …/>

				 <TextView

				 android:text=”Username”

				
				

				 …/>

				 <EditText

				 android:id=”@+id/username”

				 …/>

				 <TextView

				 android:text=”Password”

				 …/>

				 <EditText

				 android:id=”@+id/password”

				 android:password=”true”

				 …/>

				 <TextView

				 android:text=”Confirm Password”

				 …/>

				 <EditText

				 android:id=”@+id/password_confirm”

				 …/>	

				 <LinearLayout

				 android:orientation=”vertical”

				 …>

				 <Button

				 android:id=”@+id/cancel_button”

				 android:text=”Clear”

				 …/>

				 <Button

				 android:id=”@+id/done_button”

				 android:text=”Create”

				 …/>

				 </LinearLayout>

				 </LinearLayout>

				</LinearLayout>

				

				When you contrast Listing 3-10 and Listing 3-11 (which shows the portrait layout file), you see that the UI components are exactly the same. The only difference is that the Clear and Create buttons are one below the other in the portrait layout, and next to each other in the landscape layout (because vertical space is at a premium in Landscape mode).

				Finally, we show you the portrait layout file for the Account activity (Listing 3-12). Again, note that this activity is the one that handles the addition of new users whenever the application is run in Portrait mode. This activity is not used when the device is in Landscape mode.

				Listing 3-12: Portrait Layout File for the Account Activity

				<?xml version=”1.0” encoding=”utf-8”?>

				<LinearLayout

				 xmlns:android=”http://schemas.android.com/apk/res/android”

				 android:background=”@color/background”

				

				 android:orientation=”vertical”

				 android:layout_width=”match_parent”

				 android:layout_height=”match_parent”

				 android:padding=”20dip”>

				 <FrameLayout

				 android:id=”@+id/accountdetails”

				 android:layout_weight=”2”

				 android:layout_width=”match_parent”

				 android:layout_height=”match_parent” />

				 <Button

				 android:id=”@+id/exit_button”

				 android:text=”Exit”

				 android:layout_marginTop=”20dip”

				 android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”/>

				</LinearLayout>

				

				Note that no mention is made of the fragment in the layout file. However, the FrameLayout element accountdetails defines a placeholder for it that the Account activity programmatically fills with AccountFragment. You can see how it’s done in the following section.

				Implementing fragments

				To look at how to implement fragments, start with the code for AccountFragment, shown in Listing 3-13.

				Listing 3-13: Implementation of AccountFragment

				public class AccountFragment extends Fragment implements OnClickListener{

				 private EditText etUsername;

				 private EditText etPassword;

				 private EditText etConfirm;

				 …

				 public View onCreateView(LayoutInflater inflater, ViewGroup container,

				 Bundle savedInstanceState) {

				 // Inflate the layout for this fragment

				 View v = inflater.inflate(R.layout.accountfragment, container, false);

				 etUsername= (EditText)v.findViewById(R.id.username);

				 etPassword= (EditText)v.findViewById(R.id.password);

				 etConfirm = (EditText)v.findViewById(R.id.password_confirm);

				 View btnAdd= (Button)v.findViewById(R.id.done_button);

				 btnAdd.setOnClickListener(this);

				 View btnCancel= (Button)v.findViewById(R.id.cancel_button);

				 btnCancel.setOnClickListener(this);

				 return v;

				
				

				 }

				

				 private void CreateAccount(){

				 …

				 }

				

				 public void onClick(View v) {

				 switch (v.getId()) {

				 case R.id.done_button:

				 CreateAccount();

				 break;

				 case R.id.cancel_button:

				 etUsername.setText(“”);

				 etPassword.setText(“”);

				 etConfirm.setText(“”);

				 break;

				 }

				 }

				}

				

				AccountFragment looks much like an activity. One difference is that it has (obviously) an onCreateView(…) method rather than an onCreate(…) method, which an activity might have. The reason that this onCreateView(…) method might look like a life cycle method is that it is one. It’s the method that’s called after the fragment has been created. Other differences in this method are described in this list:

				[image: check.png] To get a reference to the view of the fragment, the layout file for the fragment has to be inflated by using the following helper method from the inflater class (earlier in this chapter, we showed the use of a similar inflater method for menus):

				View v = inflater.inflate(R.layout.accountfragment, container, false);

				[image: check.png] The view in the preceding line must be used in order to get handles to the components of the view, as shown in the following example:

				etUsername= (EditText)v.findViewById(R.id.username);

				[image: check.png] The view has to be returned by the method. This view, in fact, is handed back to the enclosing activity to be made part of the activity’s view hierarchy.

				Incorporating fragments into activity behavior

				In this section, we describe the code additions or modifications that are needed in the activities in order to use fragments. In the Login activity, there’s just one code change due to the fact that fragments are being used. In the onCreate method, a test if (btnNewUser!=null) has been added, which tests whether the New User button exists. This test is needed because in the layout file for Login in landscape mode this button does not exist. Of course, do note that Login now extends FragmentActivity, rather than the Activity base class.

				public void onCreate(Bundle savedInstanceState) {

				 …

				 android.view.View btnLogin=(Button)findViewById(R.id.login_button);

				 btnLogin.setOnClickListener(this);

				 android.view.View btnCancel=(Button)findViewById(R.id.cancel_button);

				 btnCancel.setOnClickListener(this);

				 android.view.View btnNewUser=(Button)findViewById(R.id.new_user_button);

				 if (btnNewUser!=null) btnNewUser.setOnClickListener(this);

				}

				When the layout of the activity is inflated into the activity’s view (when the activity is created), the inflator reads the class name in the fragment entry and creates an instance of the fragment. Then, by calling onCreateView(…) on the fragment instance, the inflator inflates its view as well. This view is returned by onCreateView(…) and hooked into the activity’s view. The Android framework does all this under the hood and — voila! — your activity, its view, and its fragments are ready for service.

				We also show you how to implement the Account activity where an AccountFragment isn’t declaratively incorporated into the activity, but is instead incorporated by using code. Take a look at the code for the Account activity:

				package com.wiley.fordummies.androidsdk.tictactoe;

				import com.wiley.fordummies.androidsdk.tictactoe.R;

				…

				//Fragment specific imports

				//For Android 3.0 and above comment out the lines below

				import android.support.v4.app.FragmentManager;

				import android.support.v4.app.FragmentTransaction;

				import android.support.v4.app.FragmentActivity;

				

				// For Android 3.0 and above uncomment the lines below

				// import android.app.FragmentManager;

				// import android.app.FragmentTransaction;

				// import android.app.FragmentActivity;

				

				public class Account extends FragmentActivity implements OnClickListener{

				 public void onCreate(Bundle savedInstanceState) {

				 super.onCreate(savedInstanceState);

				 setContentView(R.layout.account);

				 // Install the Account fragment

				 // For Android 3.0 and above comment out the line below

				

				 AccountFragment accountFragment = new AccountFragment();

				

				 FragmentManager fragmentManager = getSupportFragmentManager();

				 // For Android 3.0 and above uncomment the line below

				 // FragmentManager fragmentManager = getFragmentManager();

				 FragmentTransaction fragmentTransaction =

				 fragmentManager.beginTransaction();

				 fragmentTransaction.add(R.id.accountdetails, accountFragment);

				 fragmentTransaction.commit();

				

				 // Initialize the Exit button

				 View buttonExit= (Button)findViewById(R.id.exit_button);

				 buttonExit.setOnClickListener(this);

				 }

				 public void onClick(View v) {

				 switch (v.getId()) {

				 case R.id.exit_button:

				 finish();

				 break;

				 }

				 }

				}

				In this code example, start by noting the package imports needed for using fragments. We include two sets of imports: one for SDK versions earlier than 3.0 and the other for building apps against Android 3.0 or higher.

				Now look at the code itself: Notice how the Account activity inherits from FragmentActivity. (By the way, we missed this crucial step and spent half a day trying to figure out why our code simply wouldn’t work.) Then note how a new fragment is created that is similar to any standard Java object.

				Then the good stuff happens: A fragment manager is provided by the getFragmentManager() method, and then the newly created fragment is added to the FrameLayout component, named accountdetails, of the Account activity’s view. (If this component is unfamiliar to you, see the section “Embedding fragments in activity layouts,” earlier in this chapter.) Finally, note how the fragment is added within a transaction enclosed by fragmentManager.beginTransaction() and fragmentManager.commit() calls.

				That’s it — you’re ready to work with fragments!

				Managing the Activity Life Cycle

				An activity is taken through several stages by the Android runtime from the time the activity is created to the time it is killed. These stages make up the activity’s life cycle. As the activity goes through each stage, a set of standard methods is invoked. These methods are known (naturally) as the life cycle methods of the activity. You can insert application-specific functionality by overriding these methods and providing your own implementation for them. For example, you can save the current state of an activity to a file or database before it is destroyed. Then when a new instance of the activity is started, this new instance can read back the persistent state, so that the activity appears to start where it left off.

				To begin with, an activity is launched by either the Home application or another activity. As shown in Figure 3-7, an activity is then in one of these four states:

				[image: check.png] Created: The activity was just created.

				[image: check.png] Active: The activity is running and visible to users.

				[image: check.png] Paused: The activity isn’t running temporarily, because another activity has been brought to the foreground and is still visible. In this state, all member variables and locations in its execution code are maintained.

				[image: check.png] Stopped: The activity has been obscured by another activity. Its member variables and other elements are still being maintained, but it’s vulnerable to being destroyed by the Android runtime, if resources on the device are running low.

				Within this overall life cycle are several transitions. The first is the transition of the activity to being Created (from the Zen state of not existing). The subsequent transitions are from Created to Active, from Active to Paused, from Paused back to Active, from Paused to Stopped, from Stopped back to Active, and from Stopped to no longer existing.

				At every transition, the Android framework calls one of these methods on the activity:

				[image: check.png] onCreate(Bundle savedInstanceState): Called immediately after the activity is created. You should set up the activity within this method — for example, create its views and reinitialize its state from the Bundle object (described in the section “Saving the transient state of activities”) that’s passed to it by the Android runtime.

				[image: check.png] onStart(): Called just before the activity becomes visible to the user. At this stage, you might load current data into the activity. Immediately after onStart() is completed, the method named onRestoreInstanceState(Bundle savedInstanceState) is called, so you can restore any instance state needed.

				[image: check.png] onResume(): Called just before the activity starts interacting with the user. At this point, the activity is in the Active state. onResume() is always called after onStart() (refer to Figure 3-7). Thus, you can choose either onStart() or onResume() in which to implement any processing needed before the object becomes visible — such as retrieving fresh data.

					

				
					Figure 3-7: The life cycle of an Android activity.

				

					[image: 9781118008256-fg0307.eps]

				[image: check.png] onPause(): Called when Android decides to hide this activity, most often because it wants to start another one. This method is used to save any persistent data and gracefully return resources, such as threads and open files. onPause() should quickly do whatever it does because it’s holding back the next activity from becoming active. Note that the process running an activity may be closed by Android in order to save memory and power. Thus, this method is the last of the methods guaranteed to be called by the Android runtime, and is thus often your last chance to save persistent activity state or clean up resources (such as open files).

				[image: check.png] onStop(): Called when the activity is no longer visible to the user. This method will be called either because the activity is being destroyed or because a new activity has been started that is completely covering the original activity. This method might not be called if the process associated with the activity has already been destroyed by Android.

						Incidentally, you might be wondering why both onPause() and onStop() are needed. The difference between the two is actually quite subtle. When one activity is launched over another, the newly launched activity may not cover the first activity completely. To see an example of this in Tic-Tac-Toe, launch the Help activity from the GameOptions activity. You will see that the Help UI doesn’t quite cover the GameOptions UI. In this case, onPause() will be called, but onStop() will not be. If the newly launched activity completely covers the current activity, then onStop() will also be called.

				[image: check.png] onRestart(): Called just before the activity is started again from the Stopped state. If, by any chance, the process for the activity might have been destroyed, and its state lost, you need to restore the activity state in this method.

				[image: check.png] onDestroy(): Called before the activity is destroyed. This method, which is the final call the activity receives, is called on two occasions:

					•	If finish() is called on the activity: For example, see the onCreate method in the SplashScreen activity. You can see that finish is called on the SplashScreen activity itself after control is transferred to the Login activity.

					•	If the system is temporarily destroying this instance of the activity to save space.

						You can distinguish between these scenarios by a call to the isFinishing() method. This method will return true for the first case or false in the second case.

				Default implementations of these methods are provided in the Activity base class. Of course, you would need to override these default methods as necessary to customize the behavior activity. You will see that you must always override the onCreate() method. (We’ve always had to, anyway.)

				Coordinating activities

				When one activity starts another, the initiating activity pauses and can stop. The state transitions — and, therefore, the calls to the life cycle methods of the two activities — might need to be coordinated. Thus, the Android framework clearly defines the order of the life cycle methods:

					1.	The current activity’s onPause() method is called.

					2.	The starting activity’s onCreate(), onStart(), and onResume() methods are called in sequence.

					3.	If the starting activity is no longer visible onscreen, its onStop() method is called.

				Starting activities using intents and intent filters

				Activities (within an application) are initiated by way of messages, known as intents. An intent contains an Intent object that specifies a desired action and is sent to the Android framework by a requesting activity. This Intent object is matched against a set of intent filters (registered with the Android framework by every activity that can be called by another). All activities that have intent filters matching the intent are activated and passed the intent object. These activities can examine and extract information from the intent and perform their function. The intent object can be retrieved by calling getIntent(...). If an existing activity is intended to handle a new intent, the Intent object will be passed to the activity by way of an onNewIntent() call.

				The following list describes the four fields used for matching that can be set within an intent:

				[image: check.png] The name of the component (optional): A field that explicitly specifies the target activity by using its fully qualified name (the package name plus the class name).

				[image: check.png] The action to be performed: A string constant. The Android framework specifies a set of standard actions; the most common are shown in Table 3-1. If you “roll your own” string, make sure that it’s guaranteed to be unique, by prefixing the package name to the string.

				[image: check.png] The data to be sent to the activated object: The Uniform Resource Identifier (URI) of the data to be acted on and the MIME type of that data. (MIME is short for Multipurpose Internet Mail Extensions, a specification for describing how non-ASCII content — such as an image file — has been formatted).

				[image: check.png] The category of the object to be activated: Essentially, additional information about this object, consisting of a string.

				The common standard intents in Android are shown in Table 3-2. For a complete list of intent actions and categories, see http://developer.android.com/reference/android/content/Intent.html.

				Table 3-1	Standard Intents, Targets, and Actions

				
					
						
								
								Intent Action

							
								
								Target Component

							
								
								Action

							
						

						
								
								ACTION_CALL

							
								
								Activity

							
								
								Initiate a phone call.

							
						

						
								
								ACTION_EDIT

							
								
								Activity

							
								
								Display data for the user to edit.

							
						

						
								
								ACTION_MAIN

							
								
								Activity

							
								
								Start up as the initial activity of a task, with no data input and no returned output.

							
						

						
								
								ACTION_SYNC

							
								
								Activity

							
								
								Synchronize data on a server with data on the mobile device.

							
						

						
								
								ACTION_BATTERY_LOW

							
								
								Broadcast receiver

							
								
								Indicate that the battery is low.

							
						

						
								
								ACTION_HEADSET_PLUG

							
								
								Broadcast receiver

							
								
								Plug in a headset, or unplug it.

							
						

						
								
								ACTION_SCREEN_ON

							
								
								Broadcast receiver

							
								
								Turn on the screen.

							
						

						
								
								ACTION_TIMEZONE_CHANGED

							
								
								Broadcast receiver

							
								
								Change the time zone setting.

							
						

					
				

				Table 3-2	Standard Intent Categories in Android

				
					
						
								
								Category

							
								
								Meaning

							
						

						
								
								CATEGORY_BROWSABLE

							
								
								The target activity can be safely invoked by the browser to display data referenced by a link — for example, an image or an e-mail message, for example.

							
						

						
								
								CATEGORY_GADGET

							
								
								The activity can be embedded inside another activity that hosts gadgets.

							
						

						
								
								CATEGORY_HOME

							
								
								The activity displays the Home screen, the first screen the user sees when the device is turned on or when the HOME key is pressed.

							
						

						
								
								CATEGORY_LAUNCHER

							
								
								The activity can be the initial activity of a task and is listed in the top-level application launcher.

							
						

						
								
								CATEGORY_PREFERENCE

							
								
								The target activity is a preference panel.

							
						

					
				

				In the AndroidManifest.xml in the Tic-Tac-Toe application, you see that the SplashScreen activity (the initial activity in the Tic-Tac-Toe application) defines an intent filter with the action android.intent.action.MAIN and the category android.intent.category.LAUNCHER. Used together, these entries indicate that this activity is the first (or main) activity of the Tic-Tac-Toe application, and that it’s launched from the Home application. The Login activity, on the other hand, is defining an intent filter with the string value “com.wiley.fordummies.androidsdk.tictactoe.Login”. This activity then responds to any invocation message containing this string. An intent is typically sent by a call to android.app.Activity.startActivity(Intent). Thus, the SplashScreen activity launches the Login activity by using the following call:

				startActivity(new Intent(“com.wiley.fordummies.androidsdk.Login”));

				The Account activity has no intent filter because this activity is invoked by a direct reference (specifically, by the Login activity). This is shown in the following call (from the onClick method of the Login activity):

				startActivity(new Intent(this, Account.class));

				Because all remaining activities within Tic-Tac-Toe are invoked using this direct strategy, these activities don’t need intent filters and you don’t need to define the filters in the AndroidManifest.xml file.

				Saving the transient state of activities

				Android tries to save the transient state of activities by shutting down applications that it believes aren’t being used, such as applications that have been pushed into the background because the user has started up new ones. For example, a user playing Tic-Tac-Toe might be notified of an incoming e-mail message, causing him to switch to the Mail application to read the message. When the user returns to Tic-Tac-Toe, Android displays the screen that was previously open. Any data the user entered remains; in fact, the cursor even resumes blinking at the same spot.

				A user who switches from the Tic-Tac-Toe application to spend time using the Mail application, for example, can still legitimately expect the game to return to the state it was in before the switch. After all, if Android shuts down Tic-Tac-Toe’s process during the switch and preserves the state, why would the behavior be different simply because the user spent time using another application? In other words, the active state of all activities should be preserved when the application is shut down by Android, and then restored when the application is revisited. We’re referring not to data that the application has saved to a file or database (also known as persistent state) but, rather, to the transient state, which changes as the application is used and ends when the user quits the application.

				Incidentally, if the orientation of the device is changed, Android destroys and re-creates the current activity so that it can re-create its layout for the new orientation. Thus, to test whether transient state is being managed correctly, you can simply rotate the phone while the activity is still running to see if the pieces of data shown onscreen are retained after the orientation changes. This policy of destruction and re-creation upon change of orientation also means that you must ensure that the transient state is saved and restored whenever the orientation of the device changes.

				To save and restore this transient state, you may simply use the built-in activities and views that the Android framework provides. Android saves the transient state of the user interface if Android kills your process, and then it restores the state when the user returns to the activity. To be precise, the base classes (Activity and View, PreferenceActivity, for example) implement onSaveInstanceState() and onRestoreInstanceState () methods that handle this save and restore.

				If you implement your own views, you have to handle the transient state yourself, as described in this list:

				[image: check.png] To capture the state before the activity is killed, you must implement an onSaveInstanceState(...) method for the activity. As we mention in the earlier section “Managing the Activity Life Cycle,” this method is called before onPause(...) is called.

					[image: check.png] 	To extract and restore the saved state when the activity is started again, note that the saved state is passed to onCreate(...) and onRestoreInstanceState(...). Both of these methods are called after onStart(…). Either method can extract the saved state and repopulate it in the activity.

				The transient state is saved as name-value pairs in an object of the class Bundle that is passed to the re-created activity when it’s restarted. To restore the activity’s state, you must extract the value from the Bundle object and repopulate the activity’s variables.

				The following example is from the WhereAmI activity in Tic-Tac-Toe. Again, we show only the code that’s relevant to state management:

				package com.wiley.fordummies.androidsdk.tictactoe;

				…

				import android.os.Bundle;

				…

				public class WhereAmI extends MapActivity implements OnClickListener {

				 …

				 private String whereAmIString=null;

				 private static final String WHEREAMISTRING=”WhereAmIString”;

					

				 protected void onCreate(Bundle savedInstanceState) {

					…

				 }

					

				 public void onClick(View v) {

				 switch(v.getId()){

				 …		

				 case R.id.button_locate_me:

				 Location myLocation=null;

				 myLocation = myGeoLocator.getBestCurrentLocation();

				 if(myLocation == null){

				 myLocationField.setText(“GeoLocation not available. Retry#:”+

				 locationQueryCount++);

				 }else{

				 …

				 myLocationField.setText(whereAmIString=

				 myGeoLocator.getNameFromLocation(myLocation));

				 …

				 }

				 break;

				 …

				

				 }

				 }

				 ...

				 protected void onSaveInstanceState (Bundle outState){

				 super.onSaveInstanceState(outState);

				 if (whereAmIString != null) outState.putString(WHEREAMISTRING, whereAmIString);

				 }

					

				 protected void onRestoreInstanceState (Bundle savedInstanceState){

				 super.onRestoreInstanceState(savedInstanceState);

				 whereAmIString = savedInstanceState.getString(WHEREAMISTRING);

				 if (whereAmIString != null) myLocationField.setText(whereAmIString);

				 }

				}

				Note that a descriptive name of the current location is being found in the onClick(…) method. This name is assigned to the private String variable whereAmIString. This string is saved to the Bundle outState passed in by the Android framework to the onSaveInstanceState(…) method. Finally, note that the string is extracted from the bundle in onRestoreInstanceState(…) and is assigned to the field myLocationField that displays the name of the location.

				If the instance is intentionally destroyed (by the user tapping the Back key, for example), onSaveInstanceState(...) is not called. The user cannot return to the activity, so there’s no reason to save the state.

				Using tasks to manage the behavior of groups of activities

				Whenever an activity is launched, Android places it inside a task — an Android entity that contains and manages groups of activities and runs inside (and corresponds to) a Linux process. A task is an implicit object because Android manages all tasks, and you as an application programmer cannot therefore create them (or gain access to them). However, you can control how specific activities behave within a task.

				[image: tip.eps]	Because the information in this section is somewhat advanced, you’re unlikely to need it in order to develop your first few Android applications. However, we mention the topic in this book for completeness — just so you know that this behavior exists.

				An activity can be launched into a new task, such as when the Home application (also known as the Launcher) kicks off an application, or it can be launched into an existing task to cohabit with other activities already in that task. An activity can also move from one task to another after it has been launched into one task if it later finds a task that it likes better — or a task for which it has a greater affinity.

				The activities in a task are arranged as a stack. If a task is active and a new activity is launched, it’s typically placed on top of the stack in the same task and begins running. If the user taps the Back button, the new activity is popped off the stack (and stops running) while the previous activity in the task is brought to the top of the stack and resumes. You can clearly see this behavior when you click the Help button in the GameOptions activity: The Tic-Tac-Toe Help screen — that is, the Help activity — is launched on top of the GameOptions activity. Note that this Help activity is launched into the same task as GameOptions but placed on the top of the task stack. Note also, that because of the transparent user interface that the Help activity uses, you can see the GameOptions activity underneath it. When a user taps the Back button, the Help activity is popped off the stack and disappears, and the GameOptions activity becomes active again, as shown in Figure 3-8.

					

				
					Figure 3-8: The Game-Options activity, covered by the Help activity.

				

					[image: 9781118008256-fg0308.tif]

				However, an activity might not necessarily be launched in the same task as the previously running activity. To determine in which task the activity is launched, you use a combination of two sets of directives:

				[image: check.png] The intent that launches the activity: The intent can, for example (and we don’t go into all the options here), request that the activity be launched into a new task, be moved to the top of the stack (if an activity of that class exists), or be reset to its initial state before processing the intent; or that a new instance of the activity be launched, but not if the activity is already running on top of the stack.

				[image: check.png] Certain attributes of the launched activity as declared in the manifest file: An activity can declare an affinity for another in the AndroidManifest.xml by using the taskaffinity attribute. If it does so, an activity will be launched into an existing task if the task has an activity for which the new activity has declared an affinity.

						An activity can also declare that it can have only one instance in any task via the launchmode attribute in the manifest file. This means that in addition to there being only one instance of the activity, it must be the only instance. Or an activity can declare that it can start in any task, but it must be moved to a task containing activities with which it has an affinity, if such a task were to be launched later. Finally, an activity can declare that it cannot be moved to another task once it has been launched in a particular task.

				Implementing Services

				You aren’t likely to develop lots of services in comparison to the number of apps you develop, but every so often you need complementary functionality that is implemented as a service.

				A service is intended to be run in the background, without the need for a user interaction, and hence no user interface. A service is meant to do its work behind the scenes, even as the user interacts with apps in the foreground. Thus, a service can be used to play music in the background, listen to events from the outside, or serve as an upload or download queue for print jobs, messages, or images.

				Android provides two kinds of services:

				[image: check.png] Local: Accessible only by a single application.

				[image: check.png] Remote: Accessible by all applications on the device. (This type is also known as AIDL-supporting, AIDL, external, RPC, or bound service.)

				We talk only about local services in this book, but you can find out more about remote services at

				http://developer.android.com/guide/topics/fundamentals/services.html

				We illustrate how a local service is implemented by showing you an example of the MyPlaybackService in the Tic-Tac-Toe application, which plays music in the background. Here’s the code for this service:

				package com.wiley.fordummies.androidsdk.tictactoe;

				import com.wiley.fordummies.androidsdk.tictactoe.R;

				import android.app.Service;

				import android.content.Intent;

				import android.media.MediaPlayer;

				import android.net.Uri;

				import android.os.Bundle;

				import android.os.IBinder;

				

				public class MyPlaybackService extends Service {

				 MediaPlayer player;

				 @Override

				 public IBinder onBind(Intent intent) {

				 return null;

				 }

				 @Override

				 public void onCreate() {

				 player = MediaPlayer.create(this, R.raw.sampleaudio);

				 player.setLooping(true);

				 }

				

				 @Override

				 public int onStartCommand(Intent intent, int flags, int startId) {

				 super.onStartCommand(intent, flags, startId);

				 Bundle extras = intent.getExtras();

				 if(extras !=null){

				 String audioFileURIString = extras.getString(“URIString”);

				 Uri audioFileURI=Uri.parse(audioFileURIString);

				 try {

				 player.reset();

				 player.setDataSource(this.getApplicationContext(), audioFileURI);

				 player.prepare();

				 catch (Exception e) {

				 // TODO Auto-generated catch block

				 e.printStackTrace();

				 }

				 }

				 player.start();

				 return START_STICKY;

				 }

				

				 @Override

				 public void onDestroy() {

				 player.stop();

				 }

				}

				The following list describes the main points in this listing (note that we cover only the service management aspects of this component — the functionality of this component with respect to playing music is covered in Chapter 11):

				[image: check.png] As with activities, the Android framework calls the onCreate(…) method of the service after it has been created. This method is used to complete any setup needed for the service. In the service that’s shown, this method creates a local member that is a MediaPlayer object. This object is used to play the music.

				[image: check.png] When the service is started by using StartService(…) — see the following code sample — the method onStartCommand(…) of the service is called and the invocation parameters of StartService(…) are passed to the service. In this case, the URL of the audio file is passed in.

				[image: check.png] When the service is terminated, onDestroy() is called so that the service can stop its activity (in this case, stop the audio player) and release any other resources.

				Services versus threads

				Threads, like services, work in the background. To determine when to use threads and when to use services, follow this rule of thumb: Use a thread whenever you have a single, time-bounded task that’s specific to a particular component of your application (such as a method listening for a touch to terminate a splash screen). In contrast, use a service to perform multiple tasks or tasks that are relevant to (or completed alongside) multiple components of your application, such as printing text or playing music.

				Threads are more lightweight than services in that they consume fewer resources. They are also more vulnerable to being destroyed along with your app, if your app is killed by the operating system (for example, to free up memory). Services, on the other hand, are less likely to be killed along with the app. Because you can specify that a service be restarted if the operating system terminates it, the service is a more secure choice for large-grain activities, such as multiple uploads or downloads.

				Note that a service runs in the main thread of its hosting process. If the service wants to perform a task in the background, it should spawn its own thread in which to do its work.

				Shown next are extracts from the Audio activity that uses MyPlaybackService. The user interface for this activity has two buttons, Start and Stop, that start and stop the music service, respectively. (We omitted descriptions of two other buttons, Record and Exit, because they aren’t relevant to the service.) Clicking the Start button starts the service by invoking startService(…). Clicking the Stop button stops the service by invoking stopService(…). Note that parameters to the service are passed via an Intent (which we described earlier in this chapter in the section “Starting activities using intents and intent filters”):

				public class Audio extends Activity implements OnClickListener{

				 private boolean notStarted=true;

				 String audioFilePath=”/mnt/sdcard/SampleAudio.mp3”;

				 Uri audioFileURI=null;

				 …

				

				 @Override

				 protected void onCreate(Bundle savedInstanceState) {

				 …

				 Button buttonStart=(Button)findViewById(R.id.buttonAudioStart);

				 buttonStart.setOnClickListener(this);

				 Button buttonStop=(Button)findViewById(R.id.buttonAudioStop);

				 buttonStop.setOnClickListener(this);

				 …

				 audioFileURI=Uri.fromFile(new File(audioFilePath));

				 }	

				

				 public void onClick(View v) {

				 switch(v.getId()){

				 case R.id.buttonAudioStart:

				 if(notStarted){

				 Intent musicIntent=

				 new Intent(this, MyPlaybackService.class);

				 musicIntent.putExtra(“URIString”, audioFileURI.toString());

				 startService(musicIntent);

				 notStarted=false;

				 }

				 break;

				 case R.id.buttonAudioStop:

				 stopService(new Intent(this, MyPlaybackService.class));

				 notStarted=true;

				 break;

				 …

				 }	

				 }

				…

				}

				Managing Persistent Application Data

				Now is a good time to talk about how to manage the persistent state of Android applications and services. Note that persistent data is data that needs to be preserved between uses of the application. For Tic-Tac-Toe this includes every user’s game settings and game histories and all their user accounts (usernames and passwords). The Tic-Tac-Toe example illustrates how to save each of these three types of data in one of the three different ways in which persistent data can be saved:

				[image: check.png] Shared preferences

				[image: check.png] Files in the Linux file system

				[image: check.png] The lightweight database known as SQLite

				Using Shared Preferences to save persistent data

				The first (and easiest) way to save application data persistently is to save the data as name-value pairs, using the shared preferences capability built into the Android development framework. In the “Setting application preferences” section, earlier in this chapter, we cover most of this topic except for how the preferences are saved. (In our example, it happens automatically.) Our explanation in this section goes a little deeper and adds to the example to show how preferences can be saved.

				Android saved these preferences (or, more accurately, the name-value pairs of data that we’re referring to as preferences) as a file on the Linux file system. You can specify a filename and the Android framework will either store it there, use a preference file per activity, or use a default preference file for the whole application. This last file is managed by the Android framework, and you don’t know its name (so that you cannot corrupt it inadvertently). Note in all cases that the names of the different bits of data you want to store (the name-value pair) have to be unique within a file, or else you’ll overwrite data that you might want to keep.

				In the following code snippet from the Login activity, you set the login username as the name of the human player:

				...

				private final static String OPT_NAME=”name”;

				

				// Save username as the name of the player

				SharedPreferences settings=PreferenceManager.

				

				 getDefaultSharedPreferences(this);

				SharedPreferences.Editor editor=settings.edit();

				editor.putString(OPT_NAME, username);

				editor.commit

				...

				This example illustrates the following concepts:

				[image: check.png] The PreferenceManager class in the Android framework has the static method getDefaultSharedPreferences(Context context), which returns a SharedPreferences object that represents the default preferences file.

				[image: check.png] The settings.edit() method call creates an Editor object. The object is used to add or change name-value pairs via calls to putString(...) (which we just listed), putBoolean(...), and putInteger(...), for example.

				[image: check.png] After the value has been set in the Editor object, it has to be committed by calling the commit() method.

				To complete this example, we repeat the code (for the getName(..) method) from the Settings class that reads the player name from the Preferences area:

				private final static String OPT_NAME=”name”;

				private final static String OPT_NAME_DEF=”Player”;

				…

				public static String getName(Context context) {

				 return PreferenceManager.getDefaultSharedPreferences(context)

				 .getString(OPT_NAME, OPT_NAME_DEF);

				}

				Using files

				Another way to save persistent application data is by writing it to a file. We haven’t included examples of file usage in Tic-Tac-Toe because this is not Android-specific — just plain old Java coding. However we would like to point out a few things about how Android deals with files.

				Files can be in either internal storage on the Linux file system or in external storage (for example, on an SD card). By default, files saved to internal storage are private to your application — other applications cannot gain access to them, and users cannot see them. When the user uninstalls your application, these files are removed.

				Using external storage is similar except that you need to set File to a path inside the file system on the external storage device. Here’s one way to do it:

				File ScoresFile=new File(getExternalFilesDir(null), “Scores.txt”);

				Passing null to getExternalFilesDir(...) returns the root directory on the external storage device. Once you have a path to the file, writing to or reading from external storage is the same as writing to a file in internal storage.

				You cannot assume that an external storage device is available. Also you must follow certain conventions in the pathnames of files if you want to share files with other applications or enable the automatic cleanup of an application’s files on external storage when the application is uninstalled. We show you how to do this and more in Chapter 7, where we talk about making your applications scalable, maintainable, and reliable.

				Employing SQLite

				Another way of persisting application state is by using SQLite. To quote from the SQLite web page:

				SQLite is a software library that implements a self-contained, server-less, zero-configuration, transactional SQL database engine. SQLite is the most widely deployed SQL database engine in the world.

				In a nutshell, SQLite is a Java package that provides a collection of methods allowing you to create a local relational database, create tables in it, and read and write from those tables. Because the SQLite library is compactly written, its code occupies little space and is efficient and fast. It is therefore a suitable means of implementing rich relational database (RDBMS) functionality on a resource-constrained device while retaining most of the capability of an RDBMS to reliably read, write, and query data.

				In the Tic-Tac-Toe application, you use SQLite to manage user accounts. We use a database named TicTacToe.db, in which we create a table named Accounts. Figure 3-9 shows what the Accounts table might look like.

					

				
					Figure 3-9: Records in the Accounts table of the Tic-Tac-Toe SQLite database.

				

					[image: 9781118008256-fg0309.tif]

				Most of the SQLite-specific code has been encapsulated into a DatabaseHelper class, inside of which is a private inner class named TicTacToeOpenHelper. To see how database operations are implemented, we show you code from this class. To begin with, here’s the private class TicTacToeOpenHelper:

				private static class TicTacToeOpenHelper extends SQLiteOpenHelper {

				 TicTacToeOpenHelper(Context context) {

				 super(context, DATABASE_NAME, null, DATABASE_VERSION);

				 }

				 @Override

				 public void onCreate(SQLiteDatabase db) {

				 db.execSQL(“CREATE TABLE “ + TABLE_NAME +

				 “(id INTEGER PRIMARY KEY, name TEXT, password TEXT)”);

				 }

				 @Override

				 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {

				 Log.w(“Example”,

				 “Upgrading database, this will drop and re-create the tables.”);

				 db.execSQL(“DROP TABLE IF EXISTS “ + TABLE_NAME);

				 onCreate(db);

				 }

				}

				In these bits of code from the DatabaseHelper class, take a look at how the database is created:

				private static final String

				 INSERT=”insert into “ + TABLE_NAME + “(name, password) values (?, ?)” ;

				public DatabaseHelper(Context context) {

				 this.context=context;

				 TicTacToeOpenHelper openHelper=new TicTacToeOpenHelper(this.context);

				 this.db=openHelper.getWritableDatabase();

				 this.insertStmt=this.db.compileStatement(INSERT);

				}

				A record is inserted into the database this way:

				public long insert(String name, String password) {

				 this.insertStmt.bindString(1, name);

				 this.insertStmt.bindString(2, password);

				 return this.insertStmt.executeInsert();

				}

				The following records that correspond to a username are queried and returned as a list:

				public List<String> selectAll(String username, String password) {

				 List<String> list=new ArrayList<String>();

				 Cursor cursor=

				 this.db.query(TABLE_NAME,

				 new String[] { “name”, “password” },

				 “name=’”+ username +”’ AND password= ‘”+

				 password+”’”, null, null, null, “name desc”);

				 if (cursor.moveToFirst()) {

				 do {

				 list.add(cursor.getString(0));

				 list.add(cursor.getString(1));

				 } while (cursor.moveToNext());

				 }

				 if (cursor != null && !cursor.isClosed()) {

				 cursor.close();

				 }

				 return list;

				}

				Finally, in the checkLogin() method in the Login activity, you test for a successful login by checking the size of the list returned in the selectAll method in the preceding code block:

				private void checkLogin(){

				 String username=this.userNameEditableField.getText().toString();

				 String password=this.passwordEditableField.getText().toString();

				 this.dh=new DatabaseHelper(this);

				 List<String> names=this.dh.selectAll(username,password);

				 if(names.size() >0){ // Login successful

				 ...

				 }

				...

				}

				Sharing data across applications through content providers

				Suppose that you win a bunch of games against the computer and you’re so excited that you just want to tell somebody. Wouldn’t it be fun if the Tic-Tac-Toe application provided you with the capability to look up a friend’s contact information in your address book so that you can call and gloat?

				As your applications become richer in functionality, you generally find that you need to access data that’s managed by other applications. Maybe you’re writing a shared calendar application that lets you enter meetings and appointments. Being able to access the address book from your phone would be extremely useful, and much more convenient, so that the calendar can use these same entries rather than have to store its own addresses.

				You can certainly share data using files by making them readable or writable by the world (by all other applications). In this all-or-nothing strategy, however, you share either the entire file or none of it, and you share it with every other application or with no application. Also, the format of the file has to be exposed and understood by all applications that are interested in it. Finally, the sharing application cannot enforce the management of the shared data in particular ways, such as enforcing the use of transactions. In other words, this means of sharing is easy but not optimum. To standardize, and hence make convenient, data sharing across applications, the Android SDK provides an abstraction, known as a content provider, which provides a standard interface for querying data and modifying and adding to it.

				Android also makes available several built-in content providers for contacts in your address book, for various types of media, and for a dictionary of user-specified words. We use the Tic-Tac-Toe example to show you how to use the Contacts content provider while illustrating content provider concepts.

				In Tic-Tac-Toe, you create a ContactsView activity, which implements browsing contacts. Here’s the code for the onCreate method of that activity:

				public void onCreate(Bundle savedInstanceState) {

				 super.onCreate(savedInstanceState);

				 setContentView(R.layout.contacts);

				 TextView contactView=(TextView) findViewById(R.id.contactsView);

				 Cursor cursor=getContacts();

				 while (cursor.moveToNext()) {

				 String displayName=

				 cursor.getString(cursor.getColumnIndex(

				 ContactsContract.Data.DISPLAY_NAME));

				 contactView.append(“Name: “);

				 contactView.append(displayName);

				 contactView.append(“\n”);

				 }

				}

				This method is calling a local method — getContacts — that’s returning a data structure known as a cursor, which, as you might already know, is a reference to a collection of similar data elements (also known as records) identified via a query. Every time you request (that is, your code requests) a record from the cursor, it retrieves and provides a new (unprocessed) element so that you can process it.

				This example illustrates a few concepts — some explicitly and some implicitly. The first, of course, is how to retrieve records by using a cursor. Implicit in the use of the cursor is that the (only) data model the content provider exposes (how it presents the data that it manages) is as a table with columns and that contains rows of records. Note: Internally, the content provider can store the data however it wants. Passing the constant ContactsContract.Data.DISPLAY_NAME to the cursor.getColumnIndex(...) method returns the column index corresponding to the column name that, in turn, corresponds to the display name of the contact.

				Next, you have to know the type of data being retrieved. In this case, the data to be extracted is the display name of the contact, which is a string. The data is then extracted from the cursor by using getString, which takes the aforementioned index as a parameter.

				The rest of the code in onCreate retrieves contact elements by using the cursor, extracting the display name of each contact, and displaying the name by appending it to the view of the ContactView activity, which is a TextView component.

				Here’s a look at getContacts to help you understand more about content providers and how the cursor was created in the first place:

				private Cursor getContacts() {

				 Uri uri=ContactsContract.Contacts.CONTENT_URI;

				 String[] columns=new String[]{ContactsContract.Contacts._ID,

				 ContactsContract.Contacts.DISPLAY_NAME};

				 String selection=ContactsContract.Contacts.IN_VISIBLE_GROUP +

				 “=’”+ (“1”) + “’”;

				 String[] selectionArgs=null;

				 String sortOrder=ContactsContract.Contacts.DISPLAY_NAME+

				 “ COLLATE LOCALIZED ASC”;

				 return this.managedQuery(uri, columns, selection, selectionArgs, sortOrder);

				}

				Please note the following about the above code:

				[image: check.png] The class that manages phone contacts is named ContactsContract.Contacts.

				[image: check.png] A content provider often manages many different collections of data, each of which must, of course, be exposed as a table. Every collection must be identified by using a unique URI.

				[image: technicalstuff.eps]		A URI, or Universal Resource Identifier, is a World Wide Web (WWW) standard for exposing a resource — such as a collection of data that is stored remotely on the web or locally on a computer. All URIs for content providers begin with the string “content://”.

						Constants for standard URI on your Android device have been defined in the appropriate classes. The constant ContactsContract.Contacts.CONTENT_URI has therefore been set as the URI for the contacts on your computer.

				[image: check.png] After you know the URI, you have to set the columns you need in an array of strings. In the following example, you’re setting two columns in the string array Columns:

					•	_ID: The name of a special column that contains a unique identifier for each row

					•	DISPLAY_NAME: The descriptive display name of each contact

				[image: check.png] Next, you select the rows you need from this table by specifying a select condition that’s similar to a WHERE class in a database query. To make contacts visible, you set this clause to be ContactsContract.Contacts.IN_VISIBLE_GROUP=1. Note how the query string is being formulated (by using string concatenations) in order to specify this line:

				String selection=ContactsContract.Contacts.IN_VISIBLE_GROUP +

				 “=’”+ (“1”) + “’”;

				[image: tip.eps]		Essentially, = 1 means true.

				[image: check.png] This parameter selectionArgs may be used to specify additional selection arguments. In this example we have left it as null.

				[image: check.png] We have specified COLLATE LOCALIZED ASC as the sort order as the fifth and final parameter. This means that the results of the query will be sorted in ASCII order, as per the local language setting.

				[image: check.png] The query is invoked by using the statement this.managedQuery(...). It returns the cursor that is used in the onCreate(..) method to extract the display names of the contacts that are populated on the view.

				[image: check.png] this.managedQuery(...) is doing more than executing the query and returning the cursor. It’s putting the cursor under management of the activity. If the activity is paused, deactivated, or reactivated, therefore, so too is the cursor.

				There is one last task to complete in order for the code to work properly. Note that Tic-Tac-Toe is reading the user’s address book. This is private data for which the application must be granted access. So, in the AndroidManifest.xml file, we have added the following entry to request access to the content provider:

				<uses-permission android:name=”android.permission.READ_CONTACTS”/>

				When the Tic-Tac-Toe application is installed on the Android device, the user is prompted to allow the permission. If access is allowed, all is well and good. If not, this piece of functionality is disallowed.

				The application is now ready to be run. When you enter the ContactsView activity, you see a display that looks like the one shown in Figure 3-10.

					

				
					Figure 3-10: Displaying contacts in the ContactsView activity.

				

					[image: 9781118008256-fg0310.tif]

			

		

	
		
			
				
					
				

				
					Part II

					Building the Core of an Android Application

						
							[image: 9781118008256-pp0201.eps]
						

					

					In this part . . .

					This part consists of three chapters that show you what you need in order to design and build the foundation of an application. Chapter 4 helps you choose the right SDK level, and Chapters 5 and 6 cover user interface components in depth.

					Chapter 7 shows you how to properly design an Android application. This chapter also covers the basics of object orientation and then introduces responsibility-driven design, an essential technique and best practice for good object-oriented software design. We then round out your design skills by showing you how to use a pattern-based approach to enhance this basic design to layer it on the Android framework.

				

			

		

	
		
			
				Chapter 4

				Determining the Appropriate SDK for Your Application

				In This Chapter

				[image: arrow] Looking at the variety of Android devices and SDKs

				[image: arrow] Analyzing the differences between SDK versions

				The great thing about versions is that there are so many to choose from.

				Paraphrased from — Unknown

				The Android Software Development Kit (SDK) is a moving target. The engineers at Google continually tweak and improve the SDK by adding new features and pushing others aside. While these new versions become available on newly purchased phones (and tablets), existing devices might not be updated to the most recent version. As a result, you have to consider a wide variety of SDKs when developing an application.

				Every version of the Android SDK has been named after a dessert, in alphabetical order: Cupcake, Donut, Eclair, Froyo (short for frozen yogurt), and Gingerbread. For every release, Google marks the occasion by placing a giant sculpture of the corresponding dessert on its Googleplex campus in Mountain View, California. As of February 2011, the latest major version of the SDK, version 3.0, is codenamed Honeycomb. This has been quickly followed by two incremental releases — version 3.1 and, in July 2011, version 3.2. The next major release is expected to be Android 4.0 (also known as Ice Cream Sandwich).

				Along with the cool marketing name (Honeycomb, Ice Cream Sandwich, and so on) and the version, each SDK release is numbered with an always-increasing Application Programming Interface (API) level. Thus, Android SDK version 1.5 was API level 3, and the latest version 3.2 is API level 13.

				Note that not all possible SDK versions and API levels are assigned to SDKs — or if they are, some versions are not released to external developers (those outside Google). For example, there was a version 2.3.1 and a version 2.3.3, but no Android SDK version 2.3.2 was ever released.

				In this chapter, you discover what the most important differences are between the major versions of the Android SDK and how to select the right version for targeting your application.

				[image: remember.eps]	As with the other chapters, we have not tried to simply re-hash everything from the Google Android site here. For all the gory details, see http://developer.android.com/sdk/index.html.

				Exploring the Variety of Android Devices and SDKs

				Android is available on a wide variety of devices. These devices have different characteristics such as screen size and screen resolution, and they can also have different versions of the Android SDK installed. The various combinations of devices and SDK versions can be a boon for consumers and a headache for application developers.

				Understanding display characteristics

				Screens on Android devices can be categorized into one of four general display sizes: small, normal, large, and extra large. They can also be categorized into a set of four generalized densities: low density, medium density, high-density, and extra-high-density. As of June 2011 (see Figure 4-1 and refer to www.androidontop.com/2011/06/22/android-screen-sizes-and-densities-distribution-until-june-1/), roughly three-quarters of the Android devices were of normal size with high-density displays (240 dots per inch). Relatively few devices have extra-high-density displays (320 dots per inch) although you can expect this number to increase. Similarly, relatively few devices used to have extra large displays (7 inches or more). With the advent of tablets, however, you can now expect this number to increase soon as well.

					

				
					Figure 4-1: Distribution of Android screen sizes.

				

					[image: 9781118008256-fg0401.tif]

				[image: tip.eps]	Avoid using pixels to specify positions and dimensions. For the most part, Android does the heavy lifting of making your application run on any of these platforms and display on any of these screen sizes and resolutions, but you can still benefit from following this important piece of advice.

				The reason to avoid pixels as units of measurement is that the size of a measurement such as 80 pixels depends on the resolution of the screen. For example, on a medium-density display with a resolution of 160 dots per inch, every pixel is 1⁄160 of an inch. An 80-pixel width, then, appears on the display as about half an inch, or roughly the width of your fingertip. However, on an extra-high-density display with a resolution of 320 dots per inch, the same 80-pixel width appears as only a quarter-inch, or roughly the width of a standard pencil. If the button size is specified in pixels, your application may look fine at one resolution but be annoyingly difficult to use at higher resolutions.

				A better measurement unit to use is the density independent pixel, or dp. It’s the same physical size — about 1⁄160 of an inch — regardless of the resolution density of the display. In other words, for a medium-density display (160 dots per inch), a dp is equal to exactly 1 pixel. On the other hand, for an extra-high-density display (320 dots per inch), a dp is equal to 2 pixels. When you work with positions and sizes in terms of dps, your user interface will have the same physical feature size on all displays.

				[image: remember.eps]	In addition to dp, other abbreviations for density independent pixel are sometimes used by Android developers and in the Android SDK documentation. In particular, you might see dip or DIP. Rest assured that they all mean the same thing. But just to confuse matters, dpi refers to a completely different concept: dots per inch.

				[image: warning_bomb.eps]	Unfortunately, many methods in the SDK use the pixel as the unit of measurement. When calling these methods (or using their return values), you need to convert between dps and pixels. The android.util.DisplayMetrics.density field contains the scale factor needed for this conversion. For example, on an extra-high-density display, this field has the value 2.

				The Tic-Tac-Toe example (which we tell you how to install in Chapter 3) is an example of a resolution-independent application. If you examine the Board class, you see two private fields: width and height. Both fields are in pixels, but they’re calculated dynamically in the onDraw(…) method based on the size of Canvas. This approach guarantees that the Tic-Tac-Toe board fills the entire Canvas, regardless of the size or resolution of the display.

				Recognizing there’s more than one version of the SDK

				Android devices not only have different hardware configurations, such as screen size and resolution, but can also have different software configurations. That is, several different versions of the Android SDK itself exist. Since the initial release of the Android SDK, it has undergone many revisions. On one hand, this quick evolution indicates the level of excitement and development effort behind Android. On the other hand, the speedy evolution means that many devices now in use don’t have the latest version installed. Application developers must deal with this diversity.

				Google tracks the distribution of platforms as observed by accesses to the Android Market. A recent snapshot is posted at http://developer.android.com/resources/dashboard/platform-versions.html and shown in Figure 4-2 below.

					

				
					Figure 4-2: Distribution of Android versions.

				

					[image: 9781118008256-fg0402.tif]

				For example, in July 2011, about 60 percent of Android devices accessing the Android Market were running SDK version 2.2 while 18 percent were still running the previous version, 2.1. Versions of SDK version 2.3 (including maintenance releases) made up 19 percent of the devices. Devices with the latest Android version (3.0) were slowly coming into use. Conversely, about 4 percent of devices were still using the even older SDK version 1.5, which had been superseded a full two years earlier!

				Why should you care about all these different versions and API levels? As an application developer, you decide the minimum API level suitable for your application to run (and set it in the AndroidManifest.xml file — see the section below). This API level is used by the standard app downloaders (such as the Android Market application) to decide whether your app should be allowed to be purchased and installed on a user’s machine. Pick too low of a number and you have to test more thoroughly, and perhaps limit the features you can offer. Pick too high of a number and you limit your market. Incidentally, Eclipse also looks at the minimum API level to decide whether an app can be downloaded onto an active emulator or device.

				The API level identifier (see Table 4-1) can be used to mark the minimum level needed for an application to run. This identifier may also be used to indicate two of the additional SDK levels: the preferred level and the maximum level of the SDK in your application properties. Once again, you set minimum, maximum, and target API levels in the AndroidManifest.xml file; an example is shown below:

				<uses-sdk

				 android:minSdkVersion=”6”

				 android:targetSdkVersion=”11”

				 android:maxSdkVersion=”11”

				/>

				Table 4-1	API Levels for Major SDK Releases

				
					
						
								
								SDK Version

							
								
								Name

							
								
								API Level

							
						

						
								
								3.2

							
								
								Honeycomb maintenance release

							
								
								13

							
						

						
								
								3.1

							
								
								Honeycomb maintenance release

							
								
								12

							
						

						
								
								3.0

							
								
								Honeycomb

							
								
								11

							
						

						
								
								2.3.3

							
								
								Gingerbread maintenance release

							
								
								10

							
						

						
								
								2.3

							
								
								Gingerbread

							
								
								9

							
						

						
								
								2.2

							
								
								Froyo

							
								
								8

							
						

						
								
								2.1

							
								
								Eclair maintenance release

							
								
								7

							
						

						
								
								2.0

							
								
								Eclair

							
								
								5

							
						

						
								
								1.6

							
								
								Donut

							
								
								4

							
						

						
								
								1.5

							
								
								Cupcake

							
								
								3

							
						

					
				

				[image: remember.eps]	Notice the gap between API levels 5 and 7. API level 6 had no major release — instead, an intermediate release, 2.0.1, was assigned level 6. (We don’t list API levels earlier than 1.5 because there’s no need.)

				Examining the Differences between SDK Versions

				Every major SDK release has generally added, rather than removed, features and supported devices. Thus, an application built on an earlier release is forward compatible with a later release. For example, an app developed for Android 2.1 also runs on Android 2.3.

				The following sections describe the features that were added in each release.

				The earliest Android release documented by Google is Android 1.1. Both 1.0 and 1.1 well-supported the Android Application Model (see Chapters 1 and 3) in that they both had the capability to support Activities, Services, Menus, and so on. In other words, the foundation for all the stuff that you see in this book was in place with Android 1.0. Android 1.1 fixed quite a few bugs, added Locale support (so that Android could handle multiple languages), and added the first set of built-in applications (beyond the telephone dialer). Most importantly, 1.1 added support for external libraries. This meant that starting with this version, Google Map functionality was supported.

				Android 1.5 — Cupcake

				Cupcake released new features in these categories:

				[image: check.png] Communications: Support for stereo audio streaming (A2DP) and remote control of Bluetooth-enabled media devices (AVRCP); automatic connection to Bluetooth headsets within range

				[image: check.png] Data entry: A new soft keyboard with text completion

				[image: check.png] Multimedia: The ability to record and watch videos in Camcorder mode and upload videos to YouTube and pictures to Picasa from the phone

				[image: check.png] User interface: New widgets and folders that can populate the Home screens; animated screen transitions

				Complete details on Cupcake are here: http://developer.android.com/sdk/android-1.5.html.

				Android 1.6 — Donut

				Released on September 15, 2009, Donut included an improved Android Market experience and improvements in these categories:

				[image: check.png] Accessibility: A text-to-speech engine (which we’re experimenting with in order to build apps for folks with visual impairments)

				[image: check.png] Applications: Free turn-by-turn navigation from Google

				[image: check.png] Communications: Updated support for the CDMA/EVDO and 802.11x Wi-Fi standards, and virtual private networks (VPNs)

				[image: check.png] Multimedia: An integrated camera, camcorder, and gallery interface; better performance for camera applications

				[image: check.png] Search: Updated voice search; better speed and integration with native applications, including the ability to dial contacts and search bookmarks, history, contacts, and the web from the Home screen

				[image: check.png] User interface: Support for WVGA screen resolutions, the gesture framework, and the GestureBuilder development tool

				Complete details on Donut are here: http://developer.android.com/sdk/android-1.6.html.

				Android 2.0 — Eclair

				Released on October 26, 2009, Eclair included these improvements:

				[image: check.png] Applications: New contact lists; Microsoft Exchange support, searchable SMS messages

				[image: check.png] Communications: Bluetooth 2.1 with new Bluetooth profiles

				[image: check.png] Data entry: Improved virtual keyboard

				[image: check.png] Mapping: Improved Google Maps 3.1.2

				[image: check.png] Multimedia: Built-in flash support, digital zoom, and other enhancements for the Camera app

				[image: check.png] System and performance: Optimized hardware speed

				[image: check.png] User interface: Support for more screen sizes and resolutions; new browser user interface and HTML5 support; better contrast ratio for backgrounds; MotionEvent class enhanced to track multitouch events; live (animated, interactive) wallpapers

				Note: The 2.0.1 SDK was released on December 3, 2009, and the 2.1 SDK was released on January 12, 2010. These maintenance releases had bug fixes but no additional features.

				Details on the 2.0 version of the SDK are here: http://developer.android.com/sdk/android-2.0.html.

				Android 2.2 — Froyo

				Released on May 20, 2010, Froyo (frozen yogurt) included these features:

				[image: check.png] Applications: Better Microsoft Exchange support (autodiscovery, calendar synchronization, global address list look-up, remote wipe, security policies,); updated Market application with batch and automatic update features; support for file upload fields in the built-in browser, which can now also display animated GIFs (rather than just the first frame)

				[image: check.png] Communications: USB tethering and Wi-Fi hotspot functionality; the option to disable data access over a mobile network (to prevent unexpected data charges); voice dialing and contact sharing over Bluetooth

				[image: check.png] Data entry: Quick switching between multiple keyboard languages and their dictionaries; support for numeric and alphanumeric passwords

				[image: check.png] System and performance: General Android operating system speed, memory, and performance optimizations; application speed improvements in the Dalvik VM from the use of just-in-time (JIT) compilation; support for installing applications to the expandable memory

				[image: check.png] User interface: Integration of the Chrome V8 JavaScript engine into the Browser application; improved application launcher with shortcuts to the Phone and Browser applications; Adobe Flash 10.1 support in the browser

				Details on the 2.2 version of the SDK are here: http://developer.android.com/sdk/android-2.2.html.

				Android 2.3 — Gingerbread

				On December 7, 2010, Gingerbread (2.3.3 is the generally available) was released with these new features:

				[image: check.png] Applications: Improved social networking features

				[image: check.png] Application development: Faster, concurrent garbage collection and faster event distribution, making possible the development of higher-performing applications (such as for gaming); the ability of native code (applications in C and C++) to directly gain access to sensor inputs; a new Activity subclass, NativeActivity, allowing life cycle callbacks to be implemented in native code

				[image: check.png] Communications: Internet calling; near-field communications (NFC) capability (which allows the device to act as an RFID-like reader, for example)

				[image: check.png] Multimedia: Support for the VP8 open video-compression format and the WebM open container format; AAC encoding and AMR wideband encoding (in software) so that applications can capture higher-quality audio than narrowband; access to multiple cameras and mixable audio effects

				[image: check.png] User interface: Improved copy-and-paste functionality

				Details on Gingerbread are here: http://developer.android.com/sdk/android-2.3.3.html. Note that documentation for the base 2.3 version is no longer on Google’s site.

				Android 3.0 — Honeycomb

				On February 22, 2011, the Android 3.0 (Honeycomb) SDK was released. The changes in this release of Android included

				[image: check.png] Applications: Support for video chat using Google Talk

				[image: check.png] Application development: Enhanced input device and USB support (in 3.1), API for interacting with connected cameras (in 3.1)

				[image: check.png] Communications: Background Wi-Fi networking

				[image: check.png] System and performance: Refined multitasking, hardware acceleration, and support for multicore processors

				[image: check.png] User interface: Optimized tablet support with a new fragments-based user interface; an Action Bar that can be used to enhance the previously available Menu functionality; a 3D desktop with redesigned widgets with new themes; system clipboards and drag-and-drop; enhanced App Widgets; animation of UI components (in 3.0 and enhanced in 3.1); compatibility zoom for fixed-size apps (in 3.2), that is, apps written for smaller devices

				We are underselling 3.0 and its incremental releases 3.3 and 3.4 with the bland descriptions above. 3.0 was a major release that has essentially revamped the Android SDK, in particular, the way user-interfaces can be built for Android by decoupling the UI from the activity, and giving each its own separable life cycle.

				And beyond

				The next major version of the Android SDK (expected in the third quarter of 2011) will continue the push towards a single, unified platform for both phones and tablets. At the time this book was published, the name of this new SDK had not been officially announced. To no one’s surprise, Google has hinted that the new version “will start with an I, and be named for a dessert.” Whether the next version ends up being named Ice Cream, or perhaps Ice Cream Sandwich, it’s likely to be delicious!

				Dealing with API Levels

				Given this information, what should be your general strategy? We recommend choosing the minimum-level API that your application needs. The conventional wisdom is that a balance exists: Pick the smallest version number to reach the highest number of devices, but pick the largest number to minimize the amount of testing. We’ll go out on a limb and add that because Android adoption is deep into the growth phase, don’t worry about sinking below SDK version 2.1 (API Level 7) — there’s enough of a market to sell to. (Ninety percent or more of the current market is at version 2.1 or later. Google maintains a current snapshot of devices accessing the Android Market; see http://developer.android.com/resources/dashboard/platform-versions.html.)

				[image: remember.eps]	Never assume that a device has the current SDK installed. In fact, if you want the broadest possible reach, you should assume the opposite.

				The above guidelines apply, of course, when you first develop your app. How do you deal with the fact that, over time, the Android SDK will evolve, with new features being added and old capabilities being improved? To begin with, most apps will be forwardly compatible (that is, an app built for an earlier version of Android will mostly work just fine on a later version). That is, though applications designed on previous SDK versions won’t take advantage of all the features added to future SDK versions, they should work mostly as well as they did on older SDK versions. However, don’t rely completely on this compatibility. As each version comes out into the market, test your application against it, if only to make sure that all the features at least superficially work. In particular, make sure that the user interface is usable because as new versions come out on new devices, there are likely to be changes in the way the API handles the new display sizes and new resolutions.

				You will also have to worry about “deprecated” elements of the API. Most changes in the SDK from one version to the next involve additions. For example, new classes are added to control new types of phone sensors, or a range of possible values is extended to account for more types of phones. Occasionally, however, a method or class is marked as deprecated (for more on deprecation, see http://download.oracle.com/javase/1.5.0/docs/guide/javadoc/deprecation/deprecation.html).

				[image: remember.eps]	Though a deprecated method or class is still present, it may disappear in future releases.

				So what do you do about deprecated methods or classes? To begin with, don’t use deprecated functionality when you are developing a new application. After your app has been released, if the method or class becomes deprecated, and your app doesn’t work quite right because of its reliance on the deprecated API, you simply have to redo and re-release your app. The good news is that the SDK is, by and large, backward compatible, and newer SDK versions should still be able to run all applications that worked on previous SDK versions, so you won’t have to do this redoing very often.

				Finally, you also have to deal with backward compatibility. That is, you will most likely target a version to develop against that is higher than the minimum version you want the software to support. This is because, even though you are supporting a minimum version, your goal is not to develop for that version (and simply let the forward compatibility of the Android SDK take care of the app working properly on the later versions you are targeting). Rather, you want to target a version in-between the minimum and the latest version where you have the best tradeoff between backward compatibility and features you can exploit in the API to make your application really cool. We won’t go into techniques for ensuring backward compatibility here, because these techniques are not Android specific (but just plain old Java techniques — such as using the “factory” pattern). If you e-mail us, though, we’ll be happy to give you some pointers.

			

		

	
		
			
				Chapter 5

				Designing a User-Friendly Application

				In This Chapter

				[image: arrow] Introducing View, the base class of all widgets

				[image: arrow] Understanding Android support for graphical user interface (GUI) layouts

				[image: arrow] Recognizing the relationship between XML layout files and Android classes

				[image: arrow] Understanding key layout classes

				[image: arrow] Creating good user interfaces

				The computer, including the smartphone and similar devices (such as the tablet), is now an integral part of society. Users have little tolerance for poor or complicated user interfaces. A user’s view of the computer isn’t the same as your — the developer’s — view. Users don’t want to — and shouldn’t have to — focus on the computer’s CPU, network card, memory usage, or any other component.

				The success of your Android application depends significantly on its ease of use. The interaction between human and computer is a widely studied field, with many textbooks and research papers written on the subject. Though we can’t cover all elements and issues that govern the creation of a good user interface, we discuss specific design choices and rules of thumb and provide a detailed overview of the support that Android provides for user interaction.

				This chapter focuses on the elements, such as buttons, in a traditional, two-dimensional (2D) graphical user interface (GUI) and traditional interaction techniques, such as clicking and typing.

				[image: tip.eps]	Chapter 6 covers 2D drawing support. Later chapters also discuss Android support of accessibility, for individuals who have visual or hearing impediments, and Internationalization. Internationalization incorporates not only using different languages or currencies in your GUI but also understanding other cultures and their use of specific colors and phrases and the circumstances that can produce different interpretations.

				Things to Know Before Creating a User Interface

				Android apps are conceptually organized as a set of activities — one cohesive step within an Android application along with its user interface. (See Chapter 1 for more on activities.) Every activity also has an associated user interface, which is the activity’s view, and you specify the view either programmatically (within your program, for example) or by using an XML-based layout file.

				The user interface is typically created when the activity is created (when the onCreate() method is called). If an XML file defines the view, the following bit of code loads the view layout:

				 @Override

				 public void onCreate(Bundle savedInstanceState) {

				 super.onCreate(savedInstanceState);

				 setContentView(R.layout.main);

				 }

				Within the development environment, you can specify several XML files that contain resources and parts of the user interface. When the app is built, these XML files are processed and a set of resource IDs is associated with the layouts. In the preceding example, the R.layout.main resource indicates the root of the layout defined in the XML file, which we cover in detail throughout this chapter.

				[image: remember.eps]	In this chapter, you use XML layout files for contact information, a calculator, and other applications. We start by describing the key classes for the visual presentation of the user interface — the View class and its descendants. In Chapter 6, we tell you how to create the user interface programmatically.

				Understanding views

				The View class is the base class for all visible user interface elements. Though View has no appearance and is rarely used directly, it provides the framework and support for the various complex processes that comprise a rich user experience. The View class is responsible for its own measurement, layout, drawing, focus change, scrolling, and key or gesture interactions for the rectangular area of the screen in which it resides.

				Software engineers say that the View class has weak cohesion. (It has responsibility for many disparate tasks, rather than being solely focused on a single task.) View is perhaps the most complicated class in the Android framework because of the degree of coupling between functionality — a level or coupling that exists because the behaviors in an object-oriented system (for example, resize, measure, and draw) should be associated with the object or class.

				For an element such as a button, the designers of Android asked several questions about the View class hierarchy, including

				[image: check.png] What are the behaviors of a button?

				[image: check.png] How does a textbox present itself?

				[image: check.png] Can the appearance of a form change over time (for example, for different states of an application)?

				[image: check.png] What happens when the user clicks the button?

				[image: check.png] What happens when the user presses Enter?

				[image: check.png] What happens when the user hovers the cursor over the button?

				A simple button encompasses more than just its appearance — it also has a complex set of interactions. In this chapter, we describe many of these interactions in order to illustrate the Android framework in action, so that you can determine where to find a particular method (or behavior) in a widget’s hierarchy.

				Android has taken the tried-and-true traditional approach of user interface class design, found in almost all GUI toolkits, such as Java Swing. Before we describe the various widgets available in Android, we need to demonstrate this level of complexity to help you see how the world of user interfaces has seemingly “gone bananas” and designed the user interface classes upside down. To help you better understand this concept, the next section dissects the android.widget.Button class, its location in the View hierarchy, and the classes in this hierarchy chain.

				[image: technicalstuff.eps]	In software engineering, the user interface classes in Android follow a specialization hierarchy — each derived class restricts the overall functionality rather than extending it.

				Taking a detailed look at the View hierarchy

				Figure 5-1 shows the class hierarchy of View and its descendants. (We omit the descendants of ViewGroup because of space limitations.) The classes in Figure 5-1, covered in Chapter 6, are used to create widgets. Within each class shown in Figure 5-1 is a number indicating the version number of the API in which the class was introduced. For now, you should simply understand that many widgets dealing with text are derived from the TextView class, which is derived from the View class.

					

				
					Figure 5-1: The class hierarchy of the View class and its descendants.

					
				

					[image: 9781118008256-fg0501.eps]

				The Button class, which we talk about next, can use text, so it’s derived from TextView. If a class name begins with the prefix Abs, it’s a base class — one that provides common functionality for the classes that derive from it, which are the full-featured classes you want to use.

				[image: tip.eps]	The class AbsoluteLayout is deprecated — don’t use it directly. The class SurfaceView and the classes that derive from it are essentially blank canvases that can be used to place or draw media. GLSurfaceView provides a blank canvas that uses OpenGL ES in an Android app. ImageView has been propagated to its own level, directly deriving from View, and has several customizations derived from it.

				In this chapter, we describe the top structure of the user interface — layouts. Figure 5-2 shows the classes derived from the ViewGroup class and their descendants; these classes are used for layouts. You can see in the figure that a class such as SlidingDrawer is derived directly from ViewGroup and has no classes derived from it — this class is customized for a specific purpose. Helper classes such as FragmentBreadCrumbs and AdapterView are used with other layouts in advanced situations. The remaining three classes, FrameLayout, LinearLayout, and RelativeLayout (AbsoluteLayout is deprecated), are quite useful alone and are quite general and flexible. For common situations such as a group of radio buttons, the Android SDK provides a few customized layout classes, such as RadioGroup and ViewFlipper.

				You can understand the relationships of one of these specialization classes and the View class by carefully analyzing the Button widget and how it fits into the hierarchy of Android classes and interfaces. Button extends the TextView class. The editing capabilities of the fully functional TextView text editor are disabled. TextView (which extends View) and classes derived from it are used anywhere that text is presented to the user, including the digital clock and, of course, buttons. The design of this class hierarchy is intended to put much of the functionality in the base classes and provide hooks (a callback method) to allow derived classes to change how the base class typically responds.

				The large and complicated TextView class has hundred of methods, some of which deal with data such as setText() and length(). Other methods deal with the presentation, such as setTextColor(), setHorizontallyScrolling(), setTextSize(), setEllipsize(), and setTypeface(). Still other methods support the interaction, such as setSelected(), setCursorVisible(), and setKeyListener(). This is just a small sampling of TextView methods — and, therefore, its state. (Whew!)

					

				
					Figure 5-2: Class hierarchy of the ViewGroup class and its descendants.

				

					[image: 9781118008256-fg0502.eps]

				Wait, there’s more: TextView also implements the interface ViewTreeObserver.OnPreDrawListener, which has one method:

				public abstract boolean onPreDraw()

				The method onPreDraw() provides a hook that’s called before TextView is drawn. This method is called after all views in the tree have been measured but before any views in the tree have been drawn. TextView uses the onPreDraw() method to adjust its scroll bounds, which indicate the portion of text that’s displayed when a large amount of text is scrolled.

				As we mention earlier in this section, TextView extends View, so it inherits all (more than 250) public and protected View methods. The more than 400 methods available to Button overwhelm even the most seasoned developer, and it’s virtually impossible to understand everything that a simple little button does. Unfortunately, all these methods are exposed to you by the Eclipse autocompletion feature, which provides a list of all possible method calls for a class or instance of a class. Figure 5-3 shows autocompletion for an instance of Button.

				If you look at the SDK documentation for the Button class, you see that it adds no new methods — everything needed to define its appearance and behavior and to measure it, for example, is defined in the base classes. All Button does is redefine some basic TextView behavior. To find out how much, you can look at the Android open source code for Button:

				public class Button extends TextView {

				 public Button(Context context) {

				 this(context, null);

				 }

				

				 public Button(Context context, AttributeSet attrs) {

				 this(context, attrs, com.android.internal.R.attr.buttonStyle);

				 }

				

				 public Button(Context context, AttributeSet attrs, int defStyle) {

				 super(context, attrs, defStyle);

				 }

				}

					

				
					Figure 5-3: Eclipse provides the list of acceptable method calls for an instance of Button using autocompletion.

				

					[image: 9781118008256-fg0503.eps]

				Buttons are defined by the last argument in the constructor (which you can override).

				The workhorses (at least for Button) are the View and TextView classes. This common specialization of base classes in the user interface APIs lets you do almost anything with a button. After you understand the class hierarchy, you’re ready to look at the available user interface components and the classes that help with the layout of the user interface. The rest of this chapter focuses on the higher-level layout (or flow) components. Chapter 6 covers the individual widgets available in the Android framework.

				Working with views and layouts

				An application or activity contains the View and ViewGroup classes. More precisely, an activity contains a rooted tree of elements, where every element is either a widget, a container of widgets with layout behaviors, or another, special element that controls the appearance or behavior of either widgets or layouts, such as one that animates the initial presentation.

				One or more occurrence of View can be combined into a ViewGroup. This special type of View provides a layout for a set of views. The following sections present every possible layout in Android version 13 (API 3.2).

				ViewGroup has these 33 classes:

				[image: check.png] AbsListView

				[image: check.png] AbsSpinner

				[image: check.png] AdapterView<T extends Adapter>

				[image: check.png] AppWidgetHostView

				[image: check.png] DatePicker

				[image: check.png] DialerFilter

				[image: check.png] ExpandableListView

				[image: check.png] FrameLayout

				[image: check.png] Gallery

				[image: check.png] GestureOverlayView

				[image: check.png] GridView

				[image: check.png] HorizontalScrollView

				[image: check.png] ImageSwitcher

				[image: check.png] LinearLayout

				[image: check.png] ListView

				[image: check.png] MediaController

				[image: check.png] RadioGroup

				[image: check.png] RelativeLayout

				[image: check.png] ScrollView

				[image: check.png] SlidingDrawer

				[image: check.png] Spinner

				[image: check.png] TabHost

				[image: check.png] TableLayout

				[image: check.png] TableRow

				[image: check.png] TabWidget

				[image: check.png] TextSwitcher

				[image: check.png] TimePicker

				[image: check.png] TwoLineListItem

				[image: check.png] ViewAnimator

				[image: check.png] ViewFlipper

				[image: check.png] ViewSwitcher

				[image: check.png] WebView

				[image: check.png] ZoomControls

				You use many of these classes in conjunction with other layouts. ViewGroup can also be (and usually is) nested, so FrameLayout may contain RelativeLayout and ScrollView, which contains TableLayout.

				Several of these layouts are meant not to be used in isolation but, rather, as components added to other layouts. For example, ViewAnimator is used to add flair when switching from one layout to another or at the initial presentation of the view. Layouts, which are extensions of the ViewGroup class, are used to position child controls (widgets contained within the ViewGroup) for the user interface. Because layouts can be nested, you can create arbitrarily complicated interfaces by using a combination of layouts.

				You typically define a user interface by using an XML file, such as main.xml, located in the res/layout folder. A simple example that produces the text string “hello” looks like this:

				<?xml version=”1.0” encoding=”utf-8”?>

				<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”

				 android:orientation=”vertical”

				 android:layout_width=”match_parent”

				 android:layout_height=”match_parent”

				 >

				 <TextView

				 android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”

				 android:text=”hello”

				 />

				</LinearLayout>

				When you compile an app and the compiler reads its XML files, every element tag in the XML file corresponds to an associated instance of an Android GUI class, or View. Each element is thus associated with an instance of a Java class. As indicated earlier in this chapter, these instances are presented onscreen when the activity is loaded and the content is set. The XML description in the preceding chunk of code uses two classes: LinearLayout and TextView.

				[image: technicalstuff.eps]	The loading and processing of the XML files at compile-time differs from Windows Presentation Foundation, for example, where the XML (or XAML) is processed at runtime, allowing the GUI to be changed after installation.

				The following section walks you through the process of creating user interfaces. Separating the appearance of the user interface from the behavior, or code-behind (the programming to tell the app what to do, for example, if a particular button is clicked), lets you focus on only the presentation aspect. The XML facilitates this separation, specifying the appearance in the XML and leaving the behavior to the java implementation. Here, the focus will be only on the appearance.

				Sampling Some Android Layouts

				The Android SDK includes an extensive and useful set of layouts to help construct user interfaces. Because layout managers play a fundamental role in arranging the pieces of your user interface, you should develop a good understanding of at least a couple of the layout classes so that you can work effectively. This section examines in depth a few key layouts supported by Android. These layouts enable an application to look “polished” as it moves from device to device (or even from portrait to landscape orientation) by gracefully adapting to new font metrics, component styles, component shapes, and even themes. You simply select the right combination of layouts to make an interface easy to understand and use. Begin by sketching your interface on paper and considering whether you should

				[image: check.png] Group widgets into separate tasks

				[image: check.png] Present all tasks at one time

				[image: check.png] Simplify the user interface to show common tasks first

				[image: check.png] Hide less common tasks at first but make them easily accessible

				[image: check.png] Present the spatial relationships between various tasks

				[image: check.png] Present the spatial relationships between the widgets within each task

				[image: check.png] Change the layout if the phone is rotated

				[image: check.png] Change the behavior of the app if a larger or smaller screen is used

				[image: check.png] Choose the best widget for every necessary input or piece of information

				One key benefit of using XML for the generation and definition of a user interface is that you can mock up and test the user interface outside the code logic. In the next section, we look at this topic in more detail by mocking up several user interfaces.

				Mocking up a contact display

				The simple mock-up we present in this section is a view to display a name and an address. For this task, you need widgets for the name, two address lines, a city, a state, and a zip code. The LinearLayout class is useful when a simple sequential set of widgets is needed. Here’s the XML file contact.xml (the line in bold is described in the following section):

				 <?xml version=”1.0” encoding=”utf-8”?>

				 <LinearLayoutxmlns:android=”http://schemas.android.com/apk/res/android”

				 android:orientation=”vertical”

				 android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”

				 >

				 <TextView

				 android:layout_width=”wrap_content”

				 android:layout_height=”wrap_content”

				 android:text=”Name”

				 />

				 <EditText

				 android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”

				 android:text=”Enter Name ...”

				 />

				 <EditText

				 android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”

				 android:text=”Address:”

				

				 />

				 <EditText

				 android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”

				 android:text=” ...”

				 />

				 <EditText

				 android:layout_width=”wrap_content”

				 android:layout_height=”wrap_content”

				 android:text=”State”

				 />

				 <EditText

				 android:layout_width=”wrap_content”

				 android:layout_height=”wrap_content”

				 android:text=”Zip Code”

				 />

				 </LinearLayout>

				Figure 5-4 shows the result of this view. Note that we don’t program anything yet (and don’t, in this exercise). To create this application, create a new Android project in Eclipse and modify the res/layout/main.xml file to contain the preceding code sample. The onCreate() loads this file in the template generated by using the Eclipse tools. This user interface example is somewhat unpleasant to look at, but we show you how to fix the problem later in this chapter. Later chapters in this book also cover themes and the code-behind that makes the user interface functional.

					

				
					Figure 5-4: A GUI for entering information about a new contact.

				

					[image: 9781118008256-fg0504.tif]

				Examining the XML code closely

				If you look at the XML code carefully in the preceding section, you see that it has a single LinearLayout enclosing a single TextView and five EditText widgets. You control the display of these widgets by using various layout parameters included in the XML. All occurrences of View must have a layout_width and layout_height specification — without them, the app crashes. You can use one of two special constants for this purpose which allow the system to make decisions on how best to display the widgets:

				[image: check.png] –1: The system should make the widget as large as its containing parent, represented by the symbolic constant match_parent (or fill_parent).

				[image: check.png] –2: The system should shrink-wrap the widget to fit the content of the widget, represented by the symbolic constant wrap_parent.

				[image: warning_bomb.eps]	The layout constant fill_parent was renamed in version 8 to match_parent, and fill_parent was marked as deprecated.

				You can use a third option to specify a precise size for the width or height, by using a numerical value with a unit specification. Possible values for the units are

				[image: check.png] dp: Density-independent pixels

				[image: check.png] in: Inches

				[image: check.png] mm: Millimeters

				[image: check.png] px: Pixels

				[image: check.png] sp: Scaled pixels based on preferred font size

				For example, to change the State EditText widget to measure only a half-inch, you replace Line 27 of the code (indicated by boldface) in the preceding section with this line:

				 android:layout_width=”0.5in”

				In general, use one of the special constants match_parent or wrap_content. If a user’s screen is smaller than expected, the field (or any field that was supposed to follow it on the same line) may get truncated. A user’s screen that’s larger than expected may have large, unsightly, empty spaces, possibly causing confusion.

				[image: tip.eps]	Always use the match_parent or wrap_content constants for the width and height whenever possible, to ensure consistent results across different hardware.

				Another XML tag is the LinearLayout’s orientation tag. It can be either horizontal or vertical. The vertical setting works best for applications such as the one in the example. Horizontal is useful for toolbars or applications that have several small widgets you want laid out horizontally. For the vertical setting, each child widget is placed on a separate line. It’s an optional parameter, and the default is horizontal.

				Understanding the relationship between XML and the Android SDK

				Every XML tag corresponds to an attribute of the widget. For layout_width and layout_height, these attributes aren’t direct attributes of TextView or EditView (or the base class View) but are, rather, shorthand for the LayoutParams class (defined in the View class) associated with this widget. All widgets (all instances of a View) have an associated LayoutParams. The layout_width and layout_height are the only attributes in the base class ViewGroup.LayoutParams. Several derived classes from ViewGroup.LayoutParams provide additional control and functionality. LinearLayout.LayoutParams is used by the LinearLayout layout class and is derived from the ViewGroup.MarginLayoutParams class.

				Specifying extra features provided by ViewGroup.MarginLayoutParams

				The ViewGroup.MarginLayoutParams class provides attributes for specifying extra space on the outside of the particular view. You can specify the top, bottom, left, and right margins individually by using the attributes android:layout_marginTop, android:layout_marginBottom, android:layout_marginLeft, and android:layout_marginRight, respectively. Alternatively, you can specify the attribute android:layout_margin to set all four margins to the same value. The value you assign to these attributes must be a dimension value, which is a floating-point number appended with a unit such as 14.5sp. Available units are

				[image: check.png] dp: Density-independent pixels

				[image: check.png] in: Inches

				[image: check.png] mm: Millimeters

				[image: check.png] px: Pixels

				[image: check.png] sp: Scaled pixels based on preferred font size

				You can also use a reference to a resource or theme attribute. Themes are covered in Chapter 6.

				Specifying extra features provided by LinearLayout.LayoutParams

				LinearLayout.LayoutParams, which extends the ViewGroup.MarginLayoutParams class, has two additional attributes to specify the gravity and weight of every child widget. The attribute android:layout_gravity is similar to the justification effect in text publishing, where lines are spaced to come out even at the margins. From the Android SDK Reference pages, gravity may take on the values listed in Table 5-1.

				Table 5-1	LinearLayout.LayoutParams Constants

				
					
						
								
								Constant

							
								
								Value

							
								
								What It Does

							
						

						
								
								top

							
								
								0x30

							
								
								Pushes object to the top of its container, not changing its size.

							
						

						
								
								bottom

							
								
								0x50

							
								
								Pushes object to the bottom of its container, not changing its size.

							
						

						
								
								left

							
								
								0x03

							
								
								Pushes object to the left of its container, not changing its size.

							
						

						
								
								right

							
								
								0x05

							
								
								Pushes object to the right of its container, not changing its size.

							
						

						
								
								center_vertical

							
								
								0x10

							
								
								Places object in the vertical center of its container, not changing its size.

							
						

						
								
								fill_vertical

							
								
								0x70

							
								
								Grows the vertical size of the object, if necessary, so that it completely fills its container.

							
						

						
								
								center_horizontal

							
								
								0x01

							
								
								Places the object in the horizontal center of its container, not changing its size.

							
						

						
								
								fill_horizontal

							
								
								0x07

							
								
								Grows the horizontal size of the object, if necessary, so that it completely fills its container.

							
						

						
								
								center

							
								
								0x11

							
								
								Places the object in the center of its container in both the vertical and horizontal axes, not changing its size.

							
						

						
								
								fill

							
								
								0x77

							
								
								Grows the horizontal and vertical size of the object, if necessary, so that it completely fills its container.

							
						

						
								
								clip_vertical

							
								
								0x80

							
								
								An additional option that can be set to have the top or bottom (or both) edges of the child clipped to its container’s bounds. The clip is based on the vertical gravity: top gravity clips the bottom edge; bottom gravity clips the top edge; neither clips both edges.

							
						

						
								
								clip_horizontal

							
								
								0x08

							
								
								An additional option that can be set to have the left or right edges (or both) of the child clipped to its container’s bounds. The clip is based on the horizontal gravity: left gravity clips the right edge; right gravity clips the left edge; neither clips both edges.

							
						

					
				

				Several of these attributes can be combined, using the | operator. For example, to specify the State field in the lower-right corner, you might rewrite the State widget this way:

				<EditText

				 android:layout_width=”wrap_content”

				 android:layout_height=”wrap_content”

				 android:layout_gravity=”bottom|right”

				 android:text=”State”

				 />

				This snippet indeed pushes the State EditText box to become right-justified. However, the bottom setting is ignored by LinearLayout with the vertical orientation. If you were using horizontal orientation, the box would be at the bottom, but not right-justified. The system takes all information from its children and determines the best layout using this information as well as its own rules and settings.

				[image: remember.eps]	Setting a particular attribute (such as a margin) is only a suggestion to the system. It may be ignored or altered.

				The layout_weight attribute is useful to evenly space controls either horizontally or vertically. For it to work, all widgets within a container (a layout) should define a weight. If the weights are all equal, you may achieve uniform distribution. We say may because (as we state elsewhere) the system considers it part of its overall strategy, not as gospel. If you give five widgets a weight of one and a sixth widget a weight of two, the sixth widget is, ideally, twice as large as the other five. In practice, this seems to be weak guidance if using unequal weights or widgets with different content sizes. If the amount of data causes the shrink-wrap size to increase, it overrides the weight setting.

				[image: tip.eps]	You should try your layouts on several devices that have different resolutions. The Android SDK and AVD Manager let you do this by allowing you to create virtual devices with different screen sizes and resolutions. Be sure to try your interface with a normal amount of data, a minimal amount of data, and a maximum amount of data in only a few of the widgets and then in all of the widgets.

				Remember that the margin controls in ViewGroup.MarginLayoutParams, the justification and scaling controls in LinearLayout.LayoutParams, and the fill or wrap controls for the width and height in ViewGroup.LayoutParams set the value of only one field in the LinearLayout class — the LayoutParams field. Many more attributes may be able to be set to control the appearance (and behavior) of the individual widgets. A few more attributes for controlling the layout exist — most notably, the android:baselineAligned attribute of LinearLayout. By default, it’s set to true and the widgets are aligned with a baseline (the Text field’s baseline for widgets, such as TextView). Setting this attribute to false allows the widgets to be aligned at their tops. The android:layoutAnimation in the ViewGroup class specifies an animation to be used when the particular ViewGroup is first displayed.

				In the next section, we beautify this simple GUI as much as we can by using LinearLayout. Later sections in this chapter explore alternative layouts that offer more control and flexibility. As you can soon see, LinearLayout is useful as a part of the overall GUI being displayed.

				[image: tip.eps]	If you find yourself fighting the layout, consider using a different layout class.

				Enhancing the look of the contact View

				The bulk of the attributes we use to spruce up the simple Contact application are in either the View class or the TextView class. Because EditText is a thin veneer on TextView, it adds no attributes of its own — instead, EditText specializes TextView.

				Figure 5-5 shows the intended finished result. Compare this image to Figure 5-4 (the original implementation) to see how many differences you can spot.

					

				
					Figure 5-5: An improved version of the GUI to enter a contact.

				

					[image: 9781118008256-fg0505.tif]

				The only structural difference lies in the State and Zip Code widgets lying on the same line. Having these two widgets on the same line is impossible to do with a single LinearLayout, which places each View below the preceding View. To accomplish this task, you need a hierarchy. After you place the State and Zip Code widgets into a separate container or layout, this container can then be treated as a single View element in the top LinearLayout. We know of only one container so far — LinearLayout.

				You want the state and zip code to appear on the same line, so you set the android:orientation attribute to horizontal. Structurally, you have replaced the original State and Zip Code EditText widgets with the following snippet (simplified from the final result to illustrate the structural differences):

				<LinearLayout android:orientation=”horizontal”

				 android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”

				 >

				 <EditText

				 android:layout_width=”wrap_content”

				 android:layout_height=”wrap_content”

				 android:layout_weight=”1”

				 android:text=”State”

				 />

				 <EditText

				 android:layout_width=”wrap_content”

				 android:layout_height=”wrap_content”

				 android:layout_weight=”1”

				 android:text=”Zip Code”

				 />

				</LinearLayout>

				By placing the State and Zip Code widgets within a LinearLayout that is oriented horizontally and making their weights the same, together they span the view. Note that both layout widths are set to wrap_content.

				The other enhancements revolve around setting colors and fonts and a background image. To create this new, improved version now, follow these steps:

					1.	Start Eclipse and create a new project. Select Android Project as the project type.

					2.	Name the project ContactView, select version 8 (at least), and fill in the other parameters to name your activity and namespace or package.

					3.	Open the main.xml file in the res/layout directory by double-clicking the filename within Eclipse.

					4.	Delete the existing TextView, leaving only the first line.

					5.	Add a LinearLayout.

						Because the LinearLayout is the first (or root) element, you define the Android namespace here. This step is required because the system wouldn’t know LinearLayout or any of the Android widgets.

					6.	Insert the following line immediately after the LinearLayout prefix:

				xmlns:android=”http://schemas.android.com/apk/res/android”

				The attributes are customarily included within the XML tag while placing the child views between the beginning and ending tags. So, for LinearLayout, you place the closing bracket (>) after the namespace declaration on either the same line or a new line. When you close the bracket, Eclipse automatically generates an end tag for you. Press the Return key on your keyboard to place the end tag on its own line. Unfortunately, Eclipse doesn’t indent your XML code well. Proper indentation aids in comprehension and reduces errors, so indent the closing bracket (not the end tag). In front of the closing bracket, insert the required attributes (layout_width and layout_height) as well as the orientation attribute. Use vertical for the orientation and match_parent for the layout width and height. Your solution should look like this:

				<?xml version=”1.0” encoding=”utf-8”?>

				<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”

				 android:orientation=”vertical”

				 android:layout_width=”match_parent”

				 android:layout_height=”match_parent”

				 >

				</LinearLayout>

				Start practicing some good design and programming habits. If you want to reference the instance of this LinearLayout within your Java code, a unique identifier greatly simplifies the process of gaining access to the instance. Add an android:id attribute to the LinearLayout this way:

				android:id=”@+id/mainLayout”

				The special syntax of the @+ characters within the string indicates that you want to add to the ID pool a new resource named mainLayout and associate the id attribute to it.

				[image: remember.eps]	Because every XML tag corresponds to a class in the R file, every instance of the tag creates a new instance of that class. The ID is similar to a dictionary look-up to access a handle to this instance. See Chapter 2 for more on the R file.

				Granted, the default background is a little boring — you can add an image as the background for this view. All View classes (and, therefore, all GUI classes) have the android:background attribute. This attribute can take a color or a drawable. Use the background image for this chapter (named backdrop.jpg), located on this book’s companion website (at www.dummies.com/go/android3sdkprogramming), or your own preferred image. On a Windows computer, simply drag the image file from its folder into Eclipse and on top of the res/drawable-mdpi folder. In the dialog box that asks whether you want to copy or link to this file (see Figure 5-6), select Copy Files and click OK.

					

				
					Figure 5-6: In this dialog box, you add an image to the project.

				

					[image: 9781118008256-fg0506.eps]

				Three folders with the prefix drawable are in the res folder. They correspond to resources for devices that have low dots-per-inch (dpi) measurement, medium dpi, and high dpi, and they’re named res/drawable-ldpi, res/drawable-mdpi, and res/drawable-hdpi, respectively. If you have only one resource, copy it to the appropriate folder; the system builds the others for you. In any case, you access this resource by using drawable/filename in the XML code, where filename doesn’t include the file extension. Now add an attribute to set this image as the background:

				android:background=”@drawable/backdrop”

				The resulting project should produce the result shown earlier, in Figure 5-5.

				You add the EditText widgets between the LinearLayout closing bracket and the end tag. Good design practice dictates a consistent look and feel. Android assists in this goal by allowing custom resources and access to these resources in both the code and the XML. We just showed you this strategy in setting the background attribute. Now you can look at adding string resources, color resources, and dimension resources for your text boxes.

				You can add resources within Eclipse in three primary ways (in addition to the external drag-and-drop method):

				[image: check.png] Using the Resource editor

				[image: check.png] Editing the xml file directly

				[image: check.png] Using Eclipse’s code refactoring

				All these resources are placed into the res/values/strings.xml file. Open the res/values folder in the Eclipse Package Explorer window and double-click the strings.xml file. The file opens with two views (denoted by the tabs near the bottom of the window; see Figure 5-7). In the Resources view, you can add a resource, delete a resource, and reorder resources. (Why reorder? Because you can.) Click the Add button. A dialog box opens, asking you to select the type of resource you want to add. Selecting the type lets the system validate the resources so that they can be used wherever a value of that type is needed. Select the Dimension entry and click OK. A new resource has been added to the bottom of the list. You give it a name and value (or change the name and value) by using the text fields to the right. Enter fontSize for the name and 9pt for the value. When you save the strings.xml file, the changes appear in the list pane. If you switch views to the strings.xml view by using the strings.xml tab at the bottom, you can see that all you did was place a new entry in the strings.xml file — in this case, the following line:

				<dimen name=“fontSize“>9pt</dimen>

					

				
					Figure 5-7: Examining the string.xml resource file.

				

					[image: 9781118008256-fg0507.tif]

				Go back to Resources view and add a new resource. This time, select a Color resource and name it textColor and give it a value of #ff0000 (scarlet). Returning to the strings.xml file, notice that a new tag has been added — except that this time it’s a color tag. You use the tag string to reference the resource, so the font size is indicated by “@dimen/fontSize”, not by “@Dimension/fontSize”. In addition to adding the resources from Resource view, you can edit the strings.xml file directly.

				A third technique for adding a resource is to use the refactoring tools within Eclipse. In XML, you have only one good option: Convert a string to a string resource.

				Suppose that you add the following attribute to one of the EditText widgets:

				android:text=”Hello”

				You want to remove the literal, “Hello,” from the file and make it a resource because it might allow for internationalization later. You can easily accomplish this task by double-clicking “Hello” to select it and then choosing Android⇒Extract Android String from the Refactor menu.

				Add the necessary resources to the strings.xml file to ensure that your file looks like this:

				<?xml version=”1.0” encoding=”utf-8”?>

				<resources>

				

				 <string name=”app_name”>ContactView</string>

				 <color name=”textColor”>#000000</color>

				 <dimen name=”fontSize”>9pt</dimen>

				 <dimen name=”topMargin”>0.1in</dimen>

				 <dimen name=“indent“>0.1in</dimen>

				

				</resources>

				[image: tip.eps]	By storing the font size (textSize) in a resource, you need to change only the resource value to have the change propagated to all text boxes. This strategy greatly simplifies experimenting with the design while keeping the font characteristics consistent.

				To make use of these resources, add an EditText component within the LinearLayout. Here’s the description for the Name field in the example:

				<EditText

				 android:id=”@+id/nameWidget”

				 android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”

				 android:hint=”Enter Name ...”

				 android:textStyle=”bold”

				 android:textSize=”@dimen/fontSize”

				 android:textColor=”@color/textColor”

				 android:layout_marginTop=”@dimen/topMargin”

				 android:singleLine=”true”

				 />

				Note that the textSize, textColor, and layout_marginTop all make use of resources. You also added an ID resource for this widget. Because a name shouldn’t span multiple lines of text, you set the singleLine attribute to true. In addition, you changed the text attribute to a hint attribute. Now there’s no text, so if the user starts typing, no text needs to be deleted first. The hint attribute sets the text for a hint to be displayed instead of setting the text field. The hint is displayed whenever the text box is empty and appears (by default) in a grayed-out color.

				To end our discussion of LinearLayout and how to customize the view, here’s the final main.xml code:

				<?xml version=”1.0” encoding=”utf-8”?>

				<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”

				 android:id=”@+id/mainLayout”

				 android:orientation=”vertical”

				 android:layout_width=”match_parent”

				 android:layout_height=”match_parent”

				 android:background=”@drawable/backdrop”

				 >

				 <EditText

				 android:id=”@+id/nameWidget”

				 android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”

				 android:hint=”Enter Name ...”

				 android:textStyle=”bold”

				 android:textSize=”@dimen/fontSize”

				 android:textColor=”@color/textColor”

				 android:layout_marginTop=”@dimen/topMargin”

				 android:singleLine=”true”

				 />

				 <EditText

				 android:id=”@+id/addressWidget”

				 android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”

				 android:layout_marginLeft=”@dimen/indent”

				 android:textSize=”@dimen/fontSize”

				 android:textColor=”@color/textColor”

				 android:hint=”Address ...”

				 android:gravity=”top|left”

				 android:lines=”2”

				 />

				 <LinearLayout

				 android:orientation=”horizontal”

				 android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”

				 android:layout_marginLeft=”@dimen/indent”

				 >

				 <EditText

				 android:id=”@+id/stateWidget”

				 android:layout_width=”wrap_content”

				 android:layout_height=”wrap_content”

				 android:layout_weight=”0.2”

				 android:capitalize=”characters”

				 android:singleLine=”true”

				 android:textColor=”@color/textColor”

				 android:textSize=”@dimen/fontSize”

				 android:hint=”State”

				 />

				 <EditText

				 android:id=”@+id/zipcodeWidget”

				 android:layout_width=”wrap_content”

				

				 android:layout_height=”wrap_content”

				 android:layout_weight=”0.5”

				 android:layout_marginLeft=”20sp”

				 android:textColor=”@color/textColor”

				 android:textSize=”@dimen/fontSize”

				 android:singleLine=”true”

				 android:hint=”Zip Code”

				 android:numeric=”integer”

				 />

				 <TextView

				 android:layout_width=”wrap_content”

				 android:layout_height=”wrap_content”

				 android:layout_weight=”0.1”

				 android:gravity=”center_horizontal”

				 android:textColor=”#ffffff”

				 android:textSize=”@dimen/fontSize”

				 android:textScaleX=”2”

				 android:text=”-”

				 />

				 <EditText

				 android:id=”@+id/zipExtWidget”

				 android:layout_width=”wrap_content”

				 android:layout_height=”wrap_content”

				 android:layout_weight=”0.4”

				 android:textSize=”@dimen/fontSize”

				 android:textColor=”@color/textColor”

				 android:singleLine=”true”

				 android:digits=”0123456789”

				 android:hint=”Ext”

				 />

				 </LinearLayout>

				 <EditText

				 android:id=”@+id/phoneWidget”

				 android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”

				 android:layout_marginLeft=”@dimen/indent”

				 android:textSize=”@dimen/fontSize”

				 android:textColor=”@color/textColor”

				 android:hint=”Phone number ...”

				 android:singleLine=”true”

				 android:phoneNumber=”true”

				 />

				</LinearLayout>

				Whew! That’s a nice little application. Well, not quite. Recall that it’s just a mock-up — you’ve done no Java programming. However, now you have a firm grasp of LinearLayout and the attributes associated with layouts, views, and resources. There’s even a phone number attribute for TextView. The LinearLayout is generally a good choice for small components of your user interface (such as the state and zip code). The next few sections describe some other choices that should be preferred for the top layout in the hierarchy.

				LinearLayout is the base class for several other layouts, including TableLayout and its helper, TableRow, which are discussed in the following section. The RadioGroup layout is used to arrange a group of radio buttons, and though ZoomControls should be considered a widget rather than a layout, it’s derived from LinearLayout. ZoomControls provides a good example of creating your own, custom widgets; it provides two customized buttons and the long-click behavior for continuous zooming. Similarly, TabWidget, covered later in this chapter, extends LinearLayout and should be considered a widget more than a layout.

				Mocking up a simple calculator

				To begin to understand why one layout might be preferred over another, you can take a look at different layout styles. In this section, we tell you how to create the user interface for a simple calculator. We have you use a single TableLayout to present the entire calculator because it lets us illustrate some table controls (rather than simply present the best solution).

				[image: tip.eps]	Consider nesting a couple of layouts in your production code. For example, a text window on top of a grid of buttons suggests perhaps a LinearLayout containing two children: TextView and TableLayout. Two other good choices are RelativeLayout and FrameLayout.

				Figure 5-8 shows the result you’re shooting for. It makes sense that TableLayout extends the LinearLayout class, because a table is a set of TableRows stacked on top of (or underneath) each other. The basic structure of a table is shown in Figure 5-9.

					

				
					Figure 5-8: A calculator interface.

				

					[image: 9781118008256-fg0508.tif]

					

				
					Figure 5-9: The relationship between View, Table, and TableRow.

					
				

					[image: 9781118008256-fg0509.eps]

				Deciphering the structure of a table

				The TableLayout in XML is similar to the HTML <table> element. A TableLayout contains a collection of TableRows, each of which is similar to the <tr> element in HTML. For individual cells, you can use any kind of View element, including another layout element. Here’s the code for the table row in the bottom row of the calculator:

				<TableRow>

				 <Button

				 android:id=”@+id/btnNum0”

				 android:text=”0”

				 android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”

				

				 android:layout_weight=”1” />

				 <Button

				 android:id=”@+id/btnClear”

				 android:text=”C”

				 android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”

				 android:background=”@drawable/clearbutton”

				 android:textColor=”#ffffff”

				 android:layout_weight=”1” />

				 <Button

				 android:id=”@+id/btnEqual”

				 android:text=”=”

				 android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”

				 android:layout_weight=”1” />

				 <Button

				 android:id=”@+id/btnAdd”

				 android:text=”+”

				 android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”

				 android:layout_weight=”1” />

				</TableRow>

				This code snippet adds the Zero, Clear, Equals, and Addition buttons. You assign each button a layout weight of 1 to achieve equal spacing. Every button is assigned an ID so that you can respond properly to the button being clicked. The text color of the Clear button changes to white, and its background is set to the drawable resource named clearbutton. We tell you how to produce this red button in Chapter 6.

				Using Greedy widgets that take up multiple columns

				The first row in the table contains a single TextView item to display the result. However, it must span the entire table. How many columns does the table have? The number of columns is determined by the maximum number of children in each row. If one TableRow has 12 children, the table has 12 columns. Every row of the table can have a different number of children, and every child can be a different size. In other words, the TableLayout isn’t a 2D grid or n-by-n matrix. It’s simply a collection of Views with some coordination among rows. Each View element is typically a TableRow, but even this constraint isn’t enforced. (See the later sidebar “Jumbled table karma” for more insights and technical details for controlling the table column sizes — or not.)

				The table in the Calculator app spans four columns. It has six rows, and all except the results widget row and the line below it have four columns. For the result window, TextView spans all four columns of the table. You accomplish this task by using the android:layout_span attribute within TextView.

				Here’s the definition for the TableRow containing the result window TextView (we added a 20-space margin for aesthetic purposes):

				<TableRow>

				 <!-- The Result Window -->

				 <TextView

				 android:id=”@+id/resultView”

				 android:background=”#000000”

				 android:textColor=”#ffffff”

				 android:typeface=”monospace”

				 android:text=”0.0”

				 android:gravity=”right”

				 android:textSize=”12pt”

				 android:layout_span=”4”

				 android:layout_width=”match_parent”

				 android:layout_margin=”20sp”

				 />

				 </TableRow>

				The results widget also has a black background with white text using a 12-point monospace font. Again, you would be wise to place these font characteristic decisions in the strings.xml file or another resource file.

				Adding non-TableRow elements

				Another portion of the calculator is the red, horizontal line below the result window. You create this effect by adding a naked View to the table. Because the heavyweight View class is fully functional, it can be used as a blank canvas for adding space or other occurrences of drawable. In this example, the background is set to a constant color. To create the appearance of a line, you set the height of View to a small value — in this case, five pixels. The following code snippet creates the second row of the table:

				<View

				 android:layout_height=”5px”

				 android:background=”#990000”

				 android:layout_marginBottom=”10sp”

				 >

				</View>

				This example adds a margin to push the buttons away from the line. You can find the complete source code for the Calculator app on this book’s web page.

				Jumbled table karma

				Table layout construction can be cumbersome and tricky with cells containing differing amounts of content, because an intense negotiation battle for precious screen real estate is taking place between each widget and the table logic. Fundamentally, the goals of automatic layout algorithms are to present as much of the content as possible, by contracting or expanding space as necessary. If an individual widget in a table cell suddenly needs more space, it‘s preferable to remove some air (empty space) from certain columns and adjust other column sizes to include (use) that space. Column widths were previously specified upfront and fixed, leading to a great deal of frustration. Machine intelligence can reason only so far and is based on the information provided by the designer. A single TableLayout can cause so much confusion to the layout manager that no sane person would even call it a table. The layout manager has to decide what to do with empty cells and how to handle large content while also accommodating every widget’s layout_weight and the table attributes android:stretchColumns and android:shrinkColumns.

				Keeping things consistent

				The lack of a rigorous table specification and the lax “anything goes” mentality of TableLayout allows for great flexibility. By now, you may have an appreciation of the complexity of the decision-making process that takes place in a layout manager. The old adage “garbage in, garbage out” applies well to table construction. Because the table has been around since the early days of HTML and office publishing, it’s often considered the layout manager of choice, even if the data or widget to be presented isn’t tabular.

				Figure 5-10 shows an app with a single TableLayout view as the root. It may be difficult to see, but it has seven columns. Trying to line up any of these columns with the various empty cells and the lack of spanning and shrinkable and stretchable settings is quite difficult.

				When using TableLayout, try to follow these guidelines (because the system doesn’t make you follow them):

				[image: check.png] Ensure that every occurrence of TableRow has the same number of columns.

				[image: check.png] If a TableRow must have fewer columns, use the layout_span attribute to consume the same number of columns.

				[image: check.png] Mark only a few columns as shrinkable.

				[image: check.png] Mark all columns as stretchable or reduce the TableLayout width.

				[image: check.png] Set the TableLayout width to wrap_content for small tables.

				[image: check.png] Limit to a single column any content that drastically changes its size. If this column isn’t the last one, mark it as shrinkable and allow it to span multiple lines.

					

				
					Figure 5-10: A messy, jumbled table.

				

					[image: 9781118008256-fg0510.tif]

				The table can be a useful part of your user interface. In the next few sections, we cover some higher-level layouts that typically contain LinearLayout and TableLayout — one of the most important is RelativeLayout. After you have a solid understanding of layouts, we can present the remaining available layouts in more of a reference style.

				Allowing columns to shrink whenever necessary

				Every column in a table can be shrinkable, which shrinks a child of a TableRow if none of the children in the row fits. This situation is different from wrap_content in that shrinkable pushes the column to a size smaller than its data and increases the row height. The following figure shows you several tables measuring 2-rows-by-3-columns (separated by text labels, or TextView elements). In the first table, no column is set to be shrinkable. In this case, whether a column is shrinkable is immaterial because all the data fits within the parent view, the TableLayout.

				
				[image: 9781118008256-sb0501.tif]

			

				The second table in the figure has two buttons, which require more space than an individual TableRow can handle. Without shrinkable columns, the last column is pushed off the edge of the view.

				If you set all columns willy-nilly to be shrinkable, the layout manager tries to be fair and trims some space from every control equally. It does this after it determines each control’s minimum size, so the third table in the figure shows the first column being compressed and the second column apparently being removed (or simply trimmed away!). The width of the column shrunk too much to display even a single character and couldn’t even display itself. You set all columns to be shrinkable by using the TableLayout attribute:

				 android:shrinkColumns=”*”

				Because Columns 1 and 3 in this table were also shrunk to less than their desired size, they were forced to push their data onto additional lines (which Column 2 couldn’t do with a single character). And now, being able to set the android:baselineAligned attribute in the LinearLayout class to false is useful. In the sidebar figure, the TableRow (which extends LinearLayout) tries to maintain the alignment of the baseline of the first line of text, which causes the buttons with multiple text lines to shift down as their text is shifted up within the button.

				A final experiment is to set one column as shrinkable (which is how you should use this feature). You’re saying that the data in this column isn’t critical and can be compressed or clipped. The last table in the sidebar figure has the first column as shrinkable, which causes the second and third columns to return to their desired sizes, sacrificing Column 1. You do this by using the following line:

				 android:shrinkColumns=”0”

				The baseline attribute was set to false in both TableRow definitions to align the tops of the buttons.

				Allowing columns to stretch to fill space

				In addition to being shrinkable, a column can be set to stretchable. Then the layout manager tries to give this column more space if the set of columns doesn’t fill the entire parent view (TableLayout). Recall that all children of the TableLayout (the TableRows) have their layout widths changed to match_parent (fill_parent). All rows must therefore span the table width. We aren’t saying that the display of the controls must span the width. The following figure shows five 2 x 3 tables. The first table has no stretchable columns. Every control is granted the space it requested, and no columns are expanded. The remainder of the TableRow is padded to fill the TableLayout.

				[image: 9781118008256-sb0502.tif]

			

				In the second table in this figure, all columns are set to be stretchable by using the following attribute in the TableLayout tag:

				 android:stretchColumns=”*”

				This setting, typically a useful one, tells the layout manager to give all columns their desired sizes plus an equal amount of extra padding. The first column in this table has more content (more text on the button, resulting in a wider button), so it had an initial desired size larger than the other columns. Hence the first column occupies more space.

				In the third table, only the second column (Column 1) is allowed to stretch, so it receives all the extra padding. Again, you indicate it in XML by using the TableLayout attribute:

				 android:stretchColumns=”1”

				The first and third columns are exactly the same size as the first table without stretching. For applications such as this one, and in our calculator example, an equal size for every column often looks better.

				To do this, you must “trick” the layout system:

				For a uniform column size, you need a third option for setting the width of a widget. We typically use either of these attributes:

						android:wrap_content adjusts the size of the control to the minimum that’s needed.

						android:match_parent adjusts the size to the maximum amount of remaining available space in the parent (so far) and the amount returned by wrap_content.

				A control (or widget) can also have its width and height specified using a dimension, such as 0.1in. The dimension overrides any of the calculations just mentioned and sets the size of the control to the specified amount. If the data display needs more space than the specified size, it’s either clipped or (for some, such as TextView) wrapped to another line and the height adjusted if the size isn’t fixed.

				For the fourth and fifth tables in the preceding figure, all controls (Button’s, in this case) have a small fixed value (such as 0) that tells the system, “I need only this amount of space.” In the fourth table, no stretching is allowed, so every column gets the maximum fixed amount that’s specified for that column. Here‘s the XML code for this table:

				<TableLayout

				 android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”

				 	android:background=”@color/line1”

				 >

				 <TableRow

				 	>

				 <Button

				 android:text=”1”

				 android:layout_width=”20dip” />

				 <Button

				 android:text=”2”

				 android:layout_width=”20dip”/>

				 <Button

				 android:text=”3”

				 android:layout_width=”20dip”/>

				 </TableRow>

				 <TableRow>

				 <Button

				 android:text=”10000”

				 android:layout_width=”10dip” />

				 <Button

				 android:text=”2”

				 android:layout_width=”10dip” />

				 <Button

				 android:text=”3”

				 android:layout_width=”10dip” />

				 </TableRow>

				</TableLayout>

				In this case, every column has a desired size of 20 device-independent pixels (dip) because that’s the maximum size between the two rows. Every Button is then expanded to this size, so even though the second row wants only 10dip per button, it receives 20dip per button. The Button with the text string “10000” spans multiple lines even though the numbers aren’t visible.

				Setting all columns to be stretchable adds an equal amount of space to every column. Because in this example every column is the same size, a uniform column size that spans the table is created, as shown in the last table of the preceding figure. Finally, if a column has, for example, a fixed size that’s twice the size of the other columns, the column, when expanded, is twice the size of the others.

				It might seem that weights would provide the same control, but they don’t. They simply provide a hint to the system. If content amounts differ, this necessary size overrides the weights. However, if stretching is turned off, weights perform stretching. So combining a fixed size with stretching or a fixed size with weights produces the same effect of uniform or proportional column sizes. The proportions can be specified in either the size or the weights. In any case, if your content exceeds the column size, data is clipped and isn’t presented.

				RelativeLayout: Flexibility du Jour

				The most flexible of the standard layouts, Relative Layout allows every child View position to be defined relative to its siblings or the parent’s boundaries, or both. Here’s the example from the RelativeLayout tutorial on the Android SDK website:

				<?xml version=”1.0” encoding=”utf-8”?>

				<RelativeLayout xmlns:android=”http://schemas.android.com/apk/res/android”

				 android:layout_width=”match_parent”

				 android:layout_height=”match_parent”>

				 <TextView

				 android:id=”@+id/label”

				 android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”

				 android:text=”Type here:”/>

				 <EditText

				 android:id=”@+id/entry”

				 android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”

				 android:background=”@android:drawable/editbox_background”

				 android:layout_below=”@id/label”/>

				 <Button

				 android:id=”@+id/ok”

				 android:layout_width=”wrap_content”

				 android:layout_height=”wrap_content”

				 android:layout_below=”@id/entry”

				 android:layout_alignParentRight=”true”

				 android:layout_marginLeft=”10dip”

				 android:text=”OK” />

				 <Button

				 android:layout_width=”wrap_content”

				

				 android:layout_height=”wrap_content”

				 android:layout_toLeftOf=”@id/ok”

				 android:layout_alignTop=”@id/ok”

				 android:text=”Cancel” />

				</RelativeLayout>

				This example results in the view shown in Figure 5-11. In a nutshell, you have TextView with EditText below it, which has, in turn, the OK and Cancel buttons below it. The OK button is also anchored to the right of the overall view (RelativeLayout). The Cancel button is anchored to the left of the OK button and its top is aligned with the OK button (which places it below EditText). Every widget (except Cancel) has an ID associated with it, which the other widgets can reference in their alignment specifications.

					

				
					Figure 5-11: Using RelativeLayout.

				

					[image: 9781118008256-fg0511.tif]

				RelativeLayout defines the RelativeLayout.LayoutParams class, which extends MarginLayoutParams. It adds the attributes listed in Table 5-2, which the children of a RelativeLayout can use to control their positioning.

				Table 5-2	Attributes for the RelativeLayout.LayoutParams Class

				
					
						
								
								Attribute Name

							
								
								What It Does

							
						

						
								
								android:layout_above

							
								
								Positions the bottom edge of this view above the specified anchor view ID

							
						

						
								
								android:layout_alignBaseline

							
								
								Positions the baseline of this view on the baseline of the specified anchor view ID

							
						

						
								
								android:layout_alignBottom

							
								
								Makes the bottom edge of this view match the bottom edge of the specified anchor view ID

							
						

						
								
								android:layout_alignLeft

							
								
								Makes the left edge of this view match the left edge of the specified anchor view ID

							
						

						
								
								android:layout_alignParentBottom

							
								
								If set to true, makes the bottom edge of this view match the bottom edge of the parent

							
						

						
						
								
								android:layout_alignParentLeft

							
								
								If set to true, makes the left edge of this view match the left edge of the parent

							
						

						
								
								android:layout_alignParentRight

							
								
								If set to true, makes the right edge of this view match the right edge of the parent

							
						

						
								
								android:layout_alignParentTop

							
								
								If set to true, makes the top edge of this view match the top edge of the parent

							
						

						
								
								android:layout_alignRight

							
								
								Makes the right edge of this view match the right edge of the specified anchor view ID

							
						

						
								
								android:layout_alignTop

							
								
								Makes the top edge of this view match the top edge of the specified anchor view ID

							
						

						
								
								android:layout_alignWithParentIfMissing

							
								
								If set to true, parent is used as the anchor when the anchor cannot be found for layout_toLeftOf and layout_toRightOf, for example

							
						

						
								
								android:layout_below

							
								
								Positions the top edge of this view below the specified anchor view ID

							
						

						
								
								android:layout_centerHorizontal

							
								
								If set to true, centers this child horizontally within its parent

							
						

						
								
								android:layout_centerInParent

							
								
								If set to true, centers this child horizontally and vertically within its parent

							
						

						
								
								android:layout_centerVertical

							
								
								If set to true, centers this child vertically within its parent

							
						

						
								
								android:layout_toLeftOf

							
								
								Positions the right edge of this view to the left of the specified anchor view ID

							
						

						
								
								android:layout_toRightOf

							
								
								Positions the left edge of this view to the right of the specified anchor view ID

							
						

					
				

				These attributes allow an alignment with any sibling as long as you gave them IDs (using the android:id attribute) as well as alignment with the parent edges or centering within the parent. Think of them as snap-on parts. If you’re familiar with Windows .NET Forms or WPF, this concept is similar to the Anchor properties.

				As every new view is added to RelativeLayout, it defines two vertical gridlines (one for the left edge of the widget and one for the right edge) and three horizontal gridlines (top, bottom, and baseline). Any new view can use these (abstract) gridlines to request its position. As it’s added, it introduces its own gridlines, some of which are co-located with existing gridlines. This concept is shown schematically in Figure 5-12.

					

				
					Figure 5-12: Snapping widgets to align with other widgets.

				

					[image: 9781118008256-fg0512.tif]

				In Figure 5-12, after Widget 1 is placed, all future widgets position themselves horizontally to align one of their edges to the left or right edge of Widget 1. Thus, there are four possible choices for horizontal alignment (one for each edge) for the new widget, Widget 2 — left and right; you can align the widget with either of the two vertical edges from Widget 1:

				[image: check.png] Align Widget 2’s left edge with the left edge of Widget 1.

				[image: check.png] Align Widget 2’s left edge with the right edge of Widget 1.

				[image: check.png] Align Widget 2’s right edge with the left edge of Widget 1.

				[image: check.png] Align Widget 2’s right edge with the right edge of Widget 1.

				Vertical alignment (with the horizontal gridlines) gives you five possible choices to align with another widget:

				[image: check.png] top-top

				[image: check.png] top-bottom

				[image: check.png] bottom-top

				[image: check.png] bottom-bottom

				[image: check.png] baseline-baseline

				The use of the Baseline constant aligns the first row of text with the baseline of the specified widget’s text.

				[image: warning_bomb.eps]	Edge refers not to the edge of the displayed widget but, rather, to the edge of the widget plus any margins.

				You may recall that the layout manager determines the positions of every gridline based on such factors as the widget size and margins, for example. As the content of one widget grows, it forces the other widgets to maintain its alignment.

				[image: warning_bomb.eps]	Avoid creating a chicken-and-egg situation in which one widget needs another widget’s position to determine its position but the position can’t be calculated because it requires (eventually) the first widget’s position. For example, if RelativeLayout has its height set to wrap_content and a child is set to align_parent_bottom, a circular dependency exists, which results in a runtime error.

				RelativeLayout is useful for both high-level design and smaller components, such as a standard right-aligned Okay or Cancel confirmation, a login component, or the TwoLineListItem widget, which derives from RelativeLayout. Though both TableLayout and RelativeLayout manage the 2D spatial relationships between the many widgets in its hierarchy, FrameLayout (described in the following section) allows only one of its children at a time to be seen but reserves enough space to show each one seamlessly.

				The FrameLayout layout

				The important FrameLayout class, which forms the base for many other classes, simply pins every child view to the upper-left corner. Adding multiple children stacks each new child on top of the one before it, with each new child obscuring the last. If the new child is transparent or smaller, it may only partially obscure its previous siblings.

				The size of the frame layout is the size of its largest child (plus padding), visible or not. All children, when rendered, are basically given this size but pinned to the upper-left corner. Using the layout_gravity of a child widget allows the widget to appear to move away from the upper-left corner. Thus, FrameLayout is often used to provide an overlay effect. The following XML code (taken from http://developer.android.com/resources/articles/layout-tricks-merge.html) places a text label centered near the bottom of the view over the much larger image being displayed:

				<FrameLayout xmlns:android=”http://schemas.android.com/apk/res/android”

				 android:layout_width=”match_parent”

				 android:layout_height=”match_parent”>

				

				 <ImageView

				 android:layout_width=”match_parent”

				 android:layout_height=”match_parent”

				

				 android:scaleType=”center”

				 android:src=”@drawable/golden_gate” />

				

				 <TextView

				 android:layout_width=”wrap_content”

				 android:layout_height=”wrap_content”

				 android:layout_marginBottom=”20dip”

				 android:layout_gravity=”center_horizontal|bottom”

				

				 android:padding=”12dip”

				

				 android:background=”#AA000000”

				

				 android:textColor=”#ffffffff”

				

				 android:text=”Golden Gate” />

				

				</FrameLayout>

				The result is shown in Figure 5-13. This layout works and adjusts the sizes of the widgets, regardless of the image sizes or the amount of text in the caption label.

					

				
					Figure 5-13: An example of using the FrameLayout class.

				

					[image: 9781118008256-fg0513.tif]

				The FrameLayout class is used as the base for the ScrollView, ImageSwitcher, TabHost, and ViewAnimator layouts and the date and time picker widgets, and for many more layout and widget classes. It has associated with it a FrameLayout.LayoutParams class that derives from the MarginLayoutParams class and adds the gravity layout attribute.

				[image: tip.eps]	Chapter 6 covers more user interface support to make these more functional.

				Choosing the Right Layout

				The layout manager you should choose is the one that makes your life easiest, of course, while still providing your users with the functionality they require. The same design can probably be implemented using several approaches and top-level layout managers. In this section, we help you consider which layout managers work best in which situations. Though you should follow general guidelines, exceptions to the rule always exist, so use your best judgment. Fundamentally, your choices are dictated by the data to be gathered or presented and when it’s needed:

				[image: check.png] If your application has a fairly linear progression of user interaction, ScrollView with RelativeLayout or TableLayout may be your best bet.

				[image: check.png] For applications with several activities, each with its own user interface, consider using ImageSwitcher, SlidingDrawer, TabHost, TextSwitcher, ViewFlipper, or ViewSwitcher. They allow the layout to be changed (and often replaced), presenting an entirely new set of widgets.

				[image: tip.eps]	The best user interface presents the most important information in a way that’s clearly visible and easy to use while allowing less-often-used items to be accessed.

					Use the command-line tool layoutopt in the Tools SDK to find inefficiencies in your XML-based layouts.

				Here are several more guidelines you should follow when developing your Android apps:

				[image: check.png] Buy a physical Android phone or tablet. In fact, buy several. The experience of installing and running your application on a physical device is different from running it on the emulator.

				[image: check.png] Design for big fingers. Many people have large fingers and clicking small buttons can be an adventure.

				[image: check.png] Design for both horizontal and vertical screen orientations. The layout on many mobile devices changes as the orientation of the device changes or the keyboard is used.

				[image: check.png] Avoid putting too much information on a tiny screen. Hide features that aren’t used most of the time.

				[image: check.png] Scrolling can be confusing in a user interface, so try to make your data fit on the screen. If you can’t, logically group functionality and split it into several windows or tabs. Save scrolling for long chunks of data that cannot be broken into several pieces.

				[image: check.png] Don’t overload the menu. The contextual menu has to be used quickly. If you have a lot of information, create one entry for a submenu named More, as Google does on its main page (at www.google.com).

				[image: check.png] Always notify the user whenever an app may be consuming resources that aren’t free. For example, an app may be sending data across the network that consumes a user’s data plan quota.

				[image: check.png] The user experience with your app should be consistent with other apps they commonly use. Don’t try to be clever by introducing nonstandard behaviors. The following behaviors should be consistent:

					•	Pressing the Back button cancels the current action. Pressing Back saves the state, quits the app, and waits for you to return, a behavior that’s fundamentally different from most desktop applications. It’s similar to minimizing the window on a desktop, except that, to restore the window, you launch the application again.

					•	A tap typically performs an action. Confirmation screens that ask you to save or confirm actions are even more annoying on a small device than they are on a desktop. If a user taps a setting, the setting should change. If a user makes a change and taps the Back button, the setting’s change should persist.

					•	When you reopen an app, it should return to the last state it was in. Tapping the Back button doesn’t close an app. You return it to the same state it was in by using the onResume/onCreate/onPause method.

					•	If a long pause occurs between the time an app was last used and then reopened, starting the app from an initial default state is reasonable. The rationale is that a long pause implies a new task or “train of thought” and, therefore, a clean slate. This concept is, of course, application dependent, but consider it in your design.

			

		

	
		
			
				Chapter 6

				Enhancing Your Layout with Widgets, Styles, and Themes

				In This Chapter

				[image: arrow] Understanding built-in views (or widgets)

				[image: arrow] Selecting the right widget for the job

				[image: arrow] Creating your own, custom widget

				[image: arrow] Applying styles and themes

				Designing the overall layout is only one piece of the puzzle involved in creating a user interface for your app. In this chapter, we describe the basic views used for individual data entry or selection. You can modify these views for your own app’s style or allow users to apply their own themes. If this level of control isn’t sufficient for you, the entire suite of drawing tools is available to create your own, custom controls.

				Beholding the Power of the Framework: Built-In Views

				The Android SDK provides a rich and fairly comprehensive set of components for you to use in your apps. Figure 6-1 shows the class hierarchy of the built-in widgets. (The children of ViewGroup have been omitted, for brevity.) All are available in the Android.widget package. Most of them have been in the framework beginning with version 1. KeyboardView and GLSurfaceView were added in version 3, and QuickContactBadge was added in version 5. The RSSurfaceView class is the new addition to version 11 (Android 3.0). RSSurfaceView is not a true widget but, rather, a raw surface on which to draw and, in this case, an OpenGL ES surface for Renderscript. RSSurfaceView replaces GLSurfaceView.

					

				
					Figure 6-1: The class hierarchy of View.

				

					[image: 9781118008256-fg0601.eps]

				New widgets can be created by deriving and extending any of these classes. In deciding which widget to use for your application, consider these two questions:

				[image: check.png] Which View is the easiest for your users to use in performing the necessary action?

				[image: check.png] Which View will lead to the fewest number of errors?

				It may be difficult to believe, but early computer applications had no menus, no combo boxes, no date pickers, and no buttons — and the mouse didn’t enter the scene until even later. You had to memorize various keystrokes or keywords in order to interact with an application, a situation that still exists on many command-line applications. Typing the wrong command can lead to frustration and unwanted results. One helpful feature of a combo box, for example, is that it limits user choices to ones that the application knows about, which prevents syntactical errors. Much like a menu, a combo box also provides the user with information about the permissible choices, allowing the exploration of options that may not be obvious in a legacy application.

				[image: remember.eps]	An individual GUI component is often referred to as a widget — not to be confused with an Android App Widget, which can be hosted in a special class of apps. They’re similar in that an Android widget is supposed to be small enough to be considered a single component. You also see widgets referred to as components (as we have done here) or elements of the GUI.

				[image: tip.eps]	Chapter 5 covers the nitty-gritty details of a button and its relationship to the View class. In this chapter, we look at the higher-level functionality of a button, including its behavior and the different appearances it can take on.

				Working with a push button

				You might already know (if you read Chapter 5) that a GUI component can be added either programmatically or by using XML-based layout files. In honor of Homer, from The Simpsons, we show you how to create a giant button to override the local nuclear power plant. Create a new app and, in the onCreate method, add a button, like this:

				 @Override

				 public void onCreate(Bundle savedInstanceState) {

				 super.onCreate(savedInstanceState);

				 LinearLayout layout = new LinearLayout(this);

				 Button dohButton = new Button(this);

				 dohButton.setText(“In case of meltdown, Push Me!”);

				

				 layout.addView(dohButton);

				 setContentView(layout);

				 }

				This code snippet creates a button, sets the text of the button to In case of meltdown, Push Me!, and adds the button to LinearLayout, which is then set to the View content of the app. You can change the appearance of this button quite simply. If you add the following statements after you create the button (but before you set the app’s content), your button is sized and colored, as shown in Figure 6-2:

				 dohButton.setText(“In case of meltdown, Push Me!”);

				 dohButton.setWidth(400);

				 dohButton.setPadding(30,45,30,45);

				 dohButton.setTextColor(0xFFFF0000);

				 dohButton.setTypeface(Typeface.DEFAULT_BOLD);

					

				
					Figure 6-2: The result of programmatically creating Button and setting some of its attributes.

				

					[image: 9781118008256-fg0602.tif]

				This example sets the width of the Button in terms of pixels so that it’s 400 pixels wide. The text color is set to red using a hexadecimal number in the format #AARRGGBB. A regular base-10 number could have been used here, but would actually be more difficult to read, as the digits in the number would not relate to the individual color channels: alpha, red, green, and blue.

				[image: technicalstuff.eps]	The alpha channel in a color controls its transparency. An alpha of 255 (#FF, in hexadecimal format) implies an opaque color, and a 0 alpha is transparent (invisible).

				The example also sets the padding to create a bigger button. Though you can set the background color just as easily as you set the text color, it destroys the “look” of a button. In fact, the Button class is more specifically called a push button (because its three-dimensional appearance makes the button look like it’s “popping out” of the phone, like a keyboard key). Pushing the button changes its appearance temporarily, verifying for the user that the push button is valid. Unfortunately, setting the background color destroys this process. The button has no 3D look and doesn’t change colors when it’s pushed.

				Two methods set the font and typeface of text. The method just described uses the default font and only specifies bold. All these customizations are in either the base class, TextView, or the View class.

				Button has no method to set an image or icon for a button. You can use the ImageButton class (derived from ImageView, not Button) for buttons with images only. If you want a button with a stylized background and text, you replace the entire background of the button using a drawable resource. (See “Pretty in pink: Creating custom buttons,” later in this chapter). The following section helps you make this button useful.

				Creating Tic-Tac-Toe using push buttons

				In this section, we show you how to rework the Tic-Tac-Toe application (see Chapter 2) to use buttons so that you can programmatically control whether the text is displayed, whether the button is enabled (or can be pushed), and how to handle the game logic when a button is pressed.

				You start by making a layout with nine large buttons. As we explain in Chapter 5, you can use several layouts for this task. The following chunk of XML uses a set of three LinearLayouts with horizontal orientation inside a LinerLayout with a vertical orientation. Every button is given a weight equal to 1, as is every internal LinearLayout, to provide uniform button spacing. The following code example produces this layout by using XML:

				<?xml version=”1.0” encoding=”utf-8”?>

				<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”

				 android:orientation=”vertical”

				 android:layout_width=”fill_parent”

				 android:layout_height=”fill_parent”

				 >

				 <LinearLayout

				 android:orientation=”horizontal”

				 android:layout_width=”fill_parent”

				 android:layout_height=”fill_parent”

				 android:layout_weight=”1”

				 >

				 <Button

				 android:hint=”play”

				 android:layout_width=”fill_parent”

				 android:layout_height=”fill_parent”

				 android:layout_weight=”1”

				 />

				 <Button

				 android:hint = “play”

				 android:layout_width=”fill_parent”

				

				 android:layout_height=”fill_parent”

				 android:layout_weight=”1”

				 />

				 <Button

				 android:hint = “play”

				 android:layout_width=”fill_parent”

				 android:layout_height=”fill_parent”

				 android:layout_weight=”1”

				 />

				 </LinearLayout>

				

				 <LinearLayout

				 android:orientation=”horizontal”

				 android:layout_width=”fill_parent”

				 android:layout_height=”fill_parent”

				 android:layout_weight=”1”

				 >

				 <Button

				 android:hint=”play”

				 android:layout_width=”fill_parent”

				 android:layout_height=”fill_parent”

				 android:layout_weight=”1”

				 />

				 <Button

				 android:hint = “play”

				 android:layout_width=”fill_parent”

				 android:layout_height=”fill_parent”

				 android:layout_weight=”1”

				 />

				 <Button

				 android:hint = “play”

				 android:layout_width=”fill_parent”

				 android:layout_height=”fill_parent”

				 android:layout_weight=”1”

				 />

				 </LinearLayout>

				

				 <LinearLayout

				 android:orientation=”horizontal”

				 android:layout_width=”fill_parent”

				 android:layout_height=”fill_parent”

				 android:layout_weight=”1”

				 >

				 <Button

				 android:hint=”play”

				 android:layout_width=”fill_parent”

				 android:layout_height=”fill_parent”

				 android:layout_weight=”1”

				 />

				 <Button

				

				 android:hint = “play”

				 android:layout_width=”fill_parent”

				 android:layout_height=”fill_parent”

				 android:layout_weight=”1”

				 />

				 <Button

				 android:hint = “play”

				 android:layout_width=”fill_parent”

				 android:layout_height=”fill_parent”

				 android:layout_weight=”1”

				 />

				 </LinearLayout>

				</LinearLayout>

				Every Button is given a hint with the text string “play”. Recall that the hint is displayed whenever the text is empty. In this example, it’s used to indicate that the square hasn’t yet been played. (Figure 6-3 shows the result of using this layout.) If you prefer an empty space, simply delete the hint attributes.

					

				
					Figure 6-3: The initial state of the tic-tac-toe board using push buttons: No text in the button and the Hint property set to play.

				

					[image: 9781118008256-fg0603.tif]

				Creating a GUI with Java

				Our purpose in this chapter is to illustrate code-based GUI control, so you should also look at how to create the Tic-Tac-Toe application entirely programmatically. When you set the content for the view of the activity by using the following call in the onCreate method of the Activity, it uses an XML-based layout (that was compiled into an R file — see Chapter 2).

				setContentView(R.layout.main);

				Replace the preceding line with the following two lines:

				View ticTacToe = createTicTacToe();

				setContentView(ticTacToe);

				The createTicTacToe method is a new method you need to write in order to create the content. The layout requires four LinearLayout instances and nine Buttons. To increase code readability, the createTicTacToe method creates three rows using the createRow method, which creates three Buttons. Continuing a top-down design, the createTicTacToe method looks something like this:

				 private View createTicTacToe()

				 {

				 LinearLayout root = new LinearLayout(this);

				 LinearLayout row1 = createRow(0);

				 LinearLayout row2 = createRow(1);

				 LinearLayout row3 = createRow(2);

				

				 root.addView(row1);

				 root.addView(row2);

				 root.addView(row3);

				

				 root.setOrientation(LinearLayout.VERTICAL);

				 return root;

				 }

				This example creates a LinearLayout instance that’s eventually returned as the variable root. Another helper method, createRow, is used to create each row of the tic-tac-toe board. It returns an instance of a LinearLayout which is added to the base LinearLayout, root. The default orientation for LinearLayout is horizontal, and the method setOrientation is used to change it to vertical, which provides the basic layout for the tic-tac-toe board.

				The method createRow takes in a single Integer parameter to indicate which row is being created. You use this row number to assign a unique identifier to every button. You also use the row number to set a Hint for the Button, changing the XML design slightly. Here’s the first implementation:

				 private LinearLayout createRow(int rowNumber)

				 {

				 int index = 3 * rowNumber+1;

				 LinearLayout.LayoutParams layout = new LinearLayout.LayoutParams(-1,-1,1.0f);

				

				 LinearLayout row = new LinearLayout(this);

				 row.setLayoutParams(layout);

				

				 Button space = new Button(this);

				 space.setId(index);

				 space.setHint(Integer.toString(index));

				 space.setLayoutParams(layout);

				 row.addView(space);

				

				 space = new Button(this);

				 space.setId(index);

				 index++;

				 space.setHint(Integer.toString(index));

				 space.setLayoutParams(layout);

				 row.addView(space);

				

				 space = new Button(this);

				 space.setId(index);

				 index++;

				 space.setHint(Integer.toString(index));

				 space.setLayoutParams(layout);

				 row.addView(space);

				

				 return row;

				 }

				Several packages need to be imported — in particular, the following:

				import android.view.View;

				import android.widget.Button;

				import android.widget.LinearLayout;

				Build and run this application now. You should see a board similar to the one shown in Figure 6-3, except the hint is now a number for each button. Note the ordering of the numbers: They increase across the row and then down the columns. This is the order in which you added the Buttons to LinearLayout and the order in which LinearLayouts were added to the top-level LinearLayout. The margins and cell padding remain at the default setting. Going forward, the appearance of the button is controlled depending on its state (playable, occupied by X, or occupied by O).

				After you have specified the app’s basic appearance, you can look at handling its basic behaviors (refer to Chapter 3), such as a large X being placed in a square after the user clicks a button.

				Handling basic Button behaviors

				For an application such as Tic-Tac-Toe, a Button should change its state whenever it’s pushed, which is exactly what the ToggleButton is designed for. Tic-Tac-Toe has the added constraint of a button being allowed to be pressed only once. You use the default Button to accomplish this task. As you can see, many classes deeper in the class hierarchy are simple customizations of the base class — in this case, Button.

				To handle button clicks (or taps, on modern touchscreens), the interface OnClickListener needs to be implemented. This interface, defined in the View class, has one method that must be implemented. The onClick method takes as input the View, which occupies the screen where the click event happened. The system doesn’t automatically call the onClick method that you define in the Activity class. Good software engineering principles may require you to have one or more classes that handle click (or tap) events. In this case, every class would implement the OnClickListener interface. To determine which onClick method should be called, you have to explicitly tell the system for every widget which onClick method (or instance of OnClickListener) should be called. View has the setOnClickListener method to accomplish this. Passing it an instance of the View.OnClickListener performs two tasks:

				[image: check.png] Sets the Clickable property to true

				[image: check.png] Saves a reference to the OnClickListener, whose onClick method is called whenever a click occurs in View

				The specification of the OnClickListener can occur for a parent or container, such as a LinearLayout in the application, but then that View is passed to the onClick method. For the Tic-Tac-Toe application, having the actual Button passed to the onClick method tells you precisely which square was selected. To do this, you add the following line every time a Button is created in the createRow method:

				space.setOnClickListener(this);

				Redefine Activity to implement the OnClickListener interface, similar to this line:

				public class TicTacToeButtons extends Activity implements OnClickListener

				Finally, add the implementation for the onClick method. You add a helper class to handle the button logic, named GameLogic. To use this class, you must cast the incoming View into a Button. (Programmatic error detection would also be wise at this point, but you’ve wired up only Buttons so far, so this strategy should work well.) Here’s the onClick method:

				 @Override

				 public void onClick(View view) {

				 Button button = (Button) view;

				 gameLogic.playSquare(button);

				 }

				The next section looks at this GameLogic class to see how it works with the Buttons it has passed.

				Writing the GameLogic class

				In addition to keeping track of which squares have already been played and by whom, the GameLogic class changes the state of the button when it’s played. Separating these concerns would be ideal — in particular, separating button updates from the game logic, but for now you can put all this logic into the game logic.

				[image: tip.eps]	The Button class can be used as a base class. Consider specializing this class even further and create a TicTacToeButton class that keeps track of its own state (playable, X, O).

				The GameLogic class, which takes a Button to play a turn, tracks whose turn it is to play. Provide a parameter on the constructor to indicate whether the person playing X or O should go first, like this:

				public class GameLogic {

				

				 public GameLogic() {

				 this(false);

				 }

				 public GameLogic(boolean oGoesFirst) {

				 currentPlayer = 0;

				 if(oGoesFirst) currentPlayer = 1;

				 }

				 private int currentPlayer = 0;

				}

				Two constructors are provided: a default or parameter-less constructor, which simply calls a constructor that takes a single boolean value to indicate whether O should go first (true) or X should go first (false).

				As mentioned, the playSquare method takes a Button as a parameter. This method is the main interface with the game logic. It needs to determine which square is selected and change the Button appearance and state for that square. playSquare must also remember every player’s turn in order to identify whether someone has won the game. Finally, it tracks which player plays next and updates the class for the next turn. Here’s the implementation of playSquare:

				 public void playSquare(Button button) {

				 int id = button.getId();

				 setButtonState(button);

				 markSquare(id, currentPlayer);

				 currentPlayer = (currentPlayer + 1) % 2;

				 }

				The routine setButtonState takes as input a Button and changes:

				[image: check.png] The Button’s clickable state to false

				[image: check.png] The text of the button to either X or O based on the current player

				[image: check.png] The text size of the button

				Setting the button’s clickable state to false ensures that the Button can be clicked only once. Setting the text indicates which player clicked the Button. Here’s the implementation for setButtonState:

				 private void setButtonState(Button button) {

				 button.setText(symbols[currentPlayer]);

				 button.setTextSize(64);

				 button.setClickable(false);

				 }

				Using scaled pixel units to specify the text size lets the application ignore the details of the screen resolution. (The article about supporting multiple screens at http://developer.android.com/guide/practices/screens_support.html covers this topic in more detail.) The setButtonState routine uses a simple variable, symbols, to set the Button text:

				 private String[] symbols = {“X”, “O”};

				Figure 6-4 shows the result of this logic after a player has taken two turns.

					

				
					Figure 6-4: Changing the appearance of a Button.

				

					[image: 9781118008256-fg0604.tif]

				The rest of the game logic — keeping score and determining a winner — is left as an exercise. If you run this application, note that after a Button is clicked, it cannot be clicked again.

				A drawback of this application is that the tic-tac-toe board looks like a collection of buttons! The raised or three-dimensional appearance of buttons traditionally conveys to users that they should push them. Android users also receive feedback whenever they click buttons. We describe this concept in more detail in the following sections and tell you how to change the appearance of the Tic-Tac-Toe application.

				Pretty in pink: Creating custom buttons

				A better solution for the TicTacToe application is to derive a new button: TicTacToeButton. It provides a specialization that separates the behavior of a Tic-Tac-Toe square implemented as a button from the game logic. Virtually any View class can be used as a base class to derive your own user interface class.

				Attempting to create a custom TicTacToeButton

				In this section, you specialize the Button class — which is a specialization of the TextView class, which is a specialization of the View class. Though the Button class doesn’t know which square it’s on in the tic-tac-toe grid, it provides an easy-to-use set of methods that can set the state. Start with this example:

				package com.wiley.fordummiessdk;

				

				import android.content.Context;

				import android.graphics.Canvas;

				import android.graphics.Color;

				import android.graphics.Paint;

				import android.graphics.Paint.Align;

				import android.widget.Button;

				import android.widget.LinearLayout;

				

				public class TicTacToeButton extends Button {

				 private static String emptyString = “play”;

				 private static String xString = “X”;

				 private static String oString = “O”;

				 private static int emptyColor = Color.BLACK;

				 private static int xColor = Color.WHITE;

				 private static int oColor = Color.BLACK;

				 private static int emptyBackgroundColor = Color.LTGRAY;

				 private static int xBackgroundColor = Color.RED;

				 private static int oBackgroundColor = Color.WHITE;

				 private static float emptyFontScale = 16;

				 private static float markedFontScale = 64;

				

				 public TicTacToeButton(Context context) {

				 super(context);

				 LinearLayout.LayoutParams layout = new LinearLayout.LayoutParams(-1,-1,1.0f);

				 this.setLayoutParams(layout);

				 reset();

				 }

				

				 public void markX() {

				 this.setText(xString);

				 this.setTextSize(markedFontScale);

				 this.setTextColor(xColor);

				 this.setBackgroundColor(xBackgroundColor);

				

				 this.setClickable(false);

				 }

				

				 public void markO() {

				 this.setText(oString);

				 this.setTextSize(markedFontScale);

				 this.setTextColor(oColor);

				 this.setBackgroundColor(oBackgroundColor);

				

				 this.setClickable(false);

				 }

				

				 public void reset() {

				

				 this.setText(“”);

				 this.setHint(emptyString);

				 this.setTextSize(emptyFontScale);

				 this.setTextColor(emptyColor);

				 this.setBackgroundColor(emptyBackgroundColor);

				

				 this.setClickable(true);

				 }

				

				 public static void setTextColors(int empty, int x, int o) {

				 emptyColor = empty;

				 xColor = x;

				 oColor = o;

				 }

				

				 public static void setBackgroundColors(int empty, int x, int o) {

				 emptyBackgroundColor = empty;

				 xBackgroundColor = x;

				 oBackgroundColor = o;

				 }

				

				 public static void setFontSizes(float emptyScale, float markedScale) {

				 emptyFontScale = emptyScale;

				 markedFontScale = markedScale;

				 }

				

				 public static void setTextStrings(String empty, String x, String o) {

				 emptyString = empty;

				 xString = x;

				 oString = o;

				 }

				}

				This class has a set of static methods to set the default properties of TicTacToeButton. These methods allow the user to set these properties once and then create several instances. Having a default set of appearances allows for easier customization of the button. Reasonable defaults were already specified when these variables were defined.

				Calling either of the two main routines markX and markO disables the button (by setting its Clickable property to false) and sets the text, text scale, and text color to the appropriate values. These routines also set the background color for the button. A button uses a drawable that by default provides a color gradient with some padding around this gradient. There is a different default gradient for each of a button’s three states: enabled, pushed, and disabled. Setting the background color replaces all these default drawables, including the padding. Figure 6-5 shows the result: the grid associated with a tic-tac-toe board is gone.

					

				
					Figure 6-5: A first attempt at TicTac-ToeButton with a custom back-ground — not satisfactory.

					
				

					[image: 9781118008256-fg0605.tif]

				This problem is easily solved by creating new drawables that have the colors and styles you want. Alternatively, any class derived from View can specify its own onDraw method. This is the approach we will look at in the next section.

				Overriding the onDraw method for custom drawing

				The onDraw method is called whenever a control needs to be presented. Every widget can be thought of as a drawing. The system normally defines the drawing style and every class typically provides an implementation of the onDraw method. If the TicTacToeButton class were derived from View rather than from Button, you would have to provide your own implementation of onDraw. Because Button has an implementation, the example in the preceding section used it instead.

				The onDraw method is passed a parameter of type Canvas. This Canvas provides the context for any drawing, as well as a rich set of methods for drawing. The Canvas class, which has methods to draw pictures, circles, lines, rectangles, and text, works closely with the Paint class, which provides colors and text attributes for the drawing calls.

				For the TicTacToeButton class, a solid-colored rectangle centered in the view is needed for the background. The size of this rectangle needs to be slightly smaller than the size of the button. When you add a 12-pixel border around the “button,” the background is shown outside this rectangle. In addition, the text needs to be centered using the specified text, scale, and color. The implementation of the onDraw method is similar to this example:

				 @Override

				 protected void onDraw(Canvas canvas) {

				 super.onDraw(canvas);

				

				 float width = getWidth();

				 float height = getHeight();

				 float padding = 12;

				

				 Paint backgroundPaint = new Paint(Paint.ANTI_ALIAS_FLAG);

				 backgroundPaint.setColor(currentColor);

				 canvas.drawRect(padding, padding, width-padding, height-padding, backgroundPaint);

				

				 float x = 0.5f * width;

				 float y = 0.5f * height;

				 Paint paint = new Paint(Paint.ANTI_ALIAS_FLAG);

				 paint.setColor(currentTextColor);

				 paint.setStrokeWidth(2);

				 paint.setTextSize(currentFontScale);

				 paint.setTextAlign(Align.CENTER);

				 canvas.drawText(currentString, x, y, paint);

				 }

				Using the current size of the button, this method draws a rectangle centered within a 12-pixel border using paint with the background color (in this case, black). A new paint object is then created to draw the text using the drawText method of the Canvas class.

				Because the onDraw method is called whenever a control needs to be displayed, not whenever a square is marked, a change to the overall structure of the class is required. Rather than set properties of the underlying Button and then query them in the draw, the implementation simply tracks the key settings. The currentString, currentTextColor, currentColor, and font scales are set in the mark routines. Here’s a new implementation of the markX, markO, and reset methods:

				 public void markX() {

				 currentColor = xBackgroundColor;

				 currentTextColor = xColor;

				 currentString = xString;

				 currentFontScale = markedFontScale;

				

				 this.setClickable(false);

				 }

				

				 public void markO() {

				 currentColor = oBackgroundColor;

				 currentTextColor = oColor;

				

				 currentString = oString;

				 currentFontScale = markedFontScale;

				

				 this.setClickable(false);

				 }

				

				 public void reset() {

				 currentColor = emptyBackgroundColor;

				 currentTextColor = emptyColor;

				 currentString = emptyString;

				 currentFontScale = emptyFontScale;

				

				 this.setClickable(true);

				 }

				

				

				 private int currentColor = emptyBackgroundColor;

				 private String currentString = emptyString;

				 private float currentFontScale = emptyFontScale;

				 private int currentTextColor = emptyColor;

				Figure 6-6 shows the final implementation using red for squares marked X and using white for squares marked O. Empty spaces have a gray background.

					

				
					Figure 6-6: A custom-drawn TicTac-Toe-Button.

				

					[image: 9781118008256-fg0606.tif]

				Although this section describes how to use the Canvas and Paint classes to provide a View with its own, custom drawing so that you can give any piece of the user interface your own, creative touch, one major concern when providing custom appearances is allowing for user-defined styles and themes. Android is supplied with support for styles, which we cover in the next section.

				Simplifying Attribute Settings with Styles

				The View class has many attributes that can be set to control its appearance, and TextView adds several more attributes. Some of the more common attributes of the View class that you may want to change include the ones described in this list:

				[image: check.png] android:id: Specifies an identifier name for this View.

				[image: check.png] android:clickable: Specifies whether this View receives click events.

				[image: check.png] android:keepScreenOn: Specifies whether to keep the screen from turning off while this View is displayed.

				[image: check.png] android:background: Specifies a drawable resource to use as the background for this View.

				[image: check.png] android:padding: Sets the amount of padding in pixels surrounding this View.

				[image: check.png] android:visibility: Specifies whether this widget is displayed.

				[image: check.png] android:tag: Allows an arbitrary string to be supplied with the widget. This string can be retrieved by using the getTag method and searched for by using the findViewWithTag method.

				The TextView class adds many attributes to control the appearance of the text as well as how the text is entered:

				[image: check.png] android:editable: If set, allows the user to enter input into this control. Text boxes are typically editable; labels and buttons are not.

				[image: check.png] android:autoLink: Controls whether URLs, phone numbers, map addresses, and e-mail addresses are automatically converted to clickable links.

				[image: check.png] android:autoText: If set, corrects some common misspellings when entered.

				[image: check.png] android:ellipsize: If set, when the text doesn’t completely fit within the TextView, the text includes an ellipsis (. . .) to indicate the inclusion of more text.

				[image: check.png] android:numeric: Changes the input method to a numeric keypad.

				[image: check.png] android:phoneNumber: Changes the input method to a phone number input method.

				[image: check.png] android:digits: Changes the input method to a numeric keypad and allows only the specified set of characters to be entered.

				[image: check.png] android:password: When set, obscures the entered text and replaces every character with a dot.

				[image: check.png] android:hint: If the text string has not been set or the user has not entered any text, then this string will be displayed.

				[image: check.png] android:text: The string of text to display.

				[image: check.png] android:singleLine: Restricts the display of text to a single line.

				[image: check.png] android:lines: Restricts the display to the specified number of lines.

				[image: check.png] android:textColor: Specifies the color to use when displaying the text.

				[image: check.png] android:textSize: Specifies the size of the text, such as 18sp, where sp stands for scaled pixels, a standard dimension unit.

				[image: check.png] android:textStyle: Can be set to a combination of normal, bold, or italic using the or (|) operator (for example, android:textStyle=”bold|italic”).

				[image: check.png] android:typeface: Can be set to a combination of normal, sans, serif, or monoscript by using the or (|) operator.

				[image: remember.eps]	This list contains only about one-tenth of the possible attributes that can be set. See the Reference page for TextView on the Android SDK web page (http://developer.android.com/reference/android/widget/TextView.html).

				Creating your own style

				A collection of numerous appearance settings (see the preceding section) with similar values is known as a style for presenting the TextView. Changing these appearance settings every time a Button or TextView is created can be tedious and painstaking. Android helps solve this problem by supporting styles. You can create your own style by placing all these settings into a separate XML file. You place this file in the res/values directory. A style allows the following layout:

				<EditText

				 android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”

				 android:background=”#000000”

				 android:textColor=”#FFFFFF”

				 android:textStyle=”bold|italic”

				 android:text=”Hello”

				/>

				to be simplified to this:

				<EditText

				 style=”@style/DarkBold”

				 android:text=”Hello”

				/>

				To simplify a layout, you must create as a resource a new XML file that defines the style. A style contains a set of item names (value pairs), where the name is any of the standard attributes. For the preceding example, the resulting resource looks like this:

				<?xml version=”1.0” encoding=”utf-8”?>

				<resources>

				 <style name=”DarkBold”>

				 <item name=”android:layout_width”>

				 match_parent

				 </item>

				 <item name=”android:layout_height”>

				 wrap_content

				 </item>

				 <item name=”android:background”>

				 #000000

				 </item>

				 <item name=”android:textColor”>

				 #FFFFFF

				 </item>

				 <item name=”android:textStyle”>

				 bold|italic

				 </item>

				 </style>

				</resources>

				This example allows the application of the same style across a set of TextViews (including Buttons and other derived classes).

				Adding inheritance to a style

				To keep a style consistent, all attributes need to be set to a value. Furthermore, a new style is needed for every permutation of appearances. Fortunately, the Android SDK provides a simple mechanism to tweak an existing style by using inheritance. Using inheritance, one style is used as the default values for another style. The new style needs to change only the attributes which differ from this default. Suppose that you want to use the DarkBold style (see the preceding section) for entering and displaying phone numbers. You can do it easily by defining a new style with the phoneNumber attribute set to true:

				<style name=”DarkPhone” parent=”@style/DarkBold”>

				 <item name=”android:phoneNumber”>true</item>

				</style>

				For similar situations, Android provides a slightly easier inheritance mechanism. Just prefix a style with a user-defined style and the dot operator (for example, DarkBold.Phone), similar to Java-nested classes or namespace scoping rules. The example would then be written this way:

				<style name=”DarkBold.Phone”>

				 <item name=”android:phoneNumber”>true</item>

				</style>

				Note that because the name changes from DarkPhone to DarkBold.Phone, you enter the name of the style as DarkBold.Phone:

				<EditText

				 style=”@style/DarkBold.Phone”

				 android:text=”Hello”

				/>

				This example isn’t just a shortcut — it’s good practice for naming styles. Clearly, DarkBold.Phone is now used with the DarkBold style.

				Now you can create that long-admired fuchsia-colored background with lavender text style. However, because you’re reading this book, you’re probably more interested in programming than in designing pleasing color schemes. Fortunately (as you find out in the next section), Android provides a selection of polished styles that can be applied to provide pleasing results — a big win for anyone who is, like us, artistically challenged!

				Taking advantage of the built-in Android styles

				Android ships with a fairly rich set of styles for you to use (or inherit from). Its SDK contains resources for these styles in the R.java documentation. (Visit http://developer.android.com/reference/android/R.style.html for more information.) Android 3.0 (version 11) ships with the new Honeycomb holographic styles. For text appearance, the main style is defined in android:style/TextAppearance.

				Several variations of this style are available and make good starting points for your own, custom styles:

				[image: check.png] android:style/TextAppearance.Large

				[image: check.png] android:style/TextAppearance.Medium

				[image: check.png] android:style/TextAppearance.Small

				[image: check.png] android:style/TextAppearance.Inverse

				[image: check.png] android:style/TextAppearance.Inverse.Large

				[image: check.png] android:style/TextAppearance.Inverse.Medium

				[image: check.png] android:style/TextAppearance.Inverse.Small

				Unless you define all attributes, you should use best practices to inherit your custom styles from one of these predefined styles. You do this in the same way as you inherit from a custom style, by using the parent element. The resource file in the precious sections should be changed as follows:

				<?xml version=”1.0” encoding=”utf-8”?>

				<resources>

				 <style name=”DarkBold”

				 parent=”@android:style/TextAppearance.Large”>

				 <item name=”android:layout_width”>

				 match_parent

				 </item>

				 <item name=”android:layout_height”>

				 wrap_content

				 </item>

				 <item name=”android:background”>

				 #000000

				 </item>

				 <item name=”android:textColor”>

				 #FFFFFF

				 </item>

				 <item name=”android:textStyle”>

				 bold|italic

				 </item>

				 </style>

				</resources>

				For more information and a complete list of attributes that can be set, see this page at the Android SDK developer’s website: http://developer.android.com/guide/topics/ui/themes.html. Happy styling!

				Using Themes to Maintain a Consistent Style

				One problem with using styles is that a style must be applied to every widget. It would be nice if you had a way to say, “Here’s my default style.” You can, by using a theme. The only difference between a style and a theme is how they’re applied: You can apply any style to the application, but you apply the theme to the application in the application’s manifest. Modify the application tag in the ApplicationManifest.xml file to indicate the theme, like this:

				<application android:theme=”@style/DarkTheme”>

				Rather than use the style DarkBold, which has attributes applied only for the appearance of text, define a new style that inherits from a standard Android style. The following style definition inherits from the new Holographic theme:

				<style name=”DarkTheme” parent=”@android:Theme.Holo”>

				 <item name=“android:background“>

				 #000000

				 </item>

				 <item name=“android:textColor“>

				 #FFFFFF

				 </item>

				 <item name=“android:textStyle“>

				 bold|italic

				 </item>

				 </style>

				Providing compatibility for older devices

				The problem with the approach in the preceding section is that older phones may not support the Holographic theme. You can define the same style multiple times by using the same style name if the resources are placed into a version-specific folder. So, if the style definition in the preceding section is placed in the res/values-v11 folder and the following example is placed in the res/values folder, the application automatically switches to the Holographic theme on devices supporting Android 3.0 or higher:

				<style name=”DarkTheme” parent=”@android:Theme.Light”>

				 <item name=“android:background“>

				 #000000

				 </item>

				 <item name=“android:textColor“>

				 #FFFFFF

				 </item>

				 <item name=“android:textStyle“>

				 bold|italic

				 </item>

				 </style>

				The theme lets you change settings for application-specific appearances and behaviors, including the new ActionBar in Android 3.0. The complete list of attributes that are defined in a theme is available in the R.stylable documentation under the Theme section (http://developer.android.com/reference/android/R.styleable.html#Theme) on the Android SDK website.

				Differentiating activities by using specific themes

				If different activities within a single application need to use different themes — or if you simply want one or more of your activities to have a different style (theme) — you set them on the activity tag in the manifest file, rather than on the application tag. The following line applies the Android standard Dialog theme to AccountActivity:

				<activity android:theme=”@android:style/Theme.Dialog”

				 android:name=”AccountActivity”>

				The BackgroundActivity can set its default style to DarkTheme by added the following line to the manifest file.

				<activity android:theme=”@style/DarkTheme”

				 android:name=”Background”>

				As with most operating systems, a large community of users works to develop themes and then share them with the developer community. These themes range in complexity from a simple change to the background image to controlling the animations when Views are first displayed. Most device manufacturers and many phone carriers provide their own themes to enhance the user experience.

			

		

	
		
			
				Chapter 7

				Designing Your Application’s Logic and Data

				In This Chapter

				[image: arrow] Applying object-oriented design techniques and guidelines and design patterns in your Android app

				[image: arrow] Incorporating your design into the Android framework and the Android Application Model

				Earlier in this book, we illustrated the capabilities of the Android SDK. But simply showing you its capabilities leaves out an essential portion of your understanding — how you can, starting from just an idea about what your app is supposed to do, design and implement it. In other words, we walk you through the use of all the ingredients in your kitchen but don’t show you how to cook something good to eat! Therefore, we now interrupt our regularly scheduled programming to segue into how to design an Android application.

				This chapter is, in a sense, a complement of Chapter 3, where we explained what the Android Application Model and the Android framework are, using the Tic-Tac-Toe example as the medium). In this chapter, we show you how to design Tic-Tac-Toe from scratch and implement it within the Android framework.

				Understanding Best Practices in Application Design

				As college professors, we have seen literally thousands of students develop software. When we began writing this book, we pondered what special value we could bring to the project. We determined that we could best contribute by providing a lesson on how to write good software — in particular, software written within a framework such as the Android SDK.

				When writing an app while learning to use a new framework, most programmers understandably focus on simply making it work. They might also focus on making the app look good, but concentrate on its user interface alone. After a programmer’s first app or two begin to work, mastery of the framework becomes the programmer’s next goal. This goal is a good one in itself. Also, because most frameworks are developed somewhat thoughtfully, following the framework’s guidelines (implementing activities and views in the Android framework, for example) results in mostly good design. However, a framework takes you only so far because its guidance has to be generic because it’s aimed at supporting all kinds of applications, not just yours. You have to design your app given the specific factors that make your app your app. Take plenty of time to complete this task and not only will your app have fewer bugs but you can also reuse and maintain more code.

				The design techniques and guidelines you can use are object-oriented, or O-O, design techniques (see the following section) that fall under the general category of responsibility-driven design (a concept originated by Dr. Rebecca Wirfs-Brock). We also heavily borrow from documented standard software design practices known as design patterns.

				Though we specify that you should follow the framework guidelines, simply following them doesn’t result in a completely well-designed app, because the framework can offer only generic guidelines. These standard O-O techniques and design patterns also go only part of the way, for the opposite reason that they don’t state how to fit these techniques into your technology framework. We try to address these gaps in this chapter. In other words, we show you how to design your app, in the context of the Android SDK and the Android Application Model, by using these well-established design techniques.

				The progression of this chapter is as follows. First, we briefly cover standard object-oriented design techniques. Then we walk you through the design of the Tic-Tac-Toe example.

				Applying object-oriented design

				The idea behind object-oriented design is that programs are intended to solve problems in the real world. Basing software components on real-world entities — both concepts as well as physical things — makes the software easier to figure out (analyze) as well as design. Further, because the components have been modeled on the real world, they’re stable (they won’t change quickly, because the real world isn’t changing quickly) and more capable of capturing variation and evolving in a more understandable manner. This is because the variation that naturally happens in the real world is captured in the application.

				We reiterate that, by real world, we don’t necessarily mean only physical elements. For example, a tic-tac-toe game consists of a board, moves, players, and (X and O) symbols. Some elements are physical (such as players and the board), and some are not (such as moves). But all these elements are real-world entities. O-O design specifies that when you write a software app to play tic-tac-toe, you have classes that represent these items — classes named Board, Game, and Symbol, for example.

				Understanding the basic elements of object-oriented design

				The following list reviews basic object-oriented terminology:

				[image: check.png] Object: The primitive element of an object-oriented program. An object encapsulates (retains) data and provides methods (operations or functions) that implement what the class is supposed to do — its responsibilities. Thus, a Stack encapsulates the elements of the stack and provides push and pop methods to insert and extract elements in accordance with how the stack is supposed to work: Elements inserted last are extracted first.

				[image: check.png] Class: Implements an object and contains the necessary data structures and method code (in our stack example, the method code is that which implements the push and pop operations).

				[image: check.png] Type: An object specification that describes how to interact with it — by using its methods. An object essentially may have multiple types because its class can implement more than one related set of functionality. In Java, the type of an object is specified by the interfaces it implements. Because an object may implement multiple interfaces, an object has multiple types. (Incidentally, rather than think of an object as having multiple types, you can think of an object’s single type as the union of the interfaces it implements.)

				[image: check.png] Subclass: A class that inherits all functionality from another class (known as the superclass). A subclass can either override specific functionality by providing its own implementation of certain methods or it can extend the functionality of the superclass by providing additional methods and using additional member variables.

				[image: tip.eps]		Similarly, a type (that is, an interface) may also be extended by defining a subtype. In this case, no functionality is overridden; the subtype simply has more methods that any object of that subtype must implement.

				[image: check.png] Abstract and concrete classes: You cannot create objects from certain classes. These classes are known as abstract classes. Classes from which you can create objects are known as concrete classes. Of course, interfaces are always abstract.

				[image: check.png] Collaborator: Objects (for example, instances of classes) interact with each other to implement the features of the application (an application is defined below). Thus, each class has a set of collaborators that it interacts with.

				[image: check.png] Application: An application consists of a collection of collaborating classes of various types.

				The tasks involved in using object-oriented design are identifying and defining appropriate classes and types and then designing their collaborations so that the application can do what it needs to do. Capiche? Simple enough? Read on.

				Extracting and defining objects, classes, responsibilities, collaborators, methods, and signatures

				In order to identify and define appropriate classes and types and then design their collaborations so that the application can do what it needs to do, you need to start with something that describes the application. Use whatever material you have available — a concept document, a requirements document, or a storyboard, for example, or even notes on a whiteboard. If you have none of these items, create them now. Trained software developers developing large applications do this task formally, in a process known as requirements analysis. For small apps and simple systems, however, informal methods work just fine. So simply write up a couple of pages on what you want your app to do, who its users are, and how you want them to interact with it. You can use paper or type a document into the computer. It’s your call.

				After you create the write-up, review it carefully to identify and record on paper the nouns; these nouns become candidate (not final) classes. Also identify and record the verbs; these verbs become candidate (not final) responsibilities. Systematically review the nouns and verbs you used and write down their definitions. If you have just a few nouns and verbs, you might even keep track of their definitions in your head. (Notice that we suggest only that you might track them in your head — we have to write everything down!)

				If your definitions have two nouns or two verbs that have more or less the same meaning, remove the one that least captures the meaning you want to capture. If a noun doesn’t have a single definition, try splitting the noun into two, to define each one cohesively. Repeat this process with the verbs.

				[image: tip.eps]	Incidentally, feel free to rename nouns and rewrite verbs so that they better fit your definitions of them.

				[image: tip.eps]	Also, reject any nouns and verbs that are in the environment in which your system operates (and, as a result, outside the context of your system).

				Next, allocate the consolidated set of verbs (for example, the candidate responsibilities) among the nouns (for example, the candidate classes) so that every class has only the responsibilities that “properly” belong to it. To quickly test for proper allocation, ensure that the responsibilities don’t cause the definition of the class to lose cohesiveness.

				[image: tip.eps]	You test for cohesiveness of a class as follows. Ask the question (to yourself), “Who or what does this class represent?” If your answer indicates that it represents a single well-understood entity, then the class is cohesive.

				Now create a few detailed scenarios that capture the essential capabilities of your app. Use these scenarios to identify the collaborations by walking through the steps of the scenario in detail, to identify which class and which method enable the step. You can also find missing classes and methods this way.

				To ensure that every class is a good one, review the questions in this checklist:

				[image: check.png] Does the class have a suitable name?

				[image: check.png] Does the class represent exactly one well-understood entity?

				[image: check.png] Does the class have responsibilities (methods)?

				[image: check.png] Does the class have collaborators?

				[image: check.png] Does the class (or its components) maintain state?

				The next step is to consolidate and clean up the class hierarchy. In this step, you look for classes that encapsulate similar data and responsibilities. You may create superclasses as needed to encapsulate common responsibilities (refer to the earlier section “Understanding the basic elements of object-oriented design”), but make sure that each superclass passes the cohesiveness test. The original classes can then inherit from and extend the superclasses.

				[image: tip.eps]	Before you create a superclass, however, perform the “is a” test, by speaking the sentence “The <subclass> is a <superclass>” (replacing the italicized placeholders with the names of the classes you’re testing). If the sentence doesn’t completely make sense, the creation of the superclass is incorrect.

				As the final step, specify (or at least understand) what every method is supposed to do, what it creates as output, and what it needs as input in order to perform its function. In other words, working class by class, and method by method, define its input parameters and output result — known as its signature.

				Applying design patterns

				The 1994 book Design Patterns: Elements of Reusable Object-Oriented Software (published by Addison-Wesley and written by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides — known as the IBM Gang of Four) strongly influenced the field of software design and became an important resource for learning object-oriented design. Because the book described common ways to design classes and their interactions for solving common software design problems, software developers could look up a “catalog” of designs to see whether a particular design pattern provided a template to begin their own designs. (Programmers could say, essentially, “Aha! My problem seems similar to the problem that this pattern is supposed to solve.”) However, note that a design pattern is not a canned solution that you can simply plug into your own code. It is (again) simply a place to start your design.

				The well-known model-view-controller (MVC) design pattern, shown in Figure 7-1, shows itself in many different kinds of applications — in particular, in web applications. The idea behind this pattern is to isolate the domain logic of the application from the way the application is presented to the user (the application’s user interface) so that these two vital application components can be designed, implemented, and maintained separately. For example, the logic of playing a tic-tac-toe game based on its game rules is the domain logic of the Tic-Tac-Toe application, and hence the model. The tic-tac-toe grid presented to users (for their interaction) is the user interface and, hence, the view. The controller is a component, interposed between the two, that

				[image: check.png] Receives user actions (such as “The user clicked here”)

				[image: check.png] Translates commands into actions on the model

				[image: check.png] Updates the resulting model and notifies the user interface that it must update itself

					

				
					Figure 7-1: The model-view-controller design pattern.

				

					[image: 9781118008256-fg0701.tif]

				If this discussion makes sense at a high level but you’re unsure how to connect it to development using the Android SDK and the Android Application Model, well, that’s what the next section is for!

				Understanding software frameworks

				A software framework may be defined as follows:

				A software framework is collection of related software components providing generic functionality that can be selectively overridden or refined by user-provided code or components, thus providing functionality specific to an application or domain.

				In object-oriented software frameworks, the functionality provided by the framework can be “selectively overridden” or “specialized,” by using a set of object-oriented techniques that implement the concept known as inversion of control. Inversion of control means that the program’s flow of control — the way the program runs — isn’t dictated by the user of the framework but, rather, by the framework itself (as default behavior). This default behavior is intended, however, to be extended or modified by code that the user supplies. The user supplies this code in the form of classes that extend the base classes of the framework (which are usually abstract classes) and either override certain methods or provide implementations of virtual methods. The user’s classes may also implement specific interfaces that are then passed to and invoked by the framework. (Incidentally, this concept distinguishes frameworks from software libraries that simply provide computational capabilities that can be invoked from your application — such as the string manipulation routines provided by the java.lang package.)

				[image: remember.eps]	The Android SDK is, in fact, a framework. As we describe in Chapters 1 and 3, it provides a set of base classes that you extend with your own classes and code.

				Among other things, the default functionality provided by frameworks implements patterns (or variations of patterns). For example, a core component of the Android framework (for example, the Activity class and its subclasses) implements the MVC pattern. The activity serves as the controller between its View and the application logic (the domain logic) that’s supposed to take place in that activity. Although this domain logic can be implemented directly in the activity itself, if the domain logic is complex, a better option from a design perspective is to extract it into a separate class or set of classes, which essentially comprises the model.

				So far we’ve given you a bunch of definitions. We now illustrate the concepts we covered in this section in the next section, using the Tic-Tac-Toe example.

				Illustrating Android App Design by Using the Tic-Tac-Toe Example

				In this section, we walk you through the process (outlined in earlier sections of this chapter) of designing the Tic-Tac-Toe app. The first step is to extract objects, classes, responsibilities, and collaborations from descriptions of the game and the application. We begin with a description of tic-tac-toe and add to it an informal specification of the software-based game to create the following description of the Tic-Tac-Toe app:

				Tic-tac-toe, also spelled tick-tack-toe, or noughts and crosses, as it is known in the Commonwealth countries, is a pencil-and-paper game for two players, who take turns marking the spaces in a 3×3 grid with the symbols X and O, respectively. The X player usually goes first. The player who succeeds in placing three respective marks in a horizontal, vertical, or diagonal row wins the game. Tic-Tac-Toe for Android implements the tic-tac-toe paper game as an Android app. In it, human users can play tic-tac-toe against a computer. Multiple games can be played in a session, with either the computer or the human playing first on an electronic board that’s displayed on the device’s touchscreen. Session scores are accumulated. If the user quits the session, scores are reset.

				Discovering classes, responsibilities, and collaborators for Tic-Tac-Toe

				From the description of the tic-tac-toe game, you proceed in the following order:

					1.	Examine nouns to extract candidate objects, classes, and attributes

					2.	Examine verbs to extract responsibilities

					3.	Identify collaborations

				This process results in the following list:

				[image: check.png] Nouns (candidate objects and classes): pencil, paper, game, nought, cross, player, X, O, space, symbol, grid, mark, vertical row, horizontal row, diagonal row, human user, human, computer, session, board, touchscreen, score

				[image: check.png] Verbs (candidate responsibilities): take turn, mark, goes, place, win, implement, play, playing first, display, accumulate, quit, reset

				From this list, merge, remove, and refine the nouns into classes, as described in the following list (we have omitted the rather obvious definitions):

				[image: check.png] Pencil and paper are physical items that are not relevant to an Android-based game. These are removed from the list of candidate classes.

				[image: check.png] Observe that symbol and mark are identical and retain symbol.

				[image: check.png] Observe that nought and O and cross and X are identical and, for simplicity, leave O and X. Further, note that O and X appear to be either instances or subclasses of Symbol.

				[image: check.png] After comparing user and player, retain player as the player in the game (user is the person using the Android device). Note that human user and human might be identical concepts, and also note that they (and computer) are instances or subclasses of player.

				[image: check.png] Realize that board and grid have similar enough meanings that one of them can be removed. In this example, keep grid and, in fact, rename it to game grid.

				[image: check.png] Because touchscreen appears to refer to a physical component of the phone, your first inclination might be to remove it. On the other hand, you need a class to handle the visual display of the board. You can choose this element to be the board itself, or perhaps separate the data structure that represents the board from its visual manifestation. (We chose to retain it as the representative of the visual display, but renamed it board.)

				[image: check.png] Consider row as a component of game grid and consider vertical row, diagonal row, and horizontal row as essentially different subclasses or instances of row. (You don’t yet know which.)

				[image: check.png] Consider session an instance of game, with score an attribute of either game or its two players.

				Continue this process with the verbs:

				[image: check.png] Remove take turn and goes as terms similar to play, and retain play. For now, retain playing first and the missing playing second as potential refinements of play. (The final design will show that they’re unnecessary.)

				[image: check.png] Remove the verb mark because it’s similar to place. Retain place but rename it place symbol.

				[image: check.png] Remove implement for not being a responsibility relevant to the game, but rather to the process of building it.

				[image: check.png] Retain display, accumulate, exit, and reset as valid responsibilities.

				The following potential classes, instances, and responsibilities remain:

				[image: check.png] Classes: Symbol, Player, Human, Computer, Board, Row, and Game (with the attribute Score)

				[image: check.png] Instances: O, X, of the class Symbol

				[image: check.png] Responsibilities (which later become methods): play, place, display, accumulate (scores), quit, and reset

				Now tentatively assign responsibilities to classes in a manner as rational as possible:

				[image: check.png] The class Game is allocated the responsibilities play, accumulateScores, quit, and reset.

				[image: check.png] The class Board has Display responsibilities.

				[image: check.png] The class GameGrid has Place.

				[image: check.png] The classes Symbol, Player, Human, Computer, and Row have no responsibilities (yet). You will find out in the next section, “Walking through scenarios to discover collaborators and missing classes and responsibilities,” whether to delete them.

				Walking through scenarios to discover collaborators and missing classes and responsibilities

				After you discover the classes, responsibilities, and collaborators for our Tic-Tac-Toe example, as described in the previous section, you can consider different scenarios to ensure that every one is supported by a method of a class (or, more accurately, a method of an object of the class). Also, as a side effect of this walk-through, you should identify and understand the collaborations.

				Because tic-tac-toe is a simple game, we describe a single, simple, and somewhat generalized scenario. (When you build a complex app, be sure to have detailed scenarios, each exploring a new set of interactions with the app.)

				Here’s the scenario:

					1.	Start a new game.

					2.	Specify who plays first (human or computer). The first player is assigned the X as a symbol; the second player, the O.

					3.	The first player places his (or its) symbol at an empty location on the board, followed by the second player placing his symbol.

						Repeat this step until one player has three symbols in a row, column, or diagonal or until no more squares can be played, in which case the game ends in a draw.

					4.	Accumulate players’ scores. The winning player has 1 added to his score. No change is made to a losing player’s score. (Both players’ scores remain the same if the game ends in a draw.)

					5.	If the user wants to start a new game, do so. Otherwise, quit.

				The following list walks you through every step of the scenario to see which class will handle it:

					1.	Start a new game.

						Ouch! You ran into trouble in the first step. No class supports the responsibility of starting a new game. This responsibility doesn’t seem to belong in either the Game or Board class, so you have to create a new GameController class to start a new game (by creating a new instance of Game). GameController and Game are thus collaborators (because GameController creates an instance of Game).

					2.	Specify who plays first (human or computer). The first player is assigned the X as a symbol; the second player, the O.

						Specifying who plays first and second can seemingly also be a responsibility of the GameController class. Because all these responsibilities are internal, they don’t have to be implemented as externally visible methods of this class (although they can certainly be private methods).

					3.	The first player places his symbol at an empty location on the board followed by the second player placing his symbol.

						Repeat this step until one player has three symbols in a row, column, or diagonal or until no more squares can be played, in which case the game ends in a draw.

						A symbol has to be (visually) placed on the board. Creation of the symbol is covered by the Symbol class. The Board class can cover placement of the symbol, if you add the method placeSymbol to it. Then Play is invoked on Game, which causes Grid to be updated.

						After a symbol is placed, you have to evaluate whether the game has ended with a win or a draw. This looks like it is a Game responsibility, and because Game likely collaborates with GameGrid to see whether a row, column, or diagonal has been completed, Game needs a responsibility — checkResult. Note that the classes Board, GameGrid, and Game are now collaborators. If no win has occurred and the board still has empty locations, the game continues.

						Next, you have to switch to the second player. If this player were the machine and you wanted to know what handles the logic, you would let Game handle it. To do this, Game must collaborate with GameGrid to produce a list of empty squares to choose from, so GameGrid needs the responsibility getEmptySquares.

					4.	Accumulate players’ scores. The winning player has 1 added to his score. No change is made to a losing player’s score. (Both players’ scores remain the same if the game ends in a draw.)

						At first blush, you might want to make the Game class responsible for accumulating scores. However, you will probably quickly realize that the Game class represents a single game, and that scores are accumulated across games in a session. So Game doesn’t seem a suitable class for accumulating scores, but perhaps GameController does. After you determine that this decision is appropriate, you rename GameController to GameSession. It creates a new game, specifies the players, plays the game, and accumulates scores.

					5.	If the user wants to start a new game, do. Otherwise, quit.

						It seems appropriate that GameSession handle starting a new game and quitting the session; this assignment gives the GameSession symmetric responsibilities. The updated scores have to be shown somewhere, perhaps by using the Board class. To do so, you add the ShowScores method to Board. With the assignment of ShowScores, Board represents more than the tic-tac-toe board. Hence, you rename it to GameView.

				Now you have these classes, responsibilities, and collaborators:

				[image: check.png] Game: Represents a single tic-tac-toe game.

					•	Responsibilities: play, checkResult

					•	Collaborators: GameSession, GameView, Grid

				[image: check.png] GameView: Represents the visual display of a tic-tac-toe game.

					•	Responsibilities: placeSymbol, showScores

					•	Collaborators: Game

				[image: check.png] GameGrid: Represents the 3 x 3 tic-tac-toe grid.

					•	Responsibilities: placeSymbol, getEmptySquares

					•	Collaborators: Game

				[image: check.png] GameSession: Represents a tic-tac-toe session in which multiple games are played.

					•	Responsibilities: playNewGame, quit, decidePlayers, accumulateScores

					•	Collaborators: Game, GameView

				[image: check.png] Symbol: Represents the tic-tac-toe symbol X or O.

					•	Responsibilities: None

					•	Collaborators: Game

				[image: tip.eps]	Note the transition of responsibility names from English-like to Java-method-like names.

				Your final step is to run each class through the checklist below. We presented this checklist earlier in this chapter (in the section “Extracting and defining objects, classes, responsibilities, collaborators, methods, and signatures). Verify that every class has the items in the following list and that the class maintains — or its components maintain — state:

				[image: check.png] A suitable name

				[image: check.png] A cohesive description

				[image: check.png] Responsibilities

				[image: check.png] Collaborators

				You will clearly see that the Tic-Tac-Toe classes meet these criteria.

				Defining method signatures

				When you have identified the classes and methods and you know which classes collaborate, the next step is to specify (or at least understand) what each method is supposed to do, what outputs it creates, and which inputs it needs. We explain this task class by class, method by method, starting with Game. (If you complete the scenario walk-throughs we describe in the earlier section “Walking through scenarios to discover collaborators and missing classes and responsibilities,” you can work in any order because you know what each method is responsible for.)

				The first method in Game is play, which is called whenever an X or an O is played on a square, identified by its coordinates. Because this method needs a Grid, a Symbol, and a coordinate (x, y) position, its signature is play(Grid, Symbol, x, y). It can return two disjointed sets of values:

				[image: check.png] An error code indicating whether the move was legal (and, therefore, successful) or illegal

				[image: check.png] The state — Win, Draw, or Active — that the game remained in after the move

				Play returns the Boolean value of true if the move was correctly played. It returns false if an incorrect move was made. (For example, by someone trying to play a square that was already filled.)

				The second method in Game is checkResult. You need to examine the Grid, so its signature is checkResult(Grid). You want it to set the state of the game to Win (for the player who just played), Draw, or Active. Because you also want it to set the state of the game, you rename this method checkResultAndSetState(Grid). Finally, because you realize that you need methods that return the state of the game, you add the three methods isActive(), isWon, and isDrawn() to the class.

				Systematically reviewing all classes identified so far produces the following set of methods and signatures:

				[image: check.png] Game

					•	play (Grid, Symbol, x, y): Returns true for success or false for failure

					•	checkResultAndSetState (Grid): Returns nothing

					•	isActive(): Returns true or false

					•	isWon(): Returns true or false

					•	isDrawn(): Returns true or false

				[image: check.png] GameView

					•	placeSymbol(Symbol, X, Y): Returns Success or Failure

					•	showScores(PlayerOneScore, PlayerTwoScore): Returns nothing

				[image: check.png] Grid

					•	placeSymbol (Symbol, x, y): Returns Success or Failure

					•	getEmptySquares (): Returns a set of coordinates

				[image: check.png] Symbol

					•	This class has no methods, and hence no signatures.

				[image: check.png] GameSession

					•	playNewGame()

					•	quit()

					•	decidePlayers()

					•	accumulateScores(WinningPlayer)

				There you have it: classes and methods with method signatures! Hooray! But if you’re wondering whether you’ve finished designing so that you can start implementing, the answer is (unfortunately) “not yet!”

				If you were the ancient Paladin of computing (have compiler, will travel) and were developing an application from scratch, you could potentially start coding (after you add a main program, incidentally). But you aren’t the Paladin — you’re a modern-day knight in Android armor and you must fit your design inside the Android Application Model to take advantage of the framework wherever possible but also to compromise wherever the framework doesn’t quite fit your design (at least not without lots of extra work). In the following sections, we show you an example of how you might do this.

				Incorporating your design into the Android Application Model

				If you already read our spiel about design patterns and the model-view-controller (MVC) pattern in the earlier section “Applying design patterns,” this section will make more sense to you. An Android activity is simply an “Android-ization” of the MVC pattern, with generic view and controller capability provided by the Android framework. Views are supported by the View class (imagine that!), and the controller is supported by the Activity class. The model segment comes from you because it’s a component that is specific to your app.

				In case you’re asking what the model, view, and controller components of Tic-Tac-Toe (Aha!) are, this list has the answers:

				[image: check.png] GameView: The view

				[image: check.png] GameSession: The controller

				[image: check.png] Game: The model

				In other words, Game will become a pure Java class, GameView will extend View, and GameSession will extend Activity.

				In the following section, we describe these respective classes in the Tic-Tac-Toe code — you might want to follow along in Eclipse, too. By the way, for a refresher on all elements of the Android Application Model, read (or review) Chapter 3.

				Understanding the model component of Tic-Tac-Toe

				In this section, we present the model (the Game class), shown with only its member variables and its method skeletons:

				package com.wiley.fordummies.androidsdk.tictactoe;

				

				import java.util.ArrayList;

				

				public class Game {

				

				 private enum STATE { Inactive, Active, Won, Draw };

				 private STATE state=STATE.Inactive;;

				 private Symbol currentSymbol=null;

				 private enum PLAYER {Player1, Player2};

				 private PLAYER currentPlayer=PLAYER.Player1;

				 private PLAYER winningPlayer=PLAYER.Player1;

				 private String PlayerOneName=null, PlayerTwoName=null;

				 private GameGrid gameGrid=null;

				 private int playCount=0;

					

				 Game(){ //Constructor – creates gameGrid, initializes game state}

				 GameGrid getGameGrid(){// Accessor method for gameGrid}

				 void setPlayerNames(…)(// setter for player names}

				 String getPlayerOneName(){//accessor method}

				 String getPlayerTwoName(){//accessor method}

				 String getCurrentPlayerName{){//accessor method}

				 String getWinningPlayerName(){//accessor method}

				 public Symbol getCurrentSymbol(){//accessor method}

				

				 public boolean play(int x, int y){// handles one turn of TicTacToe}

				

				 private void checkResultAndSetState(){//used to check after each move if the game has been won or drawn and set the state of the game}

				

				 boolean isActive(){//is the game still active – i.e. not been won or drawn}

				 boolean isWon(){//the game has been won by a player}

				 boolean isDrawn(){//the game has been drawn}

				}

				This class, which is a pure model of the tic-tac-toe game, has a bunch of getter methods prefixed with get. The setter method is setPlayerName. An important method here — play(int x, int y) — handles one turn in tic-tac-toe. It automatically alternates between players (which is why you don’t need two play methods, one for each player) and calls the method checkResultAndSetState() after every play to check on whether the game should continue or has been won, lost, or drawn. The checkResultAndSetState() method is private because it is called only internally by play(…).

				Next come the methods isActive(), isWon(), and isDrawn() (their function should be clear to you from their names or from the discussion in the previous section):

				We now show you the implementations of the key methods play(…) and checkResultAndSetState(…). The play(…) method is shown first below:

				public boolean play(int x, int y){

				 boolean successfulPlay=false;

				 if ((gameGrid.getValueAtLocation(x, y)==Symbol.SymbolBlankCreate())){

				 successfulPlay = true;

				 playCount++;

				 gameGrid.setValueAtLocation(x, y, currentSymbol);

				

				 checkResultAndSetState();

				 if(gameState == STATE.Active){// if the game is still active

				 // Swap symbols and players

				 if(currentSymbol == Symbol.SymbolXCreate())

				 currentSymbol=Symbol.SymbolOCreate();

				 else

				 currentSymbol=Symbol.SymbolXCreate();

				 if(currentPlayer==PLAYER.Player1) currentPlayer=PLAYER.Player2;

				 else currentPlayer=PLAYER.Player1;

				 }

				 }

				 return successfulPlay;

				}

				The method play(…) does four things:

				[image: check.png] Places the symbol on the tic-tac-toe grid

				[image: check.png] Increments the play count

				[image: check.png] Determines whether the move caused the game to be ended (by being won or drawn)

				[image: check.png] If the game is still active, swaps the players and the symbols in preparation for the next move

				Finally, take a look at checkResultAndSetState(…):

				private void checkResultAndSetState(){

				 if(gameGrid.isRowFilled(0)||

				 gameGrid.isRowFilled(1)||

				 gameGrid.isRowFilled(2)||

				 gameGrid.isColumnFilled(0)||

				 gameGrid.isColumnFilled(1)||

				 gameGrid.isColumnFilled(2)||

				 gameGrid.isLeftToRightDiagonalFilled()||

				 gameGrid.isRightToLeftDiagonalFilled()){

				 winningPlayer = currentPlayer;

				 gameState = STATE.Won;

				 }else if (playCount==9){

				 gameState = STATE.Draw;

				 } /* else, leave state as is */

				}

				This chunk of code checks every row, column, and diagonal to see whether any are completely filled. If so, it sets the state of the game as won. If nine successful plays have been made without the game being won, the game is declared a draw.

				Understanding the controller component of Tic-Tac-Toe

				The controller component of Tic-Tac-Toe is the GameSession activity. Here are its member variables and method skeleton:

				public class GameSession extends Activity {

				 private Board board;

				 private Game activeGame=null;

				 private GameView gameView=null;

				 int scorePlayerOne=0;

				 int scorePlayerTwo=0;

				 String firstPlayerName = null;

				 String secondPlayerName = null;

				 /** Called when the activity is first created. */

				

				 public void onCreate(Bundle savedInstanceState){}

				

				 private void startSession(){// a new session consists of multiple games }

				 private void playNewGame(){//handles one complete game}

				 private void setPlayers(Game theGame){// sets player names in the game}

				 private void quitGame(){//abandon a game}

				 private void proceedToFinish() {}

				 private void accumulateScores(String winningPlayerName){}

				

				 private void scheduleAndroidsTurn(){// introduces a random delay in machine play}

				 private void androidTakesATurn(){//handles machine play}

				 protected void humanTakesATurn(int x, int y){// handles a human’s turn}

				

				

				 public boolean onCreateOptionsMenu(Menu menu) {}

				 public boolean onOptionsItemSelected(MenuItem item) {}

				}

				The onCreate(…) method is the one that’s called when this Activity is kicked off by the Android framework. With regard to the Tic-Tac-Toe app, onCreate(…) kicks off a new game session.

				The next set of methods in GameSession is specific to Tic-Tac-Toe. The role of several of these methods is straightforward, such as startSession(…), playNewGame(…), setPlayers(…), quitGame(…), proceedToFinish(…), and accumulateScores(…). But three other methods are worth describing in more detail. We first examine the pair of methods scheduleAndroidsTurn(…) and androidTakesATurn(…), which collaborate to handle machine play. Take a look at androidsTurn(…):

				private void scheduleAndroidsTurn() {

				 Random r = new Random();

				 board.disableInput();

				 Handler handler = new Handler();

				 handler.postDelayed(

				 new Runnable() {

				 public void run() {

				

				 androidTakesATurn();

				 }

				 },

				 500 + r.nextInt(2000)

);

				}

				This method disables the screen so that the human cannot play and then posts a task (consisting of the method androidTakesATurn() that implements the machine play). The task is posted with a random delay, after which the task executes. This task enables the screen display again. Note that a new thread is needed in order to implement the delay so that the application remains active. Note also that input has to be enabled in the posted task and not in scheduleAndroidTurn(…), or else the screen becomes active before the machine completes its turn. Here’s androidTakesATurn():

				private void androidTakesATurn(){

				 GameGrid gameGrid = activeGame.getGameGrid();

				 ArrayList<Square> emptyBlocks = gameGrid.getEmptySquares();

				 int n = emptyBlocks.size();

				 Random r = new Random();

				 int randomIndex = r.nextInt(n);

				 Square picked = emptyBlocks.get(randomIndex);

				 activeGame.play(picked.x(), picked.y());

				 gameView.placeSymbol(picked.x(), picked.y());

				 board.enableInput();

				 if(activeGame.isActive())

				 gameView.setGameStatus(activeGame.getCurrentPlayerName() + “ to play.”);

				 else

				 proceedToFinish();

				}

				As you can see, androidTakesATurn() first gets a list of empty blocks from the game grid and then picks one at random to play. Then it enables input to the screen and checks to see whether the game is still active. If the game is over, proceedToFinish(…) is called, which checks to see whether the session should continue or the user has finished.

				Understanding the view component of Tic-Tac-Toe

				Turn your attention to the view component of Tic-Tac-Toe. It’s composed of the GameView class, which is small enough that we can show you the entire class:

				package com.wiley.fordummies.androidsdk.tictactoe;

				

				import android.widget.TextView;

				

				public class GameView {

				 private Board gameBoard=null;

				 private TextView statusView=null;

				 private TextView sessionScoresView=null;

				

				 public void setGameViewComponents(Board theBoard,

				 TextView theStatusView,

				 TextView theSessionScoresView){

				 gameBoard = theBoard;

				 statusView = theStatusView;

				 sessionScoresView = theSessionScoresView;

				 }

				

				 public void setGameStatus(String message){

				 statusView.setText(message);

				 }

				

				 public void showScores(String player1Name, int player1Score,

				 String player2Name, int player2Score){

				 sessionScoresView.setText(player1Name + “:” + player1Score +

				 “....” +

				 player2Name+”:”+player2Score);

				

				 }

				

				 public void placeSymbol(int x, int y){

				 gameBoard.placeSymbol(x, y);

				 }

				}

				Most of the work in this class is done by its components — Board and the two TextView components (covered in the next section). Also note that the GameView class is true to the principle that it’s a view and only handles user interface responsibilities.

				Understanding the support data structures in Tic-Tac-Toe

				You now need to examine the supporting data structures used in Tic-Tac-Toe. You start with Symbol and GameGrid, which is shown here:

				public class GameGrid {

				 public static final int SIZE=3;

				 private Symbol[][] grid=null;

					

				 GameGrid(){// Constructor. Initializes the grid to blanks}

				 public void setValueAtLocation(int x, int y, Symbol value{…}

				 public Symbol getValueAtLocation (int x, int y){…}

				 public boolean isRowFilled (int row){//Entire row has the same symbol}

				 public boolean isColumnFilled (int col){//Entire column has the same symbol}

				 public boolean isLeftToRightDiagonalFilled(){//Left diagonal has the same symbol}

				 public boolean isRightToLeftDiagonalFilled(){(){//Right diagonal has the same symbol}

				 public ArrayList<Square> getEmptySquares(){//Get the unfilled squares}

				}

				The GameGrid data structure is shared between Game, GameView, and GameSession. Game needs GameGrid to implement tic-tac-toe game logic, such as placing symbols and evaluating whether the game has been won or drawn or is still active. GameView needs GameGrid because it contains the symbols GameView needs to show on the screen. GameSession needs it to implement human- and machine-playing logic.

				Here’s the Symbol class:

				package com.wiley.fordummies.androidsdk.tictactoe;

				

				public class Symbol {

				 private enum MARK { X, O, Blank }

				 private MARK value=null;

				 private static Symbol SymbolX=null;

				 private static Symbol SymbolO=null;

				 private static Symbol SymbolBlank=null;

				

				 private Symbol(){/* Empty PRIVATE constructor to enforce Singleton */}

				

				 public static final Symbol SymbolXCreate() {}

				 public static final Symbol SymbolOCreate() {}

				 public static final Symbol SymbolBlankCreate() {}

				 public String toString(){}

				}

				You might wonder why you even need a class for representing Symbols. In other words, maybe you could have used Strings (using an X and an O to represent the tic-tac-toe characters). The reason you create a class is to illustrate two kinds of design elements:

				[image: check.png] The first design element is a simple optimization to think about when you write code for resource-constrained mobile devices.

				[image: check.png] The second design element is the use of another pattern (the Singleton pattern) to reduce the number of identical classes that are created and to make these instances easily accessible to all methods with a program.

				The optimization that we want you to consider is the avoidance of string comparisons in your code. String comparisons are slow because they have to be done character by character. Instead, you use an enumerated type of comparison to represent an X and an O, which represents them as numbers (while still retaining expressivity). When you check to see whether a row is filled, for example, you’re making numeric comparisons rather than string comparisons. Incidentally, there are string comparisons in many other places in the Tic-Tac-Toe code, but they were left in because they do not have much impact on performance, relatively speaking.

				To ensure that you don’t unnecessarily create large numbers of objects containing Xs and Os, we next introduce a scheme whereby only one instance of an X and one instance of an O is created and they’re shared by all the code. To show you how to do it, check out the following code snippet (which uses ellipsis dots to separate the segments that don’t appear together in the actual code):

				private static Symbol SymbolX=null;

				…

				private Symbol(){/* Empty PRIVATE constructor to enforce Singleton */}

				public static final Symbol SymbolXCreate() {

				 if (SymbolX == null){

				 SymbolX = new Symbol();

				 SymbolX.value = MARK.X;

				 return SymbolX;

				 }

				}

				To begin with, the default constructor for Symbol is made private so that a Symbol class cannot be instantiated by using new Symbol() outside the class itself. Any instances of the Symbol class thus must be created by using one of the three methods SymbolXCreate(), SymbolOCreate(), or SymbolBlankCreate().

				Now take a look at the code that implements SymbolXCreate(). The first time it’s called, it creates and returns a new instance of an X (and saves it in SymbolX). Every subsequent time it’s called, it returns the same instance. Note that each method thinks it’s getting a new instance!

				Note one last thing about Symbol: Because symbols must be displayed as strings in certain methods, you give the Symbol class a toString() method.

				The following TextView class is a built-in Android class. Its use in the GameView class is shown here:

				private TextView statusView=null;

				…

				public void setGameStatus(String message){

				 statusView.setText(message);

				}

				You declare a TextView variable as shown in the code just above and then use the setText method to make it display a message.

				Finally, the following snippet walks you through the skeleton of the Board class:

				package com.wiley.fordummies.androidsdk.tictactoe;

				

				import com.wiley.fordummies.androidsdk.tictactoe.R;

				

				import android.content.Context;

				import android.content.res.Resources;

				import android.graphics.Bitmap;

				import android.graphics.BitmapFactory;

				import android.graphics.Canvas;

				import android.graphics.Paint;

				import android.graphics.Rect;

				import android.graphics.Paint.Cap;

				import android.util.AttributeSet;

				import android.view.MotionEvent;

				import android.view.View;

				

				public class Board extends View {

				 private final GameSession gameSession; // game context (parent)

				 private float width;

				 private float height; // will be same as width;

				 private final float strokeWidth = 2;

				 private final float lineWidth = 10;

				 private GameGrid grid=null;

				 private boolean enabled = true;

				

				 public Board(Context context, AttributeSet attributes) {/* Constructor */}

				 protected void onDraw(Canvas canvas) {/* Draws and re-draws the Board */}

				 protected void onSizeChanged (int w, int h, int oldw, int oldh){/* handles size changes of the Board */}

				 public boolean onTouchEvent(MotionEvent event) {/* handles any interactions with the Board */}

				

				 private void invalidateBlock(int x, int y) {/* marks a segment of the board as to be re-drawn */}

				 protected void disableInput(){/* disables user input */}

				 protected void enableInput(){/* Enables user input */}

					

				 public void setGrid(GameGrid aGrid){/* Sets the gameGrid member variable */}

				 protected boolean placeSymbol(int x, int y){/* places a symbol on the board */}

				

				 public Bitmap getBitmapForSymbol(Symbol aSymbol){/* converts a Symbol to a bitmap – note: breaks abstraction! */}

				}

				Board is a subclass of the built-in View class. Also, as with GameView, all Board methods are related to the user interface. Board methods can be categorized into four sets of methods. The first set is composed of the methods that are required to be implemented by the View class — a constructor, Board(…), onDraw(…), onSizeChanged(…), and onTouchEvent(…). The constructor initializes the view and gains access to the GameSession object by looking up its context. The onDraw method draws the tic-tac-toe grid, and onSizeChanged(…) handles any size changes to the board.

				The important method in this set is the onTouchEvent(..) method, shown here:

				public boolean onTouchEvent(MotionEvent event) {

				 if(!this.enabled) return false;

				 int posX = 0;

				 int posY = 0;

				 int action = event.getAction();

				 switch (action){

				 case MotionEvent.ACTION_DOWN:

				 float x = event.getX();

				 float y = event.getY();

				 if(x > width && x < width * 2) posX = 1;

				 if(x > width * 2 && x < width * 3) posX = 2;

				 if(y > height && y < height * 2) posY = 1;

				 if(y > height * 2 && y < height * 3) posY = 2;

				 gameSession.humanTakesATurn(posX, posY);

				 break;

				 return super.onTouchEvent(event);

				}

				The onTouchEvent(..) method ignores all except one type of MotionEvent event — ACTION_DOWN. When onTouchEvent(..) receives this type of event, it converts its coordinates into tic-tac-toe grid coordinates and then invokes humanTakesATurn(…) on the parent gameSession object. (And now you know why it needed its context.)

				The next set of methods — invalidateBlock(…), enableInput(…), and disableInput(…), respectively — mark a played square on the board to be redrawn (because its value has changed), and permit or disallow human input to the board (that is, when the machine is playing).

				The final set of methods — setGrid(…) and placeSymbol(…) — provides a handle to the shared grid. The method placeSymbol(…) places a symbol on the grid. Note that placing a symbol only means invalidating the square on the grid so that it is redrawn.

				Understanding design decisions and compromises made in Tic-Tac-Toe

				This section explains the design decisions made in the game. These design decisions were the result of the object-oriented design process we described in this chapter. You will also see some of the compromises made in the game design, just so you see that it is okay to make compromises in less-important areas as long as the design of the main components is good.

				With respect to data structures, you use a two-dimensional array (see grid in GameGrid) to represent the tic-tac-toe board but hide the use of the array inside an abstraction (GameGrid). You do this so that, if you want, you can change the implementation of the grid to a more efficient representation (such as a bitmap) without having to change the code that needed to use it.

				You do not use String to implement symbol, because you don’t want the overhead of string comparisons. You also illustrate the use of a Singleton class to reduce the overhead of creating many identical objects and to avoid requiring the passing of a common object to all methods in the program.

				You break the Game abstraction by allowing access to and directly sharing the gameGrid instance. Note that the gameGrid is modified only in the Game class but that other classes need to read it. You can enhance the Game interface to provide read-only access to its grid, but you choose not to do so primarily for convenience and simply pass gameGrid around.

				Look for design compromises in the application because of the Android framework. You break abstraction principles in at least one place. Note that Symbols are displayed in two ways: as strings (see the isRightToLeftDiagonalFilled(…) method in the GameGrid class) and as bitmaps (see the onDraw method in the Board class). However, the toString(…) method is placed (properly) with the Symbol class, but the getBitmapForSymbol(…) method is in the Board class (because the Android framework has no convenient methods to gain access to the resources for the application from inside a plain old class, such as Symbol). The Android framework essentially forces this design compromise on you. We say, “Just live with it!”

				Another compromise of this type is that the controller (the GameSession class) also implements View components, such as the menu and the dialog boxes in proceedToFinish(…). The latter is a design principle broken essentially for convenience — you can implement the various dialog boxes in GameView, but the implementation of the menu callbacks in GameSession is caused by Menus and Activities being tied together in the sense that they’re expected to be used together. (Oh, well!)

				What comes next? In addition to designing and implementing the features of an application (the functional requirements), you also have to implement qualities such as reliability, scalability, maintainability, and, in particular, security, in order for your app to be considered professional quality. Chapters 8 and 9 walk you through that process.

			

		

	
		
			
				
					
				

				
					Part III

					Making Your Applications Fit for the Enterprise

						
							[image: 9781118008256-pp0301.eps]
						

					

					In this part . . .

					Though Part II is about building the right application, this part of the book is all about building the app right. Chapter 8 talks about making your app fast and responsive (qualities that, by the way, aren’t the same thing, as you will see), and Chapter 9 talks about security. Without speed, responsiveness, and security, your app won’t be successful when it’s released, regardless of how cool its features might be. This part shows you how to make it so.

				

			

		

	
		
			
				Chapter 8

				Making Your Application Fast and Responsive

				In This Chapter

				[image: arrow] Applying nonfunctional requirements to Android apps

				[image: arrow] Constructing your app to perform well

				[image: arrow] Making your application appear responsive

				An app that is successful in gaining user acceptance must meet two kinds of requirements: functional and nonfunctional. Functional requirements describe what the app must do (the functions it must perform). A wayfinding app, for example, must allow the user to plot a route from one location to another. As another example, the Tic-Tac-Toe application must show you a board and enable you to place Xs and Os on it. These functional requirements describe what is needed to “build the right app.”

				While most developers realize that their apps must implement these functional requirements, they don’t focus enough effort on meeting nonfunctional requirements, which mandate how the app must do what it does. Nonfunctional requirements provide guidelines on how to “build the app right.”

				In this chapter, we focus on nonfunctional requirements and identify three that apply especially to Android apps: performance, battery conservation, and responsiveness. We then show you ways in which to meet these nonfunctional requirements.

				Becoming Familiar with Nonfunctional Requirements

				It’s a statement worth repeating: Nonfunctional requirements (NFR) — also known as quality requirements or design requirements — provide guidelines on how to build an app right. For example, you might consider it appropriate to require a wayfinding app to plot a route in fewer than 30 seconds, or for a computer playing a Tic-Tac-Toe application to mimic a human in order to retain the user’s interest.

				The list below outlines the important principles about NFR:

				[image: check.png] Nonfunctional requirements describe how to implement an app. For example, if security isn’t a requirement, you can decide to store all app data in unencrypted files and on the SD card. If security is an issue, however, you might encrypt the files and store them in the app’s private file area so that their content isn’t easily accessible and they’re deleted when the app is uninstalled.

				[image: check.png] NFR most commonly occur in the following categories: availability, performance, scalability, usability, security, modifiability, and maintainability. (Cost is also often an important nonfunctional requirement category.) When you build an app, you have to decide which nonfunctional requirements apply to your app. You have to also refine your NFR so that they’re “testable.” For example, for a performance NFR, you should be able to measure the speed of your application at the places where the NFR applies (such as during the screen display).

				[image: check.png] Certain nonfunctional requirements are especially important for mobile devices. These requirements are performance, battery conservation, and responsiveness, all discussed in the following sections.

				[image: warning_bomb.eps]	[image: check.png] Do not attempt to meet all possible nonfunctional requirements in an app. It’s extra work to implement features in ways that users don’t value. For this reason, you should also define (and, wherever applicable, quantify) to what extent you want to meet the NFR.

				[image: remember.eps]	[image: check.png] NFR fulfillment always involves trade-offs. In other words, meeting a single nonfunctional requirement often negatively affects the meeting of another. For example, performance and security are often at cross-purposes. For example, you pay a performance overhead for the increased security of encryption and decryption of stored data. The trick is to find the right balance.

				Designing Your App at Multiple Levels

				When you design an app, you actually design it at multiple levels. At the highest level of design are “architectural” decisions (such as the use of the Android framework, or even the choice of Java as the development language). You have little choice in making certain architectural decisions, such as the use of the Android framework and Java to develop Android apps. Google provides the highest level of support for Java, and so developing apps in Java is significantly easier than using C or C++. Thus the architectural decision to use Java is a no-brainer. In other architectural decisions, however, you have choices, such as the type of encryption to use to secure your data wherever it is stored, retrieved, or transmitted. Architectural decisions are the most difficult to change after you’ve started building the software. Our translation is that you can’t do much about architectural decisions after you make them; so try to make good decisions in the first place.

				After the architecture is set (yes, like cement), the next level of design is in the partitioning of your application into classes, the allocation of methods to classes, and then, as a last step, the mapping of the design to the architecture of the first step. We cover this process in detail in Chapter 7. Needless to say, this design, while not quite as hard to change, is still difficult to modify after it has been decided upon.

				The third level of design is at the choice of algorithms (say, for sorting) and data structures (using a hash table to find a value in a contact list, such as a phone number, corresponding to a key, say, the name of the contact). Abstracting the data structures and algorithms inside classes or methods so that they are compartmentalized really helps when you try to change out algorithms and data structures.

				The final level of design lies in your choice of low-level coding practices. Code is relatively easy to change; all you need is a good editor, a few hours to hack your way through the existing code, and strong coffee to keep you awake throughout the process.

				Optimizing Application Performance

				In this section, we address app performance in Android, again using the sample Tic-Tac-Toe application.

				Architectural choices with respect to performance include elements such as whether you’re using SQLite or files (SQLite is slower for many things, however, it’s faster if you’re retrieving bits of already stored data), building screens using 2D graphics or widgets, or accessing the network every time your app needs data or storing certain data locally, for example. The following list describes the requirements-driven architectural decisions we made in the Tic-Tac-Toe application, and our reasons:

				[image: check.png] Programming language: We use Java because its built-in support and easy app development outweigh any performance gains we might make by writing native (C or C++) code, especially considering that our app has no out-of-the-ordinary need for high performance.

				[image: check.png] Data storage: We store user preferences using the built-in preference classes because of their programming convenience. We use SQLite to store login and password information because the number of times login information is retrieved (a task that SQLite excels in, like all relational databases) will most likely be much higher than the number of registered users added (a task that SQLite is slower in doing, like all relational databases).

				[image: check.png] Remote data transfer format: Though we show both an XML and a JSON example, the preferred format is likely to be JSON because of its lower overhead.

				[image: check.png] Graphics: We chose raw 2D graphics rather than widgets for the board for speed purposes. (Note that the Tic-Tac-Toe application has simple enough graphics that widgets would have worked as well, as the button-based implementation in Chapter 6 clearly illustrates.)

				We also made a couple of deliberate decisions regarding data structures and algorithms in Tic-Tac-Toe. The primary data structure decision is to represent the grid as a two-dimensional array and encapsulate it inside a Grid class so that we can change this implementation if it turns out to be slow. (Note that the design process shown in Chapter 7 independently arrives at the conclusion that the grid should be its own class — this connection should serve as a validation for the design process.) The primary algorithm decision is to have the machine randomly pick empty squares to play. Note that this scheme is also abstracted (inside GameSession.androidTakesATurn()), so if you want to change the way the machine plays, you have to modify only this lone method.

				Your coding practices should improve application performance by doing less computation. You can do many things to bring about this result:

				[image: check.png] Save intermediate results in variables and then reuse them, especially in loops. This simple example from GameSession.androidTakesATurn() demonstrates this technique:

				…

				activeGame.play(pickedX=picked.x(), pickedY=picked.y());

				gameView.placeSymbol(pickedX, pickedY);

				…

				[image: check.png] Avoid internal getters and setters. Access member variables directly within the class instead of using the getters and setters. This avoids the overhead of an additional method call. You can see this process in the GameGrid class, where the locations in the two-dimensional array member variable grid are accessed directly instead of using the accessor methods setValueAtLocation(…) and getValueAtLocation(…), which is how the grid is accessed outside the class by client classes such as Board and Game.

				[image: check.png] Avoid creating unnecessary objects. Remember that Java Strings (though appearing to be elementary data types) are objects, so limit the number of strings you create as well. We illustrate this tactic in the Symbol class in Tic-Tac-Toe, where we used the Singleton pattern so that only one instance of an X, O, and Blank symbol is ever created, and we defined symbols as enumerated types rather than as strings. Related to this concept is the use of constants (variables declared using static final — see the next item for more on this).

				[image: check.png] Use static final for constants. If constants are simply declared as static, the definitions can be overridden and are therefore treated as variables. Thus, the Java virtual machine (JVM) has to perform extra work to figure out the correct reference and value of the constant. If the constant is declared using static final, the compiler knows to substitute the value of the constant where it sees uses of the constant in the code so that no runtime overhead is incurred. For an example, see the declarations shown in the following GameSession.java class:

				private static final int ANDROIDTIMEOUTBASE=500;

				private static final int ANDROIDTIMEOUTSEED=2000;

				[image: check.png] Know the framework libraries well, and use them wherever possible rather than write your own code. Because the library-implemented code is usually optimized (say, using assembler code), it’s more efficient than equivalent code written by you, even after the compiler has tried to optimize it. The link http://developer.android.com/guide/practices/design/performance.html on the Android website gives the examples String.indexOf(…), System.arraycopy(…), and related methods that can be as much as ten times faster than hand-written code optimized by the compiler.

				An excellent set of old-but-gold techniques around low-level coding practices for efficiency is Jon Bentley’s rules for writing efficient programs. We’ve been able to find summaries of these techniques at various places on the web by simply entering the keywords Jon Bentley writing efficient programs in a search engine. For an example, see www.crowl.org/lawrence/programming/Bentley82.html.

				Using the Profiler for Code Optimization

				You can expend a lot of time optimizing code, only to see no real impact on the performance of your program. To make your optimization efforts pay off, develop the habit of profiling, instrumenting your app’s code in order to understand in which methods your program is spending most of its execution time. The Eclipse IDE with the Android SDK installed provides a useful way to do it, as shown below:

					1.	Open Eclipse and make the Devices view visible by choosing Window⇒Show View⇒Other and then selecting Devices inside the Android collection.

					2.	Start the Tic-Tac-Toe app on either a device or an emulator.

						The Devices view starts to show activity, as shown in Figure 8-1.

					

				
					Figure 8-1: Devices view in Eclipse shows a running program.

				

					[image: 9781118008256-fg0801.tif]

					3.	Log in to Tic-Tac-Toe and navigate to the Options screen, as shown in Figure 8-2.

					

				
					Figure 8-2: Starting a new game in Tic-Tac-Toe.

					
				

					[image: 9781118008256-fg0802.eps]

					4.	Return to Devices view, select the line com.wiley.fordummies.androidsdk.tictactoe, and begin profiling by clicking the icon to the left of the Stop sign. (Or, hover the mouse over the icons until you see the Start Method Profiling tooltip.)

					5.	Play four or five games, stretching out every game as far as possible, and then stop the profiling by clicking the same icon as in Step 4. This time, however, notice that it has turned black.

						The Traceview profiler window opens (see Figure 8-3).

					

				
					Figure 8-3: The Trace-view profiler in Eclipse.

				

					[image: 9781118008256-fg0803.eps]

				Now things get interesting. The bottom pane of the profiler window (refer to Figure 8-3) shows a list of methods, ordered by their contribution to overall execution time. As you review this list of methods, you start to come across methods from Tic-Tac-Toe. You will see that Board.onDraw(…) and Board.getBitMapForSymbol(…) are contributing large chunks of time. Drill into these methods by clicking the arrow to the left, as shown in Figure 8-4, and notice that Board.getBitMapForSymbol(…) is the true culprit.

				…

				for(int i = 0; i < GameGrid.SIZE; i++){

				 for(int j = 0; j < GameGrid.SIZE; j++){

				 Bitmap symSelected = getBitmapForSymbol(grid.getValueAtLocation(i, j));

				 offsetX = (int)(((width - symSelected.getWidth())/2) + (i * width));

				 offsetY = (int)(((height - symSelected.getHeight())/2) + (j * height));	

				 canvas.drawBitmap(symSelected, offsetX, offsetY, ditherPaint);

				 }

				}

				…

					

				
					Figure 8-4: Drilling down in the profiler. Look first at Board.onDraw(…). You can see that get-BitMap-For-Symbol(…) is being called in a loop from Board.onDraw(…).

					
				

					[image: 9781118008256-fg0804.eps]

				This example explains why onDraw(…) is spending a lot of time in getBitMapForSymbol(…). An examination of the latter function shows that it’s calling getResources() and BitmapFactory.decodeResources(…) for every square on the board, even though the values returned by these methods are invariant (the same) for every call (and for every instance of the game):

				public Bitmap getBitmapForSymbol(Symbol aSymbol){

				 Resources res = getResources();

				 Bitmap symX = BitmapFactory.decodeResource(res, R.drawable.x);

				 Bitmap symO = BitmapFactory.decodeResource(res, R.drawable.o);

				 Bitmap symBlank = BitmapFactory.decodeResource(res, R.drawable.blank);

				

				 Bitmap symSelected = symBlank;

				 if (aSymbol == Symbol.SymbolXCreate())

				 symSelected = symX;

				 else if (aSymbol == Symbol.SymbolOCreate())

				 symSelected = symO;

				 return symSelected;

				}

				To quickly perform some optimization, you declare a set of private static variables:

				static Bitmap symX=null, symO=null, symBlank=null;

				static boolean bitMapsInitialized=false;

				You also modify the code of getBitMapForSymbol(…) so that it gets the bitmaps only once per application run:

				public Bitmap getBitmapForSymbol(Symbol aSymbol){

				 if (!bitMapsInitialized){

				 Resources res = getResources();

				 symX = BitmapFactory.decodeResource(res, R.drawable.x);

				 symO = BitmapFactory.decodeResource(res, R.drawable.o);

				 symBlank = BitmapFactory.decodeResource(res, R.drawable.blank);

				 bitMapsInitialized=true;

				 }

				 Bitmap symSelected = symBlank;

				 if (aSymbol == Symbol.SymbolXCreate())

				 symSelected = symX;

				 else if (aSymbol == Symbol.SymbolOCreate())

				 symSelected = symO;

				 return symSelected;

				}

				Voilà! When you profile again, you see that Board.onDraw(…) and getBitmapForSymbol(…) are no longer the top contributors to app execution time. Now you can move on to the new methods on the list that contribute to execution time.

				[image: tip.eps]	Though this section explains how to use the profiling tools to judiciously “micro-optimize” application performance, note that your app will run on multiple hardware platforms, with different versions of the Dalvik virtual machine running on different processors at different speeds, with different computational add-ons (such as a video co-processor) that affect the speed of your app on each system. If performance on a specific platform is especially important to you, profile and optimize for that platform.

				Maximizing Battery Life

				If you own a smartphone or tablet device, you know that battery power is the scarcest resource. The elements that use the largest amount of battery power are the processor, the radio, and the display, so conserving battery power boils down to minimizing computation, minimizing network activity, and not forcing the display to run continuously or at full brightness. Minimizing computation essentially means following the techniques described in the previous section on improving performance, so in this section, we focus on reducing network activity.

				On a smartphone, two major applications use the network:

				[image: check.png] Data services: For example, file downloads, web browsing, and video and audio streaming

				[image: check.png] Location services: For example, GPS and 3G and 4G networks

				We address both types in the following sections.

				Minimizing data services

				With respect to data services, the first thing to keep in mind is that trying to make a connection and send or receive data when the connection is poor or non-existent wastes a considerable amount of power. Therefore, you can simply test the network connection in your code before trying to send or receive data. The method hasNetworkConnection() in the Help class in Tic-Tac-Toe shows how to test the various networks available on the device:

				private boolean hasNetworkConnection(){

				 ConnectivityManager connectivityManager =

				 (ConnectivityManager) getSystemService(Context.CONNECTIVITY_SERVICE);

				 NetworkInfo networkInfo =

				 connectivityManager.getNetworkInfo(ConnectivityManager.TYPE_WIFI);

				 boolean isConnected = true;

				 boolean isWifiAvailable = networkInfo.isAvailable();

				 boolean isWifiConnected = networkInfo.isConnected();

				 networkInfo =

				 connectivityManager.getNetworkInfo(ConnectivityManager.TYPE_MOBILE);

				 boolean isMobileAvailable = networkInfo.isAvailable();

				 boolean isMobileConnnected = networkInfo.isConnected();

				 isConnected = (isMobileAvailable&&isMobileConnnected)||

				 (isWifiAvailable&&isWifiConnected);

				 return(isConnected);

					

				}

				Reducing network use during data transfers is the next step. You can’t do much directly about network use because the need for the data transfers is determined by the user. (In other words, users who want to watch YouTube will simply use YouTube.)

				However, sometimes you have a choice in how you access that data. For example, several service providers (including Google) provide their data services in XML as well as JSON format. If you have this choice, pick the more compact representation — in this case, JSON — because less data must be transferred in order to receive the same information. In the Tic-Tac-Toe file GeoLocation.java, getNameFromLocation(…) shows you how to get back XML data, and getGeoPointFromName(…) shows you how to get JSON data back. As you can see, the amount of processing required is about the same, but with all factors consistent, JSON data is more compact and uses less network bandwidth.

				Minimizing location services

				In this section we cover the power management aspects of using location services (using location services is described in Chapter 10). You have a couple of different ways to reduce the amount of battery power used by a smartphone or tablet when trying to find location information. One is to use the last known location rather than repeatedly try to determine the current location over the network when it’s slow or down or the provider is unavailable. The following code snippet from the method getBestCurrentLocation(…) from the Tic-Tac-Toe class GeoLocation.java shows you how to do it:

				public Location getBestCurrentLocation(){

				 Location myLocation=null;

				 myLocation = manager.getLastKnownLocation(bestProvider);

				 if (myLocation == null){

				 myLocation = manager.getLastKnownLocation(“network”);

				 }

				 if (myLocation != null){

				 System.out.println(“GeoLocation is >”+myLocation.toString()+”<”);

				 thisLocation = myLocation;

				 }

				 return thisLocation;

				}

				Another approach is to use a less expensive location provider when possible. You can pick the location provider directly, or you can specify the criteria you care about and have Android give you the appropriate location provider. In Tic-Tac-Toe, we have not done this; instead, the code chooses the best provider available, regardless of cost. Take a look at this constructor for the GeoLocation class:

				public GeoLocation(Context theContext){

				 thisContext = theContext;

				 manager =

				 (LocationManager) thisContext.getSystemService(Context.LOCATION_SERVICE);

				 Criteria criteria = new Criteria();

				 bestProvider = manager.getBestProvider(criteria, true);

				 registerForLocationUpdates();

				}

				The following code snippet shows how you would write this method differently if you’re looking for the cheapest provider:

				public GeoLocation(Context theContext){

				 Criteria criteria = new Criteria();

				 criteria.setAccuracy(Criteria.ACCURACY_COARSE);

				 criteria.setPowerRequirement(Criteria.POWER_LOW);

				 LocationManager manager =

				 (LocationManager)getSystemService(thisContext.LOCATION_SERVICE);

				 String cheapestProvider = myLocationManager.getBestProvider(c, true);

				 registerForLocationUpdates();

				}

				Be sure to unregister for location updates when your activity is paused, or else these updates will continue to waste battery power, even when the application isn’t running.

				Certain apps might need to lock the screen and prevent it from dimming or turning off while your application is running (for example, an app that is providing turn-by-turn driving directions). For this task, you use a wake lock. We don’t describe wake locks in detail because they’re beyond the scope of this book, but check out these two pages for more information:

				[image: check.png] http://developer.android.com/reference/android/os/PowerManager.html

				[image: check.png] http://developer.android.com/reference/android/os/PowerManager.WakeLock.html

				Be sure to disable wake locks when your activity is paused. As with location updates, wake locks can continue after onPause().

				Ensuring Responsiveness in Your Apps

				One nonfunctional requirement (NFR) of special concern in mobile apps is responsiveness. Mobile app developers must ensure that their apps don’t even appear to freeze, become sluggish, or fail to respond to user input, for example.

				[image: remember.eps]	Ensuring responsiveness isn’t the same as optimizing performance.

				Though your app might operate as fast as computationally possible, it must appear to be controllable by the user, even when it’s actively working. For example, refreshing a web page might take a long time because the network or the server providing the page is slow. Obviously, your app can do nothing about speeding the refresh, but whenever this type of operation takes place, your app must not freeze ― and it should, for example, allow the user to abandon the sluggish activity.

				[image: tip.eps]	The primary technique to achieve responsiveness is threading. Essentially, the idea is to move from the main thread of the operation that’s likely to take a long time and execute its operations on separate (additional) threads using the thread packages in Java. The following simple example shows you how a Java thread can be used to load an image from a network:

				public void onClick(View v) {

				 new Thread(new Runnable() {

				 public void run() {

				 Bitmap b = loadImageFromNetwork(); // user written method

				 // do something with the image

				 …

				 }

				 }).start();

				}

				Another use of threads is in handling areas in your application where proper operation requires a waiting period. Two examples are in Tic-Tac-Toe. The first is in the SplashScreen activity, whose onCreate(…) method is listed here:

				public void onCreate(Bundle savedInstanceState) {

				 super.onCreate(savedInstanceState);

				 setContentView(R.layout.splash);

				 // Launch a new thread for the splash screen

				 Thread splashThread = new Thread() {

				 @Override public void run() {

				 try {

				 int elapsedTime = 0;

				 while(active && (elapsedTime < splashTime)) {

				 sleep(sleepTime);

				 if(active) elapsedTime = elapsedTime + timeIncrement;

				 }

				 } catch(InterruptedException e) {

				 // do nothing

				 } finally {

				 finish();

				 startActivity(

				 new Intent(“com.wiley.fordummies.androidsdk.tictactoe.Login”));

				 }

				 }

				 };

				 splashThread.start();

				}

				In this code snippet, the splash screen is displayed and a separate thread is launched that sleeps for a while and then launches the Login activity. Because the main thread isn’t put to sleep, it remains responsive so that the user can exit the splash screen by touching it. A touch event invokes the following onTouch method, which lets the app exit the splash screen:

				public boolean onTouchEvent(MotionEvent event) {

				 if (event.getAction() == MotionEvent.ACTION_DOWN) {

				 active = false;

				 }

				 return true;

				}

				We also use threading to implement responsiveness in the implementation of machine play in Tic-Tac-Toe. Take a look at the following method scheduleAndroidsTurn(…) in the GameSession class:

				private void scheduleAndroidsTurn() {

				 System.out.println(“Thread ID in scheduleAndroidsTurn:” +

				 Thread.currentThread().getId());

				 board.disableInput();

				 if(!testMode){

				 Random randomNumber = new Random();

				 Handler handler = new Handler();

				 handler.postDelayed(

				 new Runnable() {

				 public void run() {

				 androidTakesATurn();

				 }

				 },

				 ANDROIDTIMEOUTBASE + randomNumber.nextInt(ANDROIDTIMEOUTSEED));

				 }else{

				 androidTakesATurn();

				 }	

				}

				The machine pretends to think for a random period and then makes its move. While the computer is “thinking,” the user is prevented from making a move. However, while input to the Tic-Tac-Toe board is prevented, other user actions should not be (such as allowing the user to exit the game by choosing Menu⇒End Game). You implement this behavior as described in this list:

				[image: check.png] board.disableInput(): Prevents user input from registering on the game board.

				[image: check.png] Handler.postDelayed(…): Posts a delayed callback to the method androidTakesATurn() with a randomly generated delay. Thus, androidTakesATurn() is called after the random delay (during which the board isn’t clickable). This method plays the computer’s move and then enables the board. During this process, the main application thread (the user interface thread) is still active and can accept user input, including the directive to end the game, which we just mentioned.

				Certain Android framework components automatically launch long-lived operations in separate threads (so that you don’t have to do it). Take a look at the extracts of the activity HelpWithWebView:

				public class HelpWithWebView extends Activity implements OnClickListener {

				 protected void onCreate(Bundle savedInstanceState) {

				 String URL=null;

				 super.onCreate(savedInstanceState);

				 setContentView(R.layout.helpwithwebview);

				 WebView helpInWebView=null;

				 helpInWebView = (WebView) findViewById(R.id.helpwithwebview);

				 View buttonExit = findViewById(R.id.button_exit);

				 buttonExit.setOnClickListener(this);

				 Bundle extras = getIntent().getExtras();

				 if(extras !=null){

				 URL = extras.getString(“URL”);

				 }

				 helpInWebView.loadUrl(URL);

				 }

				…

				}

				helpInWebView.loadUrl(URL) launches a separate thread to load the URL so that the application remains responsive while the page is being loaded.

				Understanding the SDK Components Used in This Chapter

				This section relates additional details about the components (packages and classes) of the Android framework and its add-ons that provide the functionality covered in this chapter. We don’t go into great detail because Google provides web pages that are more comprehensive than we could ever be, but we give you an idea of its components and describe what they can do.

				The Android thread model and components

				When an Android application is launched, a thread (known as the main thread or the user interface (UI) thread) is created. The Android user interface isn’t thread-safe, so if separate threads are launched, they shouldn’t perform user interface operations. (Although the Android runtime throws exceptions in most cases, in cases where your app manages to avoid throwing exceptions, you see some strange behavior.) Thus, you have to break your long-lived operation into two tasks:

				[image: check.png] The intense, long-lived computation is performed.

				[image: check.png] The result of the computation is shown in the user interface.

				The Android framework offers four ways to access the UI thread:

				[image: check.png] Activity.runOnUiThread(Runnable myRunnable) runs the specified runnable object on the UI thread. (See an example of this in GameSessionTest.java in the TicTacToeProject-Test.)

				[image: check.png] View.post(Runnable myRunnable) causes the runnable to be added to the message queue to be run by the UI thread as it processes all its messages.

				[image: check.png] View.postDelayed(Runnable, long) causes the runnable to be added to the message queue after a specified period.

				[image: check.png] The Handler class lets you perform the preceding post(…) and postDelayed(…) operations when you don’t have access to an active View. (See an example of this in GameSession.java in the TicTacToeProject.)

				[image: tip.eps]	Look for more details about threading at http://developer.android.com/resources/articles/painless-threading.html and on the pages linked to it.

				Power management components

				Even though we don’t describe the power management functionality in the Android SDK because it’s beyond the scope of this book, we include a short section about the Android power manager class, which lets you set wake locks that can, for example, maintain full screen brightness while your application is running.

				The main class is PowerManager, which is documented at http://developer.android.com/reference/android/os/PowerManager.html. Acquiring an instance of this class allows you to set wake locks, put the device to sleep, check screen activity, and determine when user activity last took place.

			

		

	
		
			
				Chapter 9

				Making Your Application Safe and Secure

				In This Chapter

				[image: arrow] Understanding security and its relationship with trust

				[image: arrow] Knowing the basics of security and trust for mobile devices and apps

				[image: arrow] Appreciating the Android security model and making your application work within it

				[image: arrow] Recognizing where the insecurities lie in your Android app and protecting it

				“Eternal vigilance!” is the watchword for developing mobile devices and applications. However, implementing random security techniques in your app as a result of blind panic is hardly a good development strategy. As you design your app, think systematically to see where the security principles described in this chapter apply, and then implement the necessary security using a combination of the techniques also described in this chapter.

				In this chapter, we take a holistic look at developing secure Android apps — starting by describing why security is especially important for mobile apps, and then presenting security principles and general security techniques. We then get into Android security specifics.

				Recognizing the Importance of Security

				Security is an increasingly important consideration for mobile devices (and their applications), for three primary reasons:

				[image: check.png] Mobile devices store valuable personal information. Most people’s mobile devices eventually become repositories for all types of personal information — their geographical location, contact names and addresses, financial transactions, and credit card information, for example. Theft of this information can result in significant financial loss to the user.

				[image: check.png] Mobile devices have a greater security footprint than applications on your desktop. Mobile devices have more areas of vulnerability than desktop, and even laptop, applications. Mobile devices are designed to interact with the outside world via the Internet and other networking capabilities, such as Wi-Fi and Bluetooth, so they’re exposed to all the consequent dangers. For example, when a user accesses the Internet from the browser on a mobile device, all browser-based vulnerabilities certainly apply — such as phishing, spyware, and viruses (collectively known as malware). However, malware poses a greater risk to mobile devices than to desktop computers because websites built to support mobile users are notorious for being security risks themselves (because they have been hurriedly implemented, usually without thought given to making them secure) — which means, of course, that they present a risk to devices that access them.

						Because an app is now the primary means of using a device, it creates a security risk. Keep in mind that mobile apps have been authored by a range of organizations and developers and have been installed from diverse locations. Depending on the permissions granted to an app, it may be able to read and create user data on the device. In the Android Application Model, an app can be launched directly from the Home screen or invoked by another app. These two characteristics (it can read or create private data and it can be invoked by another app through an Intent — Chapter 3) make every app — including yours — a potential security risk. This is because your app, if it has access to private data and can be invoked by another (malicious) app, can be forced to reveal this data. Creating private data is a problem in itself. If your app creates private data and leaves it on the device in an insecure manner, a malicious piece of code (such as another app) can read it.

				[image: check.png] Mobile devices have less ability to protect themselves than desktop computers do. Even though mobile devices are exposed to a wider set of vulnerabilities than desktop computers are, mobile devices are less able to protect themselves because the techniques and best practices used to protect desktop computers often are not feasible on mobile devices. Even if you believe that an Android device is less powerful than a desktop computer because, obviously, it lacks features such as strong encryption, that’s not the whole story. A lack of computing power is no longer the primary issue.

				Here are some other reasons that mobile devices are more vulnerable than desktop computers:

				 [image: check.png] Small physical form factor: Mobile devices are often easily mislaid or stolen because they’re small. Someone with bad intentions can easily disassemble them to reach their internal components, such as memory cards, that contain private information.

				[image: check.png] No user login required: A mobile device typically requires no login or other type of authentication in order to use it. A person who steals a user’s device has immediate access to all the information on it and to other systems it’s allowed to connect to, such as e-mail. In a related issue, whenever a user accesses a secure site, such as a bank or an employer’s internal system, the device — not the user — is often the only entity that has been verified as the trusted party. If the device is stolen, the thief might have full access to the user’s secured sites — at least from the time the theft occurs to the time the user discovers and reports it.

				[image: check.png] Weak password protection: If a login is required on a device, the password itself can be a security threat. Because of the difficulty to use keyboards on mobile devices, it is a real inconvenience for users to type all the characters needed for long, strong passwords. For this reason, users tend to use shorter, simpler passwords, which makes the device easier to break into. Building complex layers of security into mobile devices and applications is also difficult because mobile users are especially sensitive to the user experience of the devices. Mobile users have been known to reject devices whose user interface is inconvenient to use; worse, users might be inclined to circumvent security features and thereby leave themselves completely vulnerable.

				[image: check.png] Limited screen size that impedes readability: Because of the small screen sizes of mobile devices, URLs that a device might access often aren’t completely visible. If a “dangerous” URL is a small variation of a “safe” URL (as commonly happens in phishing attacks), the user is likely not to notice the variation and may provide private information to the malicious site.

				[image: check.png] Environmental distractions: Because users often use mobile devices in crowded spaces, such as buses, or while engaged in other activities, such as walking or driving (a bad idea), they become distracted and give less than optimum attention to security warnings.

						For example, some financial portals show users special, personalized images to verify that they’re on legitimate websites. Someone using a desktop in an office setting is likely to notice that this image is missing after being directed to a site that’s spoofing the legitimate site. A user on a mobile device, on the other hand, is likely to be distracted and not notice the missing image because of simultaneously having to navigate the interior of a shopping mall or attempt to maintain balance on a speeding train.

				[image: remember.eps]	When your application is demonstrably safe, secure, and useful, it becomes an application that people trust and hence want to buy, download, and install. While the reliable, high-performing usefulness of an application is certainly a significant factor in establishing trust (trust happens as a side-effect of the app demonstrating it can “get the job done well”), security plays the largest role in establishing trust.

				Looking at Security Holistically

				An application developer wondering how to provide application security typically starts by considering specific (but random) topics such as types of encryption and password-based login.

				However, as an app developer, you must first define the app’s threat model, which defines the kinds of attacks the app must expect to handle, the assets that must be protected, and the likely degree of loss if those assets are violated or stolen. (See the later section “Defining the Threat Model for an Android Application.”)

				After you have defined the threat model, you need to identify the specific techniques to handle threats. Security techniques can be grouped in the following functional categories:

				[image: check.png] Authentication: This includes techniques for validating and identifying who or what is using the system. Authentication may be done through a username/password scheme (like in Tic-Tac-Toe), or you can get very sophisticated and even use biometrics — such as fingerprint or retinal scans! Authentication is a key need in secure systems. If you can’t validate and identify the user, then access control, audit trail, and non-repudiation become impossible.

				[image: check.png] Access control: Manage who has access to which capabilities or data. Now that you know (through authentication) who the user is, you should only allow him to do what he is permitted to do.

				[image: check.png] Audit trail: This is the concept of keeping track of who did what in the system. This is typically achieved by logging.

				[image: check.png] Data integrity: This is ensuring that data doesn’t become corrupted or harmed. An audit trail will help here, and so will access control. Also in this category are techniques that use checksums that can be used to test whether a piece of data has been inconsistently modified.

				[image: check.png] Non-repudiation: This is ensuring that no user or agent can deny doing something after he (or it) has done it.

				Another (related) classification of security techniques is defined by the roles that the above security techniques can play in implementing a secure system. There are four roles, as follows:

				[image: check.png] Resistance: This is making the loss more difficult to occur. Authentication, access control, and data integrity certainly help make the system resistant to attack.

				[image: check.png] Detection: This is determining that a loss or breach has taken place, so that the system can start to protect itself against further breaches or limit the extent of the breach.

				[image: check.png] Mitigation: This is limiting the degree of loss or breach that takes place.

				[image: check.png] Recovery: This is helping the user to recover from a loss, such as by recovering the data from a backup.

				Use both the lists to guide you in finding out how to address the attacks the system is likely to face. This systematic approach can lead to much better protection of your app than does simply adding a few ad hoc security techniques. Incidentally, the set of threats the system is likely to face, the probabilities of the threats succeeding, and the losses that are likely to happen if the threats succeed are collectively known as the “threat model” for a system. We explain the threat model, and how to define it, in the next section.

				Defining the Threat Model for an Android Application

				To define the threat model, this section describes what types of Android vulnerabilities you have to (and don’t have to) deal with.

				On the good side, because Android is a privilege-separated operating system. This means that — because it runs on Linux — every application runs under its own user ID and group ID. In other words, applications run separately from each other and the system. Finally, whenever an application is uninstalled, all its private data (including preferences and SQLite databases) is removed. Many risks are therefore eliminated and do not need to be included in the threat model.

				On the bad side (it’s not the fault of Android, however), after your app has been downloaded to a device, virtually every one of its characteristics can be looked up by an attacker, because the .apk file can be parsed and all its separate components extracted, including the manifest file, executable code, resources, and images. The source code can then be decompiled (reconstructed) from the executable code and examined for useful information such as which algorithms are used and which strings represent user IDs and passwords. As you might imagine, implementing “security by obscurity” — that is, relying on the system being safe because no one knows anything about it — simply isn’t possible. You have to assume that an attacker knows every detail about your app and then try to protect it.

				Your application can become a security risk in six ways, for example, if you

				[image: check.png] Leave private data in files on the device and its SD card: Other, unauthorized and malicious, software may be able to read the files.

				[image: check.png] Use SQLite databases in a manner vulnerable to database hacking techniques: An example is a SQL injection — which we explain later.

				[image: check.png] Allow other, unauthorized, apps to gain access to private data by using your app: Remember that your app can be launched from another app. If your app is a security risk, it can be exploited by other malicious apps. Even built-in Android apps — such as the browser — can be a security risk. A malicious app may access a malicious website via either the built-in browser or the underlying WebView class (Chapter 10) and download a virus or other malware without the user realizing it.

				[image: check.png] Leave private information in a human-readable form in your source code: Examples are hard-wired or “special” user IDs (that provide a system-level, or higher, degree of access to certain data) and passwords or encryption keys.

				[image: check.png] Rely on security by obscurity, such as using simple algorithms for generating keys or encrypting data: You must assume that your app code isn’t private and that, after your code is read, any security measure you’ve applied can be broken.

				The following sections look systematically at how to address these threats.

				Understanding the Android Security Model

				[image: remember.eps]	The security threat in your app lies in malicious code — or a malicious user — taking advantage of the capabilities granted to your application.

				Let’s start by looking at how your app gains those capabilities. Android’s privilege model (the rules by which capabilities are granted to applications) is designed so that no application can, by default, give permission to do anything that can adversely affect other apps or the operating system. Essentially, every app runs in its own sandbox (for example, its own address space in memory, or its own processes, threads, and space on the file system). If your app needs to operate outside this sandbox, such as by launching another app, by using some system functionality, or by sharing resources with another app, it must explicitly ask for permission from the Android framework.

				All Android applications (specifically the .apk files that are installed on the device) must be signed using a certificate that identifies the author of the application. Self-signing certificates are perfectly legal — certificates don’t have to be signed by a signing authority that verifies your identity. Android just wants to be able to uniquely differentiate you from everyone else.

				For this reason, you can ask for a couple different kinds of permissions:

				[image: check.png] First, you can request that two applications share the same user ID, thereby sharing access to each other’s files and SQLite databases. Note that only two applications requesting to share user IDs have to be signed with the same signature in order for their request to be granted. To see how it’s done, visit http://developer.android.com/guide/topics/manifest/manifest-element.html#uid.

				[image: check.png] Second, your Android app must (in its manifest file) explicitly ask for permission for every protected service it needs on the device. These protected services range from straightforward, such as accessing locations, to esoteric, such as “using SurfaceFlinger low-level features” (which gives your app fine-grained control of how objects are placed on the frame buffer — a data structure that mirrors the device display). At the time the application is installed, the installer presents the list of permissions that the app is requesting and asks the user to approve or reject them, as shown in Figure 9-1. If the user rejects any permission, the installer on the device will not install the app. Also, if the app does not request these permissions it will not be able to use these services (although the parts of the app that do not use these services will still work).

				A particular permission can be enforced at a number of places during your app’s operation:

				[image: check.png] When a call is made to a system function: To prevent an unauthorized invocation

				[image: check.png] When starting an activity: To prevent an unauthorized application from launching the activity of other applications

				[image: check.png] When sending or receiving broadcasts: To determine who can receive a broadcast or send one to you

				[image: check.png] When accessing, and operating on, a content provider: To prevent an unauthorized app from accessing the data in the content provider

				[image: check.png] When binding to, or starting, a service: To prevent an unauthorized application from using the service

					

				
					Figure 9-1: Approving requested permissions for the popular game Angry Birds.

				

					[image: 9781118008256-fg0901.tif]

				The following XML snippet shows examples (from the Tic-Tac-Toe application) of requesting permission to use the Internet, access the network state, find both coarse and fine locations, and read contacts from the built-in Contacts application. You can see the complete list of permissions at http://developer.android.com/reference/android/Manifest.permission.html. Note that this list isn’t static but, rather, grows in each Android release. Neither does it contain the list of custom permissions defined by you (see the entry containing LAUNCHACTIVITY shown in the XML block below).

				<uses-permission android:name=”android.permission.READ_CONTACTS”/>

				<uses-permission android:name=”android.permission.INTERNET”/>

				<uses-permission android:name=”android.permission.ACCESS_NETWORK_STATE”/>

				<uses-permission android:name=”android.permission.ACCESS_COARSE_LOCATION” />

				<uses-permission android:name=”android.permission.ACCESS_FINE_LOCATION” />

				<uses-permission

				 android:name=”com.wiley.fordummies.androidsdk.tictactoe.LAUNCHACTIVITY”/>

				[image: tip.eps]	Note carefully where the <uses-permission> . . . </uses-permission> element is placed in the AndroidManifest.xml file (it must be outside the application block and inside the manifest block)!

				In the preceding chunk of code, you can see that the last permission appears to be specific to the Tic-Tac-Toe application — and it is. In addition to requesting predefined system permissions, apps can define their own permissions. To define and use custom permissions, these three steps must take place:

					1.	These permissions must be defined by the app developer by using <permissions> . . . </permissions> elements in the manifest file. Here’s an example from the Tic-Tac-Toe activity:

				<permission

				 android:name=”com.wiley.fordummies.androidsdk.tictactoe.LAUNCHACTIVITY”

				 android:label=”Launch Tic-Tac-Toe Activity”

				 android:description=”@string/permission_launch_activity”

				 android:protectionLevel=”normal”

				/>

				[image: tip.eps]		Note carefully where this element is also placed in the AndroidManifest.xml file (outside the application block and inside the manifest block). Also, the complete list of attributes in the permission element is shown at http://developer.android.com/guide/topics/manifest/permission-element.html.

					2.	The component (an activity or a service) that wants to declare the need for the permission must do so in its android:permission attribute. Here’s an example from the Login activity in Tic-Tac-Toe:

				<activity

				 android:name=”.Login”

				 android:label=”@string/app_name”

				 android:launchMode=”standard”

				 android:screenOrientation=”portrait”

				 android:permission=

				 “com.wiley.fordummies.androidsdk.tictactoe.LAUNCHACTIVITY”

				>

					3.	The using package must request this permission (we showed you how to request permissions a few paragraphs earlier):

				<uses-permission

				 android:name=”com.wiley.fordummies.androidsdk.tictactoe.LAUNCHACTIVITY”/>

				[image: tip.eps]		This request is needed by the package in which the activity itself is located. Any separate package that has applications that will invoke the Login activity must (obviously) also request this permission.

				The Android framework also uses a permissions-based scheme to protect content providers. Note that the Tic-Tac-Toe application must declare the need for the following permission to be able to read information about your contacts (and send them your scores):

				<uses-permission android:name=”android.permission.READ_CONTACTS”/>

				Finally, we give you some techniques in the remainder of this section to help you debug permission errors.

				If an application fails because of a permission error, you see an entry like the following in the logcat window (it’s one long line, but we indented it here to improve readability):

				02-28 12:48:00.864: ERROR/AndroidRuntime(378):

				 java.lang.SecurityException: Permission Denial: starting Intent {

				 act=com.wiley.fordummies.androidsdk.tictactoe.Login

				 cmp=com.wiley.fordummies.androidsdk.tictactoe/.Login }

				 from ProcessRecord{407740c0

				 378:com.wiley.fordummies.androidsdk.tictactoe/10033} (pid=378,

				 uid=10033)

				 requires

				 com.wiley.fordummies.androidsdk.tictactoe.permission.LAUNCHACTIVITY

				The key string in this example is, of course, java.lang.SecurityException. The following lines (also from logcat) indicate that the exception is being thrown from the SplashScreen activity when it is trying to start the Login activity:

				02-28 21:04:39.758: ERROR/AndroidRuntime(914): at

				 com.wiley.fordummies.androidsdk.tictactoe.SplashScreen$1.run

				 (SplashScreen.java:36)

				You use the next technique to install the .apk on either an emulator or a device, find the directory by using the adb executable supplied with your Android distribution, and open a shell, cmd, or terminal window in that directory. Type this line:

				./adb shell pm list permissions

				You will see the text shown below, with your custom permission (LAUNCHACTIVITY) nestling in it:

				permission:android.permission.INTERNAL_SYSTEM_WINDOW

				permission:android.permission.MOVE_PACKAGE

				permission:android.permission.READ_INPUT_STATE

				permission:com.google.android.providers.settings.permission.READ_GSETTINGS

				permission:android.permission.REBOOT

				permission:android.permission.STATUS_BAR

				permission:android.permission.ACCESS_DOWNLOAD_MANAGER_ADVANCED

				permission:android.permission.STOP_APP_SWITCHES

				

				permission:android.permission.MANAGE_APP_TOKENS

				. . .

				permission:com.wiley.fordummies.androidsdk.tictactoe.LAUNCHACTIVITY

				. . .

				permission:android.permission.SET_ACTIVITY_WATCHER

				permission:android.permission.BACKUP

				permission:android.permission.SET_TIME

				permission:android.permission.STATUS_BAR_SERVICE

				permission:android.permission.PERFORM_CDMA_PROVISIONING

				permission:android.permission.INSTALL_PACKAGES

				permission:com.google.android.apps.maps.permission.C2D_MESSAGE

				permission:android.permission.CALL_PRIVILEGED

				permission:android.permission.CHANGE_COMPONENT_ENABLED_STATE

				permission:android.permission.WRITE_GSERVICES

				permission:android.permission.BIND_WALLPAPER

				Finally, we show you what happens if you put your permission entry in the wrong place. The following lines are shown in logcat if the LAUNCHACTIVITY permission declaration is at the wrong level (for example, inside the activity element):

				02-28 16:53:09.838: DEBUG/PackageManager(77): Permissions: com.wiley.fordummies.androidsdk.tictactoe.LAUNCHACTIVITY

				

				02-28 17:04:18.888: WARN/PackageParser(77): Unknown element under <application>: permission at /data/app/vmdl1654102309.tmp Binary XML file line #11

				

				02-28 17:04:20.438: WARN/PackageManager(77): Unknown permission com.wiley.fordummies.androidsdk.tictactoe.LAUNCHACTIVITY in package com.wiley.fordummies.androidsdk.tictactoe

				Protecting SQLite Databases

				The primary security concern created by using SQLite databases is the SQL injection attack, in which the attacker is able to force the system to execute his own query and return data that he does not have authorization to access. Suppose that in response to a prompt for a person’s name, you enter Bob on the form and the application returns Bob’s e-mail address by looking up a table using this query:

				Select e-mail from user_information where name = Bob

				Before software developers understood SQL injection attacks, they (the software developers) would use string concatenation to create queries. Thus, for the example shown above, a string was programmatically created that looked exactly like the query shown in the preceding example. This string was then sent to the database to execute.

				But note what happens if you enter Bob; select table_names from user_tables in the entry field of the user interface: The query string becomes

				Select e-mail from user_information where name = Bob; select table_names from user_tables

				Most SQL databases would execute both queries, returning not only Bob’s e-mail but also the names of the programmer-defined tables in the system. (The user_tables view is standard in most databases that contain the names of all user-defined tables.) Armed with this information, an attacker can inject all kinds of queries into a database to read all the other tables — even the system tables.

				Defending against this type of attack is a straightforward process. The trick is to use what are known as “bind” variables. We do this in the Tic-Tac-Toe application. Look at the following lines that were extracted from the file DatabaseHelper.java:

				private static final String TABLE_NAME = “Accounts”;

				. . .

				private static final String INSERT = “insert into “ +

				 TABLE_NAME + “(name, password) values (?, ?)” ;

				. . .

				public DatabaseHelper(Context context) {

				. . .

				 this.insertStmt = this.db.compileStatement(INSERT);

				. . .

				}

				. . .

				public long insert(String name, String password) {

				 this.insertStmt.bindString(1, name);

				 this.insertStmt.bindString(2, password);

				 return this.insertStmt.executeInsert();

				}

				The constant INSERT defines a template for the database query, where the two question marks (?) define locations where data can be inserted. The this.insertStmt = this.db.compileStatement(INSERT) statement is compiling the query into an internal data structure, and the insert(. . .) method assembles the query from the parameters that are sent to it. If someone attempted the SQL injection attack from the preceding example (and added a query to the Password field), the query would look like the following line, which creates an odd password but does nothing harmful:

				insert into Accounts (name, password) values (‘Bob’, ‘<password>; select table_names from user_tables’)

				Minimizing the Security Footprint of Your App

				After you know how the Android security model works, we have to tell how to leverage it for security purposes. To begin with, follow the principle of least privilege and give your app the least possible level of capability so that if someone uses it in an unauthorized manner, the least amount of damage will be done. If your app needs only a coarse location (at the city level), for example, don’t give it fine location capability. If your app doesn’t need to save external files, don’t write it so that it can save them. If your app doesn’t need complete access to a content provider, give it access only to the Universal Resource Identifiers (URI) it needs.

				You should also limit your app’s accessibility with respect to other applications (those not developed by you). If certain activities in your app are security risks and are not to be started by other activities, declare custom permissions for these activities. Then if a malicious app wants to use your app, it must declare its true intentions by requesting these custom permissions. The user then has a chance to realize this malicious intent and refuse to accept the request.

				Before we end this section, and so as to connect it with the security categories we covered in the earlier section, note that the above are mitigation tactics — they help you minimize the damage caused by a breach.

				Going Beyond Permissions

				The appropriate use of permissions can go a long way toward helping to make your apps secure. The following list describes some additional steps you can take to make your applications more secure (the categories the strategy belongs to are shown in parentheses):

				[image: check.png] Do not hard-wire secrets (such as special passwords) into your code. Java code can be easily decompiled to reveal this type of constant in your code. (Resist)

				[image: check.png] Encrypt any files that hold sensitive information. This advice isn’t specific to Android — a good book on Java security (such as Java Security Solutions, by Rich Helton and Johennie Helton (John Wiley & Sons, Inc.)) should show you how. Note that you must keep hidden (from anyone who might hack your app’s source code) the key you use to encrypt the file itself. (Resist, Data Integrity)

				[image: check.png] Back up your data so that you can restore it if your device ever gets hacked and its data corrupted. The Android SDK provides an API to a service that can back up your app’s data on Google’s servers. We don’t include a description of this service in this book because of certain Google limitations (no guarantee that the service will remain free and no guarantee of future support, for example). (Recover)

				[image: check.png] Log what your app does (such as the methods it calls) to a log file (and don’t put sensitive, user-supplied information in the file or forget to encrypt it). In particular, be sure to log all permission exceptions. The log file can also be used to determine whether an attack was made, and by whom. (Audit Trail, Non-Repudiation, Detect)

				[image: check.png] For especially sensitive operations or requests for data, don’t rely only on permissions. Add code that alerts the user to the sensitive access being requested and asks for user confirmation. (Resist, Access Control)

				[image: check.png] Keep intent filters to sensitive activities specific so that attackers cannot launch this type of activity by sending out high-level intents. Validate intent parameters when they’re received by activities, and don’t put sensitive data (such as passwords) into an intent that’s being used to start an activity. Malware can register higher-priority intent filters and have a user’s sensitive data sent to it instead. (Resist, Access Control)

				[image: check.png] Of course, set up your user interface so that when sensitive data (such as a password) is entered, it’s masked. You probably can tell where in the Tic-Tac-Toe application we didn’t do this (for a hint, look at the Login activity) and where we did mask the data entry (look at the Account activity). (Resist, Authentication)

			

		

	
		
			
				
				
					Part IV

					Enhancing the Capabilities of Your Android Application

					
						[image: 9781118008256-pp0401.eps]
					

				

					In this part . . .

					This part of the book describes the SDK components needed to incorporate into your app the advanced capabilities of your mobile device. To that end, Chapter 10 addresses integrating the web and location services, and Chapter 11 covers the use of audio, video, and, most importantly, sensors.

				

			

		

	
		
			
				Chapter 10

				Channeling the Outside World through Your Android Device

				In This Chapter

				[image: arrow] Understanding the capabilities of your device to access the outside world

				[image: arrow] Opening a browser from your app

				[image: arrow] Incorporating a browser view in your application

				[image: arrow] Accessing information on the web using a web service

				[image: arrow] Finding your phone’s location

				[image: arrow] Incorporating maps into your app

				[image: arrow] Understanding design issues with web and location-based apps

				Your Android device is your portal to the world. You can use it to interact with other people, see what else is going on in the rest of the world, and find out what’s around you — shopping, dining, and local points of interest, for example.

				Your Android device can do all this because of apps that can use the web, location-based services provided by a variety of providers (in particular, Google), and the device’s own, built-in, location-finding capability.

				We cover many topics in this chapter, from simply launching a browser from a URL, to embedding a browser in your application, to embedding and controlling a map based on device location. It’s exciting stuff! This chapter first shows you how to write apps that can, for example, browse the web, call web services that provide you with specific services and information, present maps of places that might interest you, and indicate where you are on a map. The chapter also reveals the true potential of Android apps, by describing the capabilities that exist on your device and on the Internet to use external services — in particular, mapping and location-based services.

				Launching a Browser from Your App

				In our first (and simplest) example of channeling the outside world, the sample application launches the built-in browser on a specific web page identified by a Universal Record Locator (the familiar URL). We illustrate this concept within (what else?) the Tic-Tac-Toe application, by providing a means of opening the Wikipedia page that describes, from within the Help screen, the game of tic-tac-toe (http://en.wikipedia.org/wiki/Tictactoe). The Help screen itself is shown in Figure 10-1.

					

				
					Figure 10-1: The Tic-Tac-Toe Help screen.

				

					[image: 9781118008256-fg1001.tif]

				Pressing the Tic-Tac-Toe on Wikipedia button opens a browser on the Wikipedia website that describes the game of tic-tac-toe, as shown in Figure 10-2.

					

				
					Figure 10-2: Tic-tac-toe on Wikipedia in the Android browser.

				

					[image: 9781118008256-fg1002.tif]

[image: tip.eps]
				Networking basics

				Any collection of interconnected computers is a network. The network can consist of computers in your house or workplace that are connected in a local-area network (LAN) or across the Internet in a wide-area network (WAN).

				For different kinds of communications, computers also “speak” a communication language that follows a specific set of rules, or protocol. It’s a formal description of the digital formats of the messages that are exchanged and the rules (signaling and acknowledgements, for example) for exchanging those messages.

				We blur some technical distinctions here, but an Android device is supplied with the capability to speak, essentially, three kinds of protocols: Bluetooth, TCP/IP, and Hypertext Transfer Protocol (or HTTP), a higher-level protocol. Bluetooth is used for device-to-device communication in close range. TCP/IP is the most widely used protocol for computer-to-computer communication on the Internet. Layered on TCP/IP is the HTTP protocol, on which most web-based applications are built. Layered on top of HTTP are some capabilities that the Android framework itself provides. These capabilities (such as launching a web browser) hide even HTTP from you, making things even simpler.

				This book describes only applications that you can build by using the HTTP protocol. Unless you’re building a performance-critical application (such as a multiplayer game) that requires large numbers of messages to be exchanged in real-time, the HTTP protocol is the only one you need. Also, we’ve left out developing Bluetooth-based applications, as being too complicated for a For Dummies book.

				The code for this task is straightforward. As we recommend in earlier chapters, open the code in Eclipse and follow along as you read this section. We begin by showing you the relevant code segments from Help.java. First, the following onClick(. . .) method is called whenever a button on the Help screen is pressed:

				public void onClick(View v) {

				 switch(v.getId())

				 . . .

				 case R.id.button_lookup_wikipedia:

				 if (hasNetworkConnection()){

				 LaunchBrowser(“http://en.wikipedia.org/wiki/Tictactoe”);

				 }else{

				 noNetworkConnectionNotify();

				 }

				 break;

				 . . .

				}

				URLs and URIs

				A Uniform Resource Identifier, or URI, is a string that identifies a resource on the web. You can think of a URI as the International Standard Book Number (ISBN) of a book in the library. A Uniform Resource Locator, or URL, is a URI plus a means of gaining access to the resource, and potentially acting on it. You can think of this term as an ISBN number plus a library location plus, potentially, a means (such as snail mail) of delivering the book to you. In most cases, you can consider the terms URL and URI to be interchangeable.

				Now take a look at the LaunchBrowser(. . .) method:

				private void LaunchBrowser(String URL){

				 Uri theUri = Uri.parse(URL);

				 Intent LaunchBrowserIntent = new Intent(Intent.ACTION_VIEW, theUri);

				 startActivity(LaunchBrowserIntent);

				}

				Yes, it’s that simple! The built-in browser on your Android device has declared an intent filter stating that it will accept the action ACTION_VIEW on data consisting of a web resource identified by a uniform resource identifier (or URI) and accessible using the HTTP protocol. Thus, when the intent containing this action-data pair is broadcast using startActivity(. . .), the browser picks it up and launches itself on the specified www.wikipedia.org URL.

				The URL http://en.wikipedia.org/wiki/Tictactoe is being automatically redirected to http://en.m.wikipedia.org/wiki/Tictactoe, which is the Tic-Tac-Toe web page for mobile devices (a page that doesn’t use frames and has fewer embedded graphics, for example). Note also that the Back button on your device must be pressed twice to return to the Help activity in Tic-Tac-Toe. Because the browser application is being relaunched on the page for mobile devices, two browser activities are on the top of the activity stack. Also, all you can do is launch the browser so that it takes over the entire screen and then exits. For finer-grained control, you must embed the browser as a view in your application, which we describe in the next section.

				Embedding a Browser in Your Android Application

				The Android framework provides you with a View subclass named WebView that you can embed in your application’s user interface. We show you this concept by implementing a new activity named HelpWithWebView that will have WebView as part of its view. This activity is launched from the onClick method of the Help activity. Its code is shown here:

				public void onClick(View v) {

				 switch(v.getId())

				 . . .

				 case R.id.button_lookup_wikipedia_in_web_view:

				 if (hasNetworkConnection()){

				 LaunchWebView(“http://en.wikipedia.org/wiki/Tictactoe”);

				 }else{

				 noNetworkConnectionNotify();

				 }

				 break;

				

				. . .

				}

				LaunchWebView(. . .) uses the same Wikipedia URL to launch the HelpWithWebView(. . .) activity, by using the following code snippet:

				private void LaunchWebView(String URL){

				 Intent launchWebViewIntent = new Intent(this, HelpWithWebView.class);

				 launchWebViewIntent.putExtra(“URL”, URL);

				 startActivity(launchWebViewIntent);

				}

				We’re showing you something new in this example: how data can be passed from the launching activity to the launched activity via the Intent. You can use the putExtra(. . .) method to insert extra data in the form of name-value pairs. In the example, the Wikipedia URL is being embedded with the key “URL”. Now take a look at the onCreate(. . .) method of the following HelpWithWebView activity:

				protected void onCreate(Bundle savedInstanceState) {

				 String URL=null;

				 super.onCreate(savedInstanceState);

				 setContentView(R.layout.helpwithwebview);

				 WebView helpInWebView=null;

				 helpInWebView = (WebView) findViewById(R.id.helpwithwebview);

				

				 View buttonExit = findViewById(R.id.button_exit);

				 buttonExit.setonClickListener(this);

				 Bundle extras = getIntent().getExtras();

				 if(extras !=null)URL = extras.getString(“URL”);

				 helpInWebView.loadUrl(URL);

				}

				Finally, we show you the layout for the user interface of the HelpWith WebView activity in which the WebView is embedded:

				<?xml version=”1.0” encoding=”utf-8”?>

				<ScrollView

				 xmlns:android=”http://schemas.android.com/apk/res/android”

				 android:layout_width=”match_parent”

				 android:layout_height=”match_parent”

				 android:padding=”10dip” >

				 <LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”

				 android:orientation=”vertical”

				 android:layout_width=”match_parent”

				 android:layout_height=”match_parent”>

				 <WebView

				 android:id=”@+id/helpwithwebview”

				 android:layout_width=”match_parent”

				 android:layout_height=”200dip”

				 android:layout_weight=”1.0”/>

					<Button

				 android:id=”@+id/button_exit”

				 android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”

				 android:text=”Exit”/>

				 </LinearLayout>

				</ScrollView>

				This example shows that we have simply embedded WebView along with an Exit button inside LinearLayout, as shown in Figure 10-3.

					

				
					Figure 10-3: Showing a web page in an embedded web view.

				

					[image: 9781118008256-fg1003.tif]

				Providing Maps and Location-Based Services

				A smartphone is usually an integral part of its owner’s life, and one that’s used for many tasks — personal conversations, location-based activities, and buying decisions, for example. Because this mobile device is also a computer that can record and remember details, it retains intimate knowledge about the person — names of friends (from the address book and calling patterns) and common haunts, for example — that can be used to provide personalized, circumstance-specific, and highly targeted context-based services that appear to have been created just for the device owner.

				A vital component of context is location, one that a smart Android device is especially capable of providing because it has the capability to be located, either via a built-in GPS device or a cellular phone tower or Wi-Fi hotspot. Because the device generally goes everywhere the user does, its location is also the user’s location.

				By using the Android framework’s location-finding services, you can write apps that provide location-based services. These services have many uses, such as giving directions to places a user has never visited or providing information about points of interest (such as dining or popular sights) near the user’s location.

				All these location-based services have four fundamental components:

				[image: check.png] Open a map.

				[image: check.png] Invoke the service (a restaurant or point of interest, for example).

				[image: check.png] Navigate the map to various positions or make a calculation related to the two positions (such as directions).

				[image: check.png] Find out (from the device) the user’s coordinates.

				(We describe these four fundamental components in greater detail in the next few sections.)

				We have implemented an activity in Tic-Tac-Toe, named WhereAmI (why not?), that makes use of the functionality we just described. This activity starts by displaying a map within the Android MapClass (a subclass of the View class). This map has zoom controls, so that the user can pan to different locations by dragging the map in any direction. Also, the user can enter a location name and ask the map to navigate to the location. Finally, the user can ask the map to navigate to his current location. The application determines where the device is by invoking the location services on the device and then positioning the map on that location.

				Isn’t it cool to watch the map orient itself to a location?!

				Installing the necessary development components for writing map apps

				The standard Android libraries don’t contain the Google Map libraries you need in order to write map applications. Thus, if you build using only the standard Android SDK libraries (the ones named SDK Platform such and such — for example, SDK Platform 3.2 API 13, revision 1, in the SDK and AVD Manager), you will see build errors. Even if you build against the right libraries (see the next paragraph), but run your map-based application on an emulator that has only the Android SDK as a target, you will see a runtime error whenever you try to use the map-based functionality.

				This problem isn’t a big deal, though — you simply have to install the Google API library and build the app and the emulator with this library as the target instead. This library contains both the Android libraries and the Google Maps API.

				Incidentally, the AndroidManifest.xml file then has to be modified with an entry for the Google Maps library. To do this, place the following line inside the <application> . . . </application> element in the manifest file:

				<uses-library android:name=”com.google.android.maps” />

				[image: tip.eps]	Do not place this line outside the <application> element by mistake, or you will spend hours trying to debug your map functionality!

				Next, request these permissions:

				<uses-permission android:name=”android.permission.ACCESS_NETWORK_STATE”/>

				<uses-permission android:name=”android.permission.ACCESS_COARSE_LOCATION” />

				<uses-permission android:name=”android.permission.ACCESS_FINE_LOCATION” />

				Finally, if you’re embedding maps in your application using MapView, you need a Google Maps API key. For information on how to obtain a map key, see http://code.google.com/android/add-ons/google-apis/mapkey.html. To briefly reiterate the instructions on this page, you must first create a certificate for your application by using Eclipse (see Chapter 13 or http://developer.android.com/guide/publishing/app-signing.html#ExportWizard on how to do this) and then use the MD5 fingerprint of your certificate to generate the map key online. Then you put the map key in the layout file specifically for the activity that seeks to use an embedded map view. (We show you where in the following section.)

				Displaying a map by using MapView

				We now illustrate how to display the map by walking you through part of the WhereAmI activity. (Again, feel free to follow along in Eclipse.) To start with, take a look at its layout file:

				<Rajiv: Clarified>

				<?xml version=”1.0” encoding=”utf-8”?>

				<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”

				 android:id=”@+id/whereamiframe”	

				 android:orientation=”vertical”

				 android:layout_width=”match_parent”

				 android:layout_height=”match_parent”>

				 <com.google.android.maps.MapView

				 android:id=”@+id/whereamiview”

				 android:apiKey=”0gnB1it3gGRvFkdhjqBahvgiSsVwUKuuNTXuUeA”

				 android:layout_width=”match_parent”

				 android:layout_height=”200dip”

				 android:clickable=”true”/>

				 <TableLayout

				 xmlns:android=”http://schemas.android.com/apk/res/android”

				 android:layout_width=”match_parent”

				 android:layout_height=”100dip”

				 android:stretchColumns=”1”>

				 <TableRow>

				 <Button

				 android:id=”@+id/button_locate”

				 android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”

				 android:text=”Find”/>

				 <EditText

				 android:id=”@+id/location”

				 android:layout_column=”1”

				 android:text=”Enter address ...”

				 android:layout_width=”match_parent”

				 android:padding=”3dip” />

				 </TableRow>

				 <TableRow>

				 <Button

				 android:id=”@+id/button_locate_me”

				 android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”

				 android:text=”Locate Me”/>

				 <TextView

				 android:id=”@+id/my_location”

				 android:layout_column=”1”

				 android:text=”Where am I ...”

				 android:layout_width=”match_parent”

				 android:padding=”3dip”/>

				 </TableRow>

				

				 </TableLayout>

				 <Button

				 android:id=”@+id/button_exit”

				 android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”

				 android:text=”Exit”

				 />

				</LinearLayout>

				Note the line android:apiKey=<long unintelligible set of characters> inside the MapView element — that’s where you would insert the generated map key. (By the way, this is a made-up key, so don’t try to use it!)

				This layout file generates the user interface for the WhereAmI activity, as shown in Figure 10-4.

					

				
					Figure 10-4: Using an embedded MapView.

				

					[image: 9781118008256-fg1004.tif]

				Finally, look at the WhereAmI class (including the imports and the class header) and the onCreate(. . .) method for this activity:

				package com.wiley.fordummies.androidsdk.tictactoe;

				

				import com.google.android.maps.GeoPoint;

				import com.google.android.maps.MapController;

				import com.google.android.maps.MapView;

				import com.google.android.maps.MapActivity;

				

				import android.location.Location;

				

				import android.os.Bundle;

				import android.view.View;

				import android.view.View.onClickListener;

				import android.widget.EditText;

				

				import android.widget.TextView;

				

				import com.wiley.fordummies.androidsdk.tictactoe.R;

				

				public class WhereAmI extends MapActivity implements onClickListener {

				 private MapController whereAmIController=null;

				 private EditText locationEditableField=null;

				 private TextView myLocationField=null;

				 private GeoLocation myGeoLocator = null;

				 private int locationQueryCount=0;

					

				 protected void onCreate(Bundle savedInstanceState) {

				 super.onCreate(savedInstanceState);

				 setContentView(R.layout.whereami);

				

				 MapView whereamiView=null;

				 whereamiView = (MapView) findViewById(R.id.whereamiview);

				 whereamiView.setSatellite(true);

				 whereamiView.setBuiltInZoomControls(true);

				 whereAmIController = whereamiView.getController();

				

				 locationEditableField= (EditText)findViewById(R.id.location);

				

				 View buttonLocate = findViewById(R.id.button_locate);

				 buttonLocate.setonClickListener(this);

				

				 View buttonExit = findViewById(R.id.button_exit);

				 buttonExit.setonClickListener(this);

				

				 myLocationField= (TextView)findViewById(R.id.my_location);

				 View buttonLocateMe = findViewById(R.id.button_locate_me);

				 buttonLocateMe.setonClickListener(this);

				

				 myGeoLocator = new GeoLocation(this);

				 }

				. . .

				}

				In this example, you see a bunch of imports that start with com.google.android.maps as well as android.location.location. You need this special set of imports in order to use location finding and maps.

				Next, you see that WhereAmI extends MapActivity rather than Activity. Make a note of this because the Android framework handles MapActivity differently. For example, it starts up background threads to display the MapView so that the rest of the app doesn’t get stuck waiting for the map to display. Also, look at the code for the onCreate method. The first part is pretty normal activity stuff. But then you will see that the code gets a handle to the MapView control and sets various parameters, such as setting it to Satellite View mode (other view modes are Street View mode and Traffic View mode) and turning on zoom controls. The code also gets a handle to a MapController object, which is used to navigate the map to different locations.

				Finally, it gets a handle to an instance of the GeoLocation class. We discuss the GeoLocation class in the section “Determining the location of your device.”

				That’s it! When you launch the WhereAmI activity (by clicking the Where Am I button on the GameOptions screen), a map opens in MapView. We describe what you can do with this MapView in the next section.

				Calling a geocoding web service and navigating the map

				In this section, we show you how to call a web service to translate a location name to a map coordinate and how to navigate the map to the coordinate.

				We start by demonstrating the application feature and then drilling into how it’s implemented. Run the Tic-Tac-Toe application and launch the WhereAmI activity (refer to Figure 10-4). Enter an address — or the name of any reasonably well-known location, such as Central Park New York City or London England. Then tap the Find button to see the map navigate to the location.

				To see how the map is made to navigate to the location, begin by looking at the onClick method of the WhereAmI activity. We list the relevant segment here:

				public void onClick(View v) {

				 switch(v.getId()){

				 case R.id.button_locate:

				 try{

				 String locationName = this.locationEditableField.getText().toString();

				 GeoPoint point = myGeoLocator.getGeoPointFromName(locationName);

				 whereAmIController.setZoom(16);

				 whereAmIController.animateTo(point);

				 } catch (Exception e){

				 e.printStackTrace();

				 }

				 …

				 }

				 …

				}

				The method myGeoLocator.getGeoPointFromName(locationName)returns the geocoding of the location (in a GeoPoint data structure, which contains the latitude and longitude of the location in microdegrees. (Using these millionths of degrees helps avoid the use of inaccurate floating-point arithmetic in map calculations, such as distance calculations.) Then whereAmIController.animateTo(point) navigates the map to that location, and whereAmIController.setZoom(16) sets a reasonable zoom level. The zoom value ranges from 1 to 21. Not all zoom levels apply in a given geographic area. This is because each zoom level navigates to a layer of the map. If a layer corresponding to a level does not exist in the map database, zooming to that level will fail and will keep the map at the current level.

				The following snippet of code shows myGeoLocator.getGeoPointFromName, which we describe next:

				public GeoPoint getGeoPointFromName(String locationName) {

				 GeoPoint tempGeoPoint=null;

				 String cleanLocationName = locationName.replaceAll(“ “,”%20”);

				 HttpGet httpGet = new HttpGet(

				 http://maps.google.com/maps/api/geocode/json?address=

				 + cleanLocationName

				 + “&sensor=false”);

				 HttpClient client = new DefaultHttpClient();

				 HttpResponse response;

				 StringBuilder stringBuilder = new StringBuilder();

				 try {

				 response = client.execute(httpGet);

				 HttpEntity entity = response.getEntity();

				 InputStream stream = entity.getContent();

				 int b;

				 while ((b = stream.read()) != -1) {

				 stringBuilder.append((char) b);

				 }

				 JSONObject jsonLocation= new JSONObject();

				 jsonLocation= new JSONObject(stringBuilder.toString());

				 tempGeoPoint = getGeoPointFromJSON(jsonLocation);

				 } catch (Exception e) {

				 e.printStackTrace();

				 }

				 return tempGeoPoint;

				}

				The HttpGet call is a call to a REST-based (or RESTful) web service. The representational state transfer (or REST) technique retrieves data from a website by providing a URL that’s processed by the site to return data in either XML format or JavaScript Object Notation (JSON) format, as in this case. This particular service returns the geocoded coordinates of the location in JSON format, from which the latitude and longitude are extracted and then converted to a GeoPoint.

				The code for extracting the geo coordinates is shown here (only for completeness because this code isn’t Android-specific):

				private static GeoPoint getGeoPointFromJSON(JSONObject jsonObject) {

				 GeoPoint returnGeoPoint=null;

				 try {

				 Double longitude = new Double(0);

				 Double latitude = new Double(0);

				 longitude = ((JSONArray)jsonObject.get(“results”)).

				 getJSONObject(0).

				 getJSONObject(“geometry”).

				 getJSONObject(“location”).

				 getDouble(“lng”);

				 latitude = ((JSONArray)jsonObject.get(“results”)).

				 getJSONObject(0).

				 getJSONObject(“geometry”).

				 getJSONObject(“location”).

				 getDouble(“lat”);

				 returnGeoPoint = new GeoPoint((int)(latitude*1E6),(int)(longitude*1E6));

				 } catch (Exception e) {

				 e.printStackTrace();

				 }

				 return returnGeoPoint;

				}

				We also show you an example JSON string (containing the geocoded location of London, England) from which the latitude and longitude can be extracted using the preceding code snippet:

				{ “results” : [{ “address_components” : [{ “long_name” : “London”,

				 “short_name” : “London”,

				 “types” : [“locality”,

				 “political”

]

				 },

				 { “long_name” : “Westminster”,

				 “short_name” : “Westminster”,

				 “types” : [“administrative_area_level_3”,

				 “political”

]

				 },

				 { “long_name” : “Greater London”,

				 “short_name” : “Greater London”,

				 “types” : [“administrative_area_level_2”,

				 “political”

]

				 },

				 { “long_name” : “England”,

				 “short_name” : “England”,

				 “types” : [“administrative_area_level_1”,

				 “political”

				

]

				 },

				 { “long_name” : “United Kingdom”,

				 “short_name” : “GB”,

				 “types” : [“country”,

				 “political”

]

				 }

],

				 “formatted_address” : “Westminster, London, UK”,

				 “geometry” : { “bounds” : { “northeast” : { “lat” : 51.704064700000004,

				 “lng” : 0.15022949999999999

				 },

				 “southwest” : { “lat” : 51.349352799999998,

				 “lng” : -0.37835800000000003

				 }

				 },

				 “location” : { “lat” : 51.500152399999997,

				 “lng” : -0.12623619999999999

				 },

				 “location_type” : “APPROXIMATE”,

				 “viewport” : { “northeast” : { “lat” : 51.704064700000004,

				 “lng” : 0.15022949999999999

				 },

				 “southwest” : { “lat” : 51.349352799999998,

				 “lng” : -0.37835800000000003

				 }

				 }

				 },

				 “types” : [“locality”,

				 “political”

]

				 }],

				 “status” : “OK”

				}

				Determining the location of your device (or, wherever you go, there you are)

				Android provides three types of location-finding capabilities as part of the Android SDK:

				[image: check.png] GPS: The most accurate type is GPS, which uses a permanent ring of satellites to locate devices containing GPS receivers. However, GPS doesn’t work (well) indoors, consumes a hefty amount of battery power, and sometimes takes a while to determine the location of the device.

				[image: check.png] Cell towers: Cell towers that the device (if it’s a phone) is communicating with know the approximate location, via triangulation based on signal direction and strength.

				[image: check.png] Wi-Fi access points: Similar to cell towers, Wi-Fi access points that the device is connected to serve as approximate proxies for the device.

				Despite the emergence of powerful mobile devices with embedded GPS components, and the availability of satellite GPS service, challenges in device location remain. All three of the techniques we described above are still approximations. Plus, as a user moves around or moves from outdoors to indoors, or as the weather changes, the different types of location services could become available or unavailable. Also, these services vary in accuracy depending on where the device is located and on environmental conditions (such as cloudy weather for GPS services or the material composition of the walls between the device and an access point). Thus, what was the most accurate location provider at a given instance of time may no longer be so a few minutes later.

				To illustrate this concept, we show you some of the methods inside the GeoLocation class we have written. We start with the imports, the class header, and the constructor:

				. . .

				import com.google.android.maps.GeoPoint;

				import android.content.Context;

				import android.location.*;

				import android.os.Bundle;

				

				public class GeoLocation implements LocationListener {

				 private Context thisContext=null;

				 private LocationManager manager=null;

				 private String bestProvider=null;

				 private Location thisLocation=null;

				 thisContext = theContext;

				

				 manager = (LocationManager)

				 thisContext.getSystemService(Context.LOCATION_SERVICE);

				 Criteria criteria = new Criteria();

				 bestProvider = manager.getBestProvider(criteria, true);

				 registerForLocationUpdates();

				}

				To begin with, note that the class imports three packages within the Android framework that provide location services. Next, the GeoLocation class implements the LocationListener interface, which specifies the notification methods needed in order to let the location service notify your application when the location or another element of the service changes (such as a provider becoming disabled). Finally, the constructor of the class gets a handle to a location manager (the current best provider) and registers for location updates. Here’s the code for registerForLocationUpdates:

				private void registerForLocationUpdates(){

				 manager.requestLocationUpdates(bestProvider,

				 15000,

				 1,

				 (LocationListener) this);

				}

				The method getBestCurrentLocation, shown in the following code snippet, gets the current location of the device from what is now the best location provider:

				public Location getBestCurrentLocation(){

				 Location myLocation=null;

				 myLocation = manager.getLastKnownLocation(bestProvider);

				 if (myLocation == null){

				 myLocation =

				 manager.getLastKnownLocation(LocationManager.NETWORK_PROVIDER);

				 }

				 if (myLocation != null){

				 System.out.println(“GeoLocation is >”+myLocation.toString()+”<”);

				 thisLocation = myLocation;

				 }

				 return thisLocation;

				}

				After an app has registered for location updates, the location service on the Android device calls one or more of the following methods as characteristics of the service change:

				public void onLocationChanged(Location location) {

				 thisLocation = location;

				}

				public void onProviderDisabled(String provider) {

				 // TODO Auto-generated method stub

				}

				public void onProviderEnabled(String provider) {

				 // TODO Auto-generated method stub

				}

				public void onStatusChanged(String provider, int status, Bundle extras) {

				 // TODO Auto-generated method stub

				}

				The most important method in this example is onLocationChanged because here’s where the new location is set.

				Building Them Right — Design Considerations for Web and Location-Based Apps

				When you reach out to the web from your device to invoke a service or read data, you’re essentially traveling into the wide blue yonder. Keep in mind the many things that can go wrong, such as losing connectivity or (worse, usually) suffering through a data connection with an extremely low bandwidth (because it neither fails so the app can report an error and move on, nor does a good job of transferring data). Your application must handle these situations and still provide a good user experience. The following two sections show you how.

				Checking for connectivity

				Obviously, the first thing you have to do in order to deal with connectivity issues is to check whether connectivity exists in the first place. If you take a look at the code for the onClick method in the Help activity, you see a section like this one:

				. . .

				case R.id.button_lookup_wikipedia:

				 if (hasNetworkConnection()){

				 LaunchBrowser(“http://en.wikipedia.org/wiki/Tictactoe”);

				 }else{

				 noNetworkConnectionNotify();

				 }

				. . .

				The application is using hasNetworkConnection() to check to see whether an Internet connection is available before launching the browser. hasNetworkConnection() consists of the following chunk of code:

				private boolean hasNetworkConnection(){

				 ConnectivityManager connectivityManager = (ConnectivityManager)

				 getSystemService(Context.CONNECTIVITY_SERVICE);

				 NetworkInfo networkInfo =

				 connectivityManager.getNetworkInfo(ConnectivityManager.TYPE_WIFI);

				 boolean isConnected = true;

				 boolean isWifiAvailable = networkInfo.isAvailable();

				 boolean isWifiConnected = networkInfo.isConnected();

				

				 networkInfo =

				 connectivityManager.getNetworkInfo(ConnectivityManager.TYPE_MOBILE);

				 boolean isMobileAvailable = networkInfo.isAvailable();

				

				 boolean isMobileConnnected = networkInfo.isConnected();

				 isConnected = (isMobileAvailable&&isMobileConnected)||(isWifiAvailable &&isWifiConnected);

				 return(isConnected);

				}

				Note how the Android framework provides a simple way to check connectivity. The key call in this example is the one to get ConnectivityManager by calling an Android system service.

				Using threading

				The earlier section “Checking for connectivity” describes how to check for connectivity. If no connectivity exists, then the app can simply let the user know to try the operation again later.

				However, the hasNetworkConnection() method we described in the previous section returns true if any connectivity exists, even if the connection is poor and has low bandwidth. So how do you deal with this situation? Essentially, you have to launch every call that involves data transfer over the Internet in its own thread. Then, despite the slow connection, your app won’t appear to “hang” while the call is in progress.

				We explain threading in Chapter 8, so head over to that chapter if you have to implement threads. Do note that, in many cases, you don’t have to manage threads directly for apps that require communication with the outside world, such as apps that explore the web or location-based apps, because the Android framework takes care of this task for you. For example, when you launch WebView inside the HelpWithWebView activity — or when you open MapView in the WhereAmI activity — the Android framework creates threads in the background to complete this task so that the rest of the app remains responsive. (You can test it by clicking the Exit button on either activity screen — the activity exits immediately.) However, if the Android framework does not handle threading for the specific task you have to implement, you have to manage your own threads.

				Understanding the SDK Components Used in This Chapter

				After you follow our examples of how to work with browsers, maps, and web and location services, we give you a little more detail about the components (packages and classes) of the Android framework and its add-ons that provide the functionality we cover in this chapter. We don’t go into great detail because Google provides web pages that are more comprehensive than we are, but we at least give you an idea of what the component can do and provide any insights we have.

				SDK components for incorporating web pages into your application

				The WebView subclass of View is used to display web pages or, more correctly, HTML-formatted text. WebView is built on the WebKit rendering engine. (It’s part of the android.webkit package; see http://developer.android.com/reference/android/webkit/package-summary.html.) WebView includes methods to handle hyperlinks (so that the new page opens in WebView rather than launches a browser), navigate forward and backward in a history list, and zoom in and out, for example. Visit http://developer.android.com/reference/android/webkit/WebView.html to find complete WebView details (and more examples).

				The AndroidManifest.xml file must contain the following two lines for any app that accesses the Internet:

				<uses-permission android:name=”android.permission.INTERNET”/>

				<uses-permission android:name=”android.permission.ACCESS_NETWORK_STATE”/>

				SDK components for maps

				The page at http://code.google.com/android/add-ons/google-apis/reference/index.html provides details of the Google add-on API that provides mapping functionality (the page at http://code.google.com/android/add-ons/google-apis/maps-overview.html provides an overview).

				A core class in the map API is the GeoPoint support class that represents a geographical location, with latitude and longitude stored as integers representing micro-degrees (or millionths of a degree). The methods for GeoPoint include the constructor GeoPoint(int latitudeE6, int longitudeE6), which — given the latitude and longitude — constructs a GeoPoint. Also included are the accessor methods getLatitudeE6() and getLongitudeE6() to extract latitude and longitude values from an instance of GeoPoint. Visit http://code.google.com/android/add-ons/google-apis/reference/com/google/android/maps/GeoPoint.html to find details about this class.

				The MapView subclass of the Android View is specifically intended to display and manage maps. (See http://code.google.com/android/add-ons/google-apis/reference/com/google/android/maps/MapView.html.) MapView is supplied with methods to set it in one of three modes — Satellite, Traffic, and Street — namely, setSatellite(boolean), setTraffic(boolean), and setStreetView(boolean), respectively (note that, although they are presented in the API as separate modes, the traffic and street views are simply overlays on the map or satellite view). You can add built-in zoom controls by using setBuiltInZoomControls(boolean). You also get a handle to its controller — by using getController() — in order to manage the map through code (for example, to position, pan, and zoom it).

				MapView must be used only within a class that extends MapActivity. This is because the MapActivity base class manages the threads and the state for MapView as part of its own life cycle. (When MapActivity is paused, for example, it saves the MapView state and shuts down the threads, and then it restores the state and resumes the threads when it starts up again.)

				[image: remember.eps]	Don’t forget to put a Map API key (see http://code.google.com/android/add-ons/google-apis/mapkey.html) in the layout file for MapView as the value for the attribute android:apiKey. Using MapView requires it.

				The MapController class (at http://code.google.com/android/add-ons/google-apis/reference/com/google/android/maps/MapController.html) handles all control aspects of MapView. You first have to get a handle to the MapView controller by using getController(). Then you can

				[image: check.png] Call animateTo(GeoPoint geoPoint) to navigate the map to a particular location.

				[image: check.png] Set the center of the map to a specified location using setCenter(GeoPoint point).

				[image: check.png] Zoom to a level (a number between 1 and 21) using setZoom(int zoomLevel), for example.

				[image: remember.eps]	Maps consist of sections known as tiles at each of several levels. When you zoom to a level (using setZoom()), the map is actually zoomed to a tile within it. Not all tiles are necessarily available at all levels. When a tile isn’t available, the closest tile is either enlarged or shrunk, sometimes causing distortion of the map image.

				The MapActivity base class has the code needed to manage any activity that displays MapView, such as the setup and teardown of the threads and other elements and linking the MapView management to its own life cycle. As with other subclasses of Activity, the onCreate(. . .) method is where the activity is initialized — with any state — and its view is created. You may need to provide implementations for two methods that are special to this activity: isRouteDisplayed() and isLocationDisplayed(). They report to the Google server whether you are (respectively) displaying any routes or using the sensors (GPS, for example) to discover the device’s current location. These methods simply return true or false. isRouteDisplayed() is an abstract method in the MapActivity class, so you must provide an implementation. isLocationDisplayed() has a default implementation that you can override, if necessary.

				[image: warning_bomb.eps]	Once again, do not forget to insert <uses-library android:name=”com.google.android.maps”/> inside the <application> . . . </application> element in the AndroidManifest.xml file or else you receive a classnotfound exception when you try to use any map-related class. (Been there, done that.)

				One somewhat complex capability we don’t illustrate in this book is the creating and drawing of map markers and overlays. Refer to the second section in http://developer.android.com/resources/tutorials/views/hello-mapview.html for a tutorial on overlays.

				SDK components for finding locations

				The Android framework provides a complete set of classes for using your device’s location within your app in android.location package. (Details are at http://developer.android.com/reference/android/location/package-summary.html.) This package contains two primary classes (Location and LocationManager) and two useful support classes (Address and Criteria). The GeoCoder class is intended to convert location names to coordinates, and vice versa, but you would experience intermittent failures using these methods, especially on an emulator. You can instead “roll your own” lookup and reverse-lookup methods, which work consistently. They make web-service calls directly to the Google map services and therefore serve to illustrate the use of REST-based web services.

				The Location class (see details at http://developer.android.com/reference/android/location/Location.html) represents a geographical fix — the geographical location returned by a location provider at a particular time and consisting of these attributes:

				[image: check.png] Latitude

				[image: check.png] Longitude

				[image: check.png] Timestamp

				[image: check.png] (Optional) Information about altitude, speed, and bearing

				These attributes can be retrieved from a location using the accessor methods getLatitude(), getLongitude(), getBearing(), and so on. Latitude and longitude are provided as double-precision values accurate to five decimal places. (We don’t know why micro-degrees weren’t used here.) This class also provides two methods that can compute distance:

				[image: check.png] distanceTo(Location newLocation)

				[image: check.png] distanceBetween(double startLatitude, double startLongitude, double endLatitude, double endLongitude, float[] results)

				Additional information relevant to a particular provider or class of providers can be retrieved by the application by using getExtras, which returns a Bundle of key/value pairs.

				An instance of the LocationManager class (see details at http://developer.android.com/reference/android/location/LocationManager.html) is retrieved by using Context.getSystemService(Context.LOCATION_SERVICE). This class provides access to location providers via getAllProviders() and getBestProvider(Criteria criteria, boolean enabledOnly) and provides information about them — for example, via isProviderEnabled(String provider). The LocationManager also provides a controller that objects implementing the LocationListener interface can register with — using one of the requestLocationUpdates(. . .) methods that are provided — in order to automatically receive location updates from a specific provider or by using specific criteria.

				The Address class is essentially a data structure used to completely represent all aspects of an address, ranging from its latitude and longitude all the way to its locality, region, and country, for example. The methods of this class consist of get and set accessor methods for all fields.

				The Criteria class is also a data structure that can be used to specify (at a fine grain) which criteria must be met in order to satisfy a location request to LocationManager — in other words, the accuracy of the latitude, longitude, bearing, speed, and altitude, for example, or the amount of power it might expend in providing the location. Whenever a location manager is asked for a fix, the location or locations it returns must live up to the specified criteria.

			

			
		

	
		
			
				Chapter 11

				Harnessing the Capabilities of Your Android Device

				In This Chapter

				[image: arrow] Incorporating e-mail, SMS, and telephony into an app

				[image: arrow] Writing programs that use the camera

				[image: arrow] Experiencing the outside world by way of sensors

				[image: arrow] Appreciating the SDK components used in this chapter

				Mobile devices have become powerful computing platforms and can therefore accommodate a wide range of hardware capabilities. New Android devices often have not only high-performance cameras but also built-in GPS and one or more sensors. Furthermore, Google wanted to make the Android platform as developer-friendly as possible so that developers would quickly create apps for it (and drive up Android’s market share). Android also liberalized the policies around Android development — making them more open than the policies that governed older mobile devices and their platforms.

				Thus, the Android SDK makes all capabilities available on the device accessible from a program. You can write apps that control the camera to take photographs, communicate via the device’s phone to make calls and send text messages, and record and play audio and video. (Though we don’t cover it in this book, you can also write programs that communicate in custom ways over Bluetooth and Wi-Fi.) Finally, not only can you incorporate all this functionality in your app, but the Android SDK makes programming apps that use these capabilities much easier than other platforms.

				This chapter shows you two broad methods to incorporate these capabilities into your apps. In many cases, you can use Android intents and reuse functionality from the built-in apps on your system; or you can directly use Android SDK classes to create finer-grained control. Additionally, you can use a hybrid approach and use both intents and custom classes. We show you examples of all these strategies in this chapter.

				As we show you these examples, we will, along the way, point out quirks in the Android framework, such as differences in the ways in which to handle different types of media (audio, video, and images). We will describe how we had to work around at least one “bug” in the framework in order to make the app work, as an example of issues you too could run into and have to find a way around. Also, dealing with sensors is more complicated than the framework lets on. Because not all devices have all sensors, sensors can generate a fire hose of data that you have to find a way to handle, and every sensor is different.

				Finally, you will find it really difficult to properly develop and test programs that use the capabilities described in this chapter on an emulator. You really need an actual Android device. So buy, beg, or borrow a device if at all possible.

				Let’s get started!

				Integrating E-Mail, SMS, and Telephony into Your App

				All Android devices come with a built-in e-mail application that, like all Android applications, is composed of activities. In this case, the activities collaborate to send and receive e-mail. Furthermore, this e-mail application can be called from another application by constructing an intent and broadcasting it.

				This example is somewhat hokey, but suppose that a user who’s excited about a high score after playing the machine in the Tic-Tac-Toe application wants to send the score to a friend. To begin with, he configures an e-mail account on his device to send the e-mail from (you can — and must — do this in the emulator as well, for this example to work properly). Then, from the Tic-Tac-Toe app, the user brings up the Menu and then the Email Score button, as shown in Figure 11-1.

				Tapping the Email Score button causes the e-mail client on the device to open. The subject and the message are already inserted, as shown in Figure 11-2, so the user only has to type the e-mail address of the intended recipient.

					

				
					Figure 11-1: Choosing to e-mail a tic-tac-toe score.

				

					[image: 9781118008256-fg1101.tif]

				After the user enters an e-mail address in the To field, the following code snippet (from GameSession.java) constructs an intent, inserts the subject and the message, and then invokes the e-mail app on your machine (or the emulator) to send the message:

				public void sendScoresViaEmail() {

				 Intent emailIntent = new Intent(android.content.Intent.ACTION_SEND);

				 emailIntent.putExtra(android.content.Intent.EXTRA_SUBJECT,

				 “Look at my AWESOME TicTacToe Score!”);

				 emailIntent.setType(“plain/text”);

				 emailIntent.putExtra(android.content.Intent.EXTRA_TEXT,

				 firstPlayerName + “ score is “ + scorePlayerOne +

				 “ and “ +

				 secondPlayerName + “ score is “ + scorePlayerTwo);

				 startActivity(emailIntent);

				}

					

				
					Figure 11-2: The Android e-mail client, invoked from Tic-Tac-Toe.

				

					[image: 9781118008256-fg1102.tif]

				That’s it. Note that you can pre-fill the address in the To field as well, and insert it into the appropriate entry field of the e-mail client by assigning the sender’s e-mail address to android.content.Intent.EXTRA_EMAIL with another call to putExtra before you broadcast the intent. The user still must be the one who finally sends the message, but he now has less work to do outside of Tic-Tac-Toe.

				To send scores by text message (SMS), you simply implement the following function and invoke it from the menu:

				public void sendScoresViaSMS() {

				 Intent SMSIntent = new Intent(Intent.ACTION_VIEW);

				 SMSIntent.putExtra(“sms_body”,

				 “Look at my AWESOME TicTacToe Score!” +

				 firstPlayerName + “ score is “ + scorePlayerOne +

				 “ and “ +

				

				 secondPlayerName + “ score is “ + scorePlayerTwo);

				 SMSIntent.setType(“vnd.android-dir/mms-sms”);

				 startActivity(SMSIntent);

				}

				The built-in SMS application launches, as shown in Figure 11-3. In this app also, the user must complete the process.

					

				
					Figure 11-3: Sending an SMS by using the built-in SMS application.

				

					[image: 9781118008256-fg1103.tif]

				Using intents isn’t the only way to send SMS messages: You can also directly use the SMS Manager class within the SDK. (We provide links to the documentation on this class in the later section “Understanding the SDK Components Used in This Chapter.”) If you plan to use this class directly in your code rather than let the built-in apps do the work for you, remember that you must request the appropriate permissions in the AndroidManifest.xml file. The permission for sending SMS is

				<uses-permission android:name=”android.permission.SEND_SMS”/>

				Last, we show you how to make a telephone call for Tic-Tac-Toe help. This time, the intent is ACTION.CALL and you have to specify the phone number to launch the activity properly, as shown in Figure 11-4. The code is similar, however:

				public void callTicTacToeHelp() {

				 Intent phoneIntent = new Intent(Intent.ACTION_CALL);

				 String phoneNumber = “842-822-4357”; // TIC TAC HELP

				 String uri = “tel:” + phoneNumber.trim();

				 phoneIntent.setData(Uri.parse(uri));

				 startActivity(phoneIntent);

				}

					

				
					Figure 11-4: Placing a phone call.

				

					[image: 9781118008256-fg1104.tif]

				We want to mention one more difference between making phone calls and sending e-mail and SMS messages: Your application must explicitly ask, in AndroidManifest.xml, for permission to use the phone, because the activity that responds to the intent doesn’t have it. (You’ll realize why when you see that the dialer immediately starts dialing after it’s launched — other apps require the user to confirm the operation.) Here’s the permission you need:

				<uses-permission android:name=”android.permission.CALL_PHONE”/>

				[image: remember.eps]	All uses-permission entries go inside the <manifest> … </manifest> elements and outside the <application> … </application> elements.

				Playing Audio and Video and Capturing Images

				In this section, we illustrate the Android SDK’s capabilities for playing and capturing audio, video, and images in multiple ways — sometimes by using intents to launch built-in applications and sometimes by using calls to the framework classes. Then, for audio playback, we create a hybrid of these two methods. As a result, you see a range of methods and can choose the appropriate one for your particular needs.

				[image: tip.eps]	We have provided three sample files (SampleAudio.mp3, SampleVideo.3gp, and SampleImage.jpg) as part of the CD and on the website for you to use in the following sections. To make the sample code work correctly on an emulator or a device, all three files must be installed on the SD card, in the directory /mnt/sdcard.

				To load the audio and video files into the locations specified in the code (we’re using the DDMS perspective in Eclipse, as shown in Figure 11-5), simply click and highlight the directory into which you want to upload the file, and then select the little icon at the top of the window whose tooltip says, “Push a file onto the device.” In the file browser window that opens, you can select the file you want to upload. Refer to Figure 11-5 to see where the examples used in the book (SampleAudio.mp3, SampleImage.jpg, and SampleVideo.3gp) have been uploaded.

				Capturing and playing audio

				In this section, we show you how to work with music and audio in Android. We demonstrate audio recording by using an intent to launch the built-in voice recorder, exhibit the playback of audio by creating a playback service that plays audio in the background, and then launch this service from within the Tic-Tac-Toe app by using an intent.

					

				
					Figure 11-5: Using the DDMS perspective to copy files to the device.

				

					[image: 9781118008256-fg1105.eps]

				To begin, we show you the layout of the Audio activity. It has four buttons as listed below (the activity itself is shown in Figure 11-6):

				[image: check.png] Start Audio (playback)

				[image: check.png] Stop Audio (playback)

				[image: check.png] Start Audio (recording)

				[image: check.png] Exit (the activity)

				Here’s the XML code for the layout:

				<?xml version=”1.0” encoding=”utf-8”?>

				<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”

				 android:background=”@color/background”

				 android:layout_height=”match_parent”

				 android:layout_width=”match_parent”

				 android:padding=”30dip”

				 android:orientation=”vertical”>

				 <Button android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”

				 android:id=”@+id/buttonAudioStart”

				 android:text=”Start Audio”/>

				 <Button android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”

				 android:text=”Stop Audio”

				 android:id=”@+id/buttonAudioStop”/>

				 <Button android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”

				

				 android:id=”@+id/buttonAudioRecord”

				 android:text=”Record Audio”/>

				 <Button android:id=”@+id/buttonAudioExit”

				 android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”

				 android:text=”Exit” />

				</LinearLayout>

					

				
					Figure 11-6: The audio activity.

				

					[image: 9781118008256-fg1106.tif]

				Now let’s show you the code, starting with the onCreate(…) method (see below). After setting up the buttons, the onCreate(…) method initializes audioFileURI from the path to the sample audio file (/mnt/sdcard/SampleAudio.mp3):

				protected void onCreate(Bundle savedInstanceState) {

				 super.onCreate(savedInstanceState);

				 setContentView(R.layout.audio);

				

				 Button buttonStart = (Button) findViewById(R.id.buttonAudioStart);

				 buttonStart.setOnClickListener(this);

				 Button buttonStop = (Button) findViewById(R.id.buttonAudioStop);

				 buttonStop.setOnClickListener(this);

				 Button buttonRecord = (Button) findViewById(R.id.buttonAudioRecord);

				 buttonRecord.setOnClickListener(this);

				

				 Button btnExit = (Button) findViewById(R.id.buttonAudioExit);

				 btnExit.setOnClickListener(this);

				 audioFileURI = Uri.fromFile(new File(audioFilePath));

				}

				Next, we show you the onClick(…) method for audio recording (we want to save the playback part for last):

				public void onClick(View v) {

				 switch(v.getId()){

				 case R.id.buttonAudioStart:

				 if(!started){

				 Intent musicIntent = new Intent(this, MyPlaybackService.class);

				 musicIntent.putExtra(“URIString”, audioFileURI.toString());

				 startService(musicIntent);

				 started=true;

				 }

				 break;

				 case R.id.buttonAudioStop:

				 stopService(new Intent(this, MyPlaybackService.class));

				 started=false;

				 break;

				 case R.id.buttonAudioRecord:

				 Intent audioRecordIntent = new Intent(MediaStore.Audio.Media.RECORD_SOUND_ACTION);

				 startActivityForResult(audioRecordIntent,AUDIO_CAPTURED);

				 break;

				 case R.id.buttonAudioExit:

				 finish();

				 break;

				 }

				}

				This activity uses the built-in audio recorder application on the Android device for recording audio. The couple of lines that start the recording are in the case R.id.buttonAudioRecord block of the onClick(…) method. An intent for android.provider.MediaStore.ACTION_AUDIO_CAPTURE is created and broadcast using the startActivityForResult(…) method. Because the built-in audio recorder application has declared its intent filter to handle this event, the app is launched by Android. Note that the user starts and stops the recording, and then the path to the file in which the audio has been captured is returned as the Universal Resource Identifier (URI) to the activity via the following onActivityResult(…) callback method:

				protected void onActivityResult (int requestCode, int resultCode, Intent data) {

				 if (resultCode == RESULT_OK && requestCode == AUDIO_CAPTURED) {

				 audioFileURI = data.getData();

				 Log.v(TAGACTIVITYAUDIO, “Audio File URI: >” + audioFileURI + “<”);

				 }

				}

				[image: tip.eps]	In this example, you simply set the URI as the new value of the member variable audioFileURI so that when the user presses Start Audio again, the recently recorded audio is played.

				Now you can work through the implementation of the audio playback service. To begin, you declare it as a service to the Android runtime via an entry in the AndroidManifest.xml file:

				<service android:enabled=”true”

				 android:name=”.MyPlaybackService”

				/>

				The code for this service is shown next. As you can see, a service is a class that extends the base class Service. (Ignore the onBind(…) method because you aren’t implementing a “bound” service that can interact with multiple clients while it’s running (for more information see http://developer.android.com/guide/topics/fundamentals/services.html):

				public class MyPlaybackService extends Service {

				 MediaPlayer player;

				

				 @Override

				 public IBinder onBind(Intent intent) {

				 return null;

				 }

				

				 @Override

				 public void onCreate() {

				 player = MediaPlayer.create(this, R.raw.sampleaudio);

				 player.setLooping(true);

				 }

				

				 @Override

				 public void onStart(Intent intent, int startid) {

				

				 Bundle extras = intent.getExtras();

				 if(extras !=null){

				 String audioFileURIString = extras.getString(“URIString”);

				 Uri audioFileURI=Uri.parse(audioFileURIString);

				 try {

				 player.reset();

				 player.setDataSource(this.getApplicationContext(),

				 audioFileURI);

				 player.prepare();

				 } catch (Exception e) {

				 // TODO Auto-generated catch block

				 e.printStackTrace();

				 }

				 }

				 player.start();

				 }

				

				 @Override

				 public void onDestroy() {

				 player.stop();

				 }

				

				}

				This particular service encapsulates an object of the MediaPlayer class. It is this object that handles the audio playback. Note how this object is created in the onCreate(…) method of the service — by passing it a “raw” resource that serves as the default audio file for this player. (In other words, if the media player is started without giving it an audio file, this is what it plays.) If you look at the res->raw directory of the Tic-Tac-Toe application, you see a file named sampleaudio.mp3, which we placed there. It’s a copy of the /mnt/sdcard/SampleAudio.mp3 file, used as the default audio file in the Audio activity.

				The intent that’s created in the audio activity is received by the onStart(…) method. This method pulls out the URI of the audio filename that the calling activity wants it to play and sets it as the data source for the media player, after which it more or less calls the start(…) method of the player to start playing. We say more or less because the code has to jump through some hoops first because the media player is a subsystem that transitions through well-defined execution states, with only certain functionality being available in each of these states). These states are shown in Figure 11-7. Because we create the media player using the static method MediaPlayer.create(…) with a default resource, it’s already in the Prepared state and ready to be started. Incidentally, to change the data source of the media player, you have to reset it, set the data source, and prepare it. Only then can you start it.

					

				
					Figure 11-7: States of the media player.

				

					[image: 9781118008256-fg1107.eps]

				Finally, the onDestroy(…) method of the service stops the media player if this service is destroyed.

				Recording and playing video

				We describe video in a somewhat different manner than we describe audio. (See the earlier section “Capturing and playing audio.”) The user obviously wouldn’t want to play video in the background, so you don’t create a video playing service. Instead, we demonstrate how to record and play video using the VideoView visual component, which is part of the Video activity’s layout:

				<?xml version=”1.0” encoding=”utf-8”?>

				<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”

				 android:background=”@color/background”

				 android:layout_height=”match_parent”

				 android:layout_width=”match_parent”

				 android:padding=”30dip”

				 android:orientation=”vertical” >

				 <VideoView android:id=”@+id/videoView”

				 android:layout_height=”175dip”

				 android:layout_width=”match_parent”

				 android:layout_gravity=”center” />

				 <Button android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”

				 android:id=”@+id/buttonVideoStart”

				 android:text=”Start Video”/>

				 <Button android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”

				 android:text=”Stop Video”

				 android:id=”@+id/buttonVideoStop”/>

				 <Button android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”

				 android:text=”Record Video”

				 android:id=”@+id/buttonVideoRecord”/>

				 <Button android:id=”@+id/buttonVideoExit”

				 android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”

				 android:text=”Exit” />

				</LinearLayout>

				The Video activity that results from this layout is shown in Figure 11-8.

				Here’s the Video activity:

				package com.wiley.fordummies.androidsdk.tictactoe;

				…

				public class Video extends Activity implements OnClickListener{

				 Button buttonStart, buttonStop, buttonRecord;

				 VideoView videoView=null;

				 static Uri videoFileURI=null;

				 public static int VIDEO_CAPTURED = 1;

				

				 @Override

				 protected void onCreate(Bundle savedInstanceState) {

				 super.onCreate(savedInstanceState);

				 setContentView(R.layout.video);

				 videoView = (VideoView) findViewById(R.id.videoView);

				 buttonStart = (Button) findViewById(R.id.buttonVideoStart);

				 buttonStart.setOnClickListener(this);

				 buttonStop = (Button) findViewById(R.id.buttonVideoStop);

				 buttonStop.setOnClickListener(this);

					

				
					Figure 11-8: The Video activity.

				

					[image: 9781118008256-fg1108.tif]

				 buttonRecord = (Button) findViewById(R.id.buttonVideoRecord);

				 buttonRecord.setOnClickListener(this);

				 Button btnExit = (Button) findViewById(R.id.buttonVideoExit);

				 btnExit.setOnClickListener(this);

				 File videoFile = new File(“/mnt/sdcard/samplevideo.3gp”);

				 videoFileURI = Uri.fromFile(videoFile);

				 }

				

				 public void onClick(View v) {

				 switch(v.getId()){

				 case R.id.buttonVideoStart:

				 // Load and start the movie

				 videoView.setVideoURI(videoFileURI);

				 videoView.start();

				 break;

				 case R.id.buttonVideoRecord:

				 Intent intent =

				 new Intent(android.provider.MediaStore.ACTION_VIDEO_CAPTURE);

				 startActivityForResult(intent, VIDEO_CAPTURED);

				

				 break;

				 case R.id.buttonVideoStop:

				 videoView.stopPlayback();

				 break;

				 case R.id.buttonVideoExit:

				 finish();

				 break;

				 }

				

				 protected void onActivityResult(int requestCode,int resultCode,Intent data){

				 if (resultCode == RESULT_OK && requestCode == VIDEO_CAPTURED) {

				 videoFileURI = data.getData();

				 }

				 }

				 }

				As you can see in this method, VideoView has methods to set the video source and to start and stop the video player. Note that VideoView internally encapsulates an Android media player object. The stopPlayback(…) and start(…) methods on VideoView simply delegate their responsibilities to the media player object.

				Although this Video activity uses the VideoView visual component for starting and stopping video play, it uses the built-in video recorder application on the Android device for recording video. The couple of lines that start the recording are in the case R.id.buttonVideoRecord block of the onClick(…) method. An intent for android.provider.MediaStore.ACTION_VIDEO_CAPTURE is created and broadcast using the startActivityForResult(…) method. Because the built-in camcorder application declares its intent filter to permit this event, it’s launched by Android. Note that the user has to start and stop the actual recording. When the user finishes, the path to the file in which the video has been captured is returned as a URI as the result of the activity. In the code sample, you simply set this URI as the new value of the member variable videoFileURI so that when the user presses Start Video again, the recently recorded video is shown.

				Displaying and capturing images

				We describe images in a manner similar to describing video. The differences in the coding patterns arise from the Android SDK not working with images exactly how it works with video. For example, video is played directly from a file containing the video, but an image is converted into a bitmap that’s completely pulled into memory before being displayed.

				The Android framework offers the ImageView visual component, which you use to display images in various formats. We use this component to demonstrate how captured images are handled. We demonstrate how to capture an image in the first place, by launching the built-in camera application by using an Intent. All the example image-handling functionality in Tic-Tac-Toe has been encapsulated within the Images activity. So let’s go through that activity, starting with its layout, shown below:

				<?xml version=”1.0” encoding=”utf-8”?>

				<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”

				 android:background=”@color/background”

				 android:layout_height=”match_parent”

				 android:layout_width=”match_parent”

				 android:padding=”30dip”

				 android:orientation=”vertical” >

				 <ImageView android:id=”@+id/imageView”

				 android:layout_height=”175dip”

				 android:layout_width=”match_parent”

				 android:layout_gravity=”center” />

				 <Button android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”

				 android:id=”@+id/buttonImageShow”

				 android:text=”Show Image”/>

				 <Button android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”

				 android:id=”@+id/buttonImageCapture”

				 android:text=”Take Picture”/>

				 <Button android:id=”@+id/buttonImageExit”

				 android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”

				 android:text=”Exit” />

				</LinearLayout>

				If you’ve followed along throughout this chapter, you should see nothing new here. Although you may not have used ImageView already, this component is described in the layout file in much the same way as any other component.

				Here’s the code for the Images activity:

				public class Images extends Activity implements OnClickListener{

				 public int flag=0;

				 ImageView imageView=null;

				 public static int IMAGE_CAPTURED = 1;

				 static Uri imageFileURI=null;

				 String imageFilePath=”/mnt/sdcard/SampleImage.jpg”;

				 Bitmap imageBitmap=null;

				 static final String TAGIMAGE=”ActivityShowImage”;

				

				

				 @Override

				 protected void onCreate(Bundle savedInstanceState) {

				 super.onCreate(savedInstanceState);

				 setContentView(R.layout.images);

				 imageView = (ImageView) findViewById(R.id.imageView);

				 Button buttonShow = (Button) findViewById(R.id.buttonImageShow);

				 buttonShow.setOnClickListener(this);

				 Button buttonCapture = (Button) findViewById(R.id.buttonImageCapture);

				

				 buttonCapture.setOnClickListener(this);

				 Button buttonExit = (Button) findViewById(R.id.buttonImageExit);

				 buttonExit.setOnClickListener(this);

				 imageBitmap = BitmapFactory.decodeFile(imageFilePath);

				 }

				

				 public void onClick(View v) {

				 switch(v.getId()){

				 case R.id.buttonImageShow:

				 // Use BitmapFactory to create a bitmap

				 imageView.setImageBitmap(imageBitmap);

				 break;

				 case R.id.buttonImageCapture:

				 Intent cameraIntent =

				 new Intent(android.provider.MediaStore.ACTION_IMAGE_CAPTURE);

				 startActivityForResult(cameraIntent, IMAGE_CAPTURED);

				 break;

				 case R.id.buttonImageExit:

				 finish();

				 break;

				 }

				 }

				

				 protected void onActivityResult (int requestCode,

				 int resultCode,

				 Intent cameraIntent) {

				 if (resultCode == RESULT_OK && requestCode == IMAGE_CAPTURED) {

				 Bundle extras = cameraIntent.getExtras() ;

				 imageBitmap = (Bitmap) extras.get(“data”);

				 imageView.setImageBitmap(imageBitmap);

				 }

				 }

				 @Override

				 protected void onPause() {

				 Log.d(TAGIMAGE, “Entering onPause”);

				 super.onPause();

				 System.gc();

				 }

				}

				The Images activity uses the ImageView visual component for showing the picture and uses the built-in camera for taking the picture. The couple of lines that start the picture-taking are in the case R.id.buttonImageCapture block of the onClick(…) method. An intent for android.provider.MediaStore.ACTION_IMAGE_CAPTURE is created and broadcast using the startActivityForResult(…) method. Because the built-in camera application declares its intent filter to permit this event, it’s launched by Android. The user has to initiate the picture-taking. The picture is then returned as a bitmap, as the result of the activity. In the code sample, you simply set this bitmap in the ImageView component, which causes this new picture to be displayed.

				[image: tip.eps]	Note the use of the BitMapFactory in the onCreate(…) method to create a bitmap from the default image in the file. This is one difference between images and videos in the Android SDK. The SDK has no way to directly render an image from a file, as it does for videos. Instead, the contents of the file have to be pulled into memory as a bitmap and then shown.

				One issue with this technique is that your app can run out of memory and crash if the bitmaps it handles exceed the allocated space. Related to this topic is a known bug in Android (see http://code.google.com/p/android/issues/detail?id=8488 for details) that requires the app (as a work-around) to force the system garbage collector to run so that any unreferenced bitmaps are “garbage-collected” in time. We show you this work-around in the onPause(…) method of this activity (you’ll see the onPause(…) method with the call to System.gc(…), the garbage collector in the code above).

				Finally, Figure 11-9 shows the Images activity executing.

					

				
					Figure 11-9: The Images activity.

				

					[image: 9781118008256-fg1109.tif]

				Bringing In the Outside World by Using Sensors

				To follow the unwritten rule of always saving the best for last, in this section we describe one more set of capabilities on your device: its sensors. Like the GPS and network components (wireless, cellular, and BlueTooth) covered in Chapter 10, sensors sense phenomena taking place in the outside world — such as the temperature, the pull of gravity, orientation, magnetic fields, ambient light, and sound, and they feed these sensed values to your app. Your app can then use these values to provide cool functionality. For example, given a communication interface to your heating or A/C unit, the app can act as a thermostat, the app can talk to the user more loudly if it senses greater ambient sound levels, and so on.

				Listing, understanding, and monitoring the sensors on your Android device

				Sensors vary among devices, so although we show examples of several sensors in this chapter, we leave others for you to uncover. After you’ve seen a few sensors, however, you’ve seen them all — in the sense that the way you incorporate them in your app is similar.

				To get started, we created the Sensors activity within Tic-Tac-Toe. This activity first finds out which sensors exist on your device and lists them. Then it monitors the sensors and logs the data it receives from each of them.

				[image: tip.eps]	As we suggest in other examples in this book, open Eclipse on the Tic-Tac-Toe project, open the files we refer to in this section — the Sensors.java file and the Sensors.xml file — and follow along.

				Here’s the layout file for the Sensors activity:

				<?xml version=”1.0” encoding=”utf-8”?>

				<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”

				 android:background=”@color/background”

				 android:orientation=”vertical”

				 android:layout_width=”match_parent”

				 android:layout_height=”match_parent”

				 android:padding=”20dip”>

				 <TextView android:text=”Sensors”

				 android:layout_height=”wrap_content”

				 android:layout_width=”wrap_content”

				 android:layout_gravity=”center”

				 android:layout_marginBottom=”15dip”

				 android:textSize=”20.5sp”/>

				

				 <ScrollView android:orientation=”vertical”

				 android:layout_height=”250dip”

				 android:layout_width=”match_parent”

				 android:layout_gravity=”top”>

				 <TextView android:layout_width=”match_parent”

				 android:layout_height=”match_parent”

				 android:id=”@+id/sensorsListTextView”/>

				 </ScrollView>

				 <Button android:id=”@+id/buttonSensorsExit”

				 android:layout_width=”match_parent”

				 android:layout_height=”wrap_content”

				 android:text=”Exit” />

				</LinearLayout>

				The Sensors activity is declared this way:

				public class Sensors extends Activity implements SensorEventListener, OnClickListener {

				…

				}

				As you can see, the Sensors activity has the standard Activity methods, and, because it has a user interface, it also implements the OnClickListener interface. To handle sensor events, though, the Sensors activity must also implement the SensorEventListener interface — the two methods onSensorChanged(…) and onAccuracyChanged(…).

				The onCreate(…) method of the activity is shown next. This method gets a handle to an instance of the SensorManager class by calling getSystemService(SENSOR_SERVICE) and receiving in return a list of sensors that it then displays in the TextView component of the user interface, as shown in Figure 11-10:

				public void onCreate(Bundle savedInstanceState) {

				 super.onCreate(savedInstanceState);

				 setContentView(R.layout.sensors);

				 listSensorsView = (TextView) findViewById(R.id.sensorsListTextView);

				 Button buttonExit = (Button) findViewById(R.id.buttonSensorsExit);

				 buttonExit.setOnClickListener(this);

				 sensorManager= (SensorManager) getSystemService(SENSOR_SERVICE);

				 sensorList = sensorManager.getSensorList(Sensor.TYPE_ALL);

				 StringBuilder sensorDescriptions = new StringBuilder();

				 int count=0;

				 for (Sensor sensor : sensorList) {

				 String sensorName = sensor.getName();

				 sensorDescriptions.append(count+ ”. ” + sensorName + ”\n” + ” ” +

				 “ Ver:” + sensor.getVersion() +

				 “ Range: “ + sensor.getMaximumRange() +

				 „ Power: „ + sensor.getPower() +

				 „ Res: „ + sensor.getResolution());

				 sensorDescriptions.append(„\n“);

				 count++;

				

				 }

				 listSensorsView.setText(sensorDescriptions);

				}

					

				
					Figure 11-10: A list of sensors on a device.

				

					[image: 9781118008256-fg1110.tif]

				Using sensors on the emulator

				You really need an actual Android device to develop and test a program that uses sensors. Certain software lets you “fake” sensors on the emulator; however, you must first make a small change in your code. For more on this topic, see http://code.google.com/p/openintents/wiki/SensorSimulator.

				Registering with the sensor manager and receiving sensed values

				In order to receive updates on sensor values, the activity must register itself with the sensor manager. The best place to do the registering is in the activity’s onResume method:

				@Override

				protected void onResume() {

				 super.onResume();

				 for (Sensor sensor : sensorList) {

				 sensorManager.registerListener(this,

				 sensor,

				 SensorManager.SENSOR_DELAY_NORMAL);

				 }

				}

				Incidentally, the activity must unregister itself from the sensor manager, ideally in the activity’s onPause(…) method:

				@Override

				protected void onPause() {

				 …

				 super.onPause();

				 // Stop updates

				 sensorManager.unregisterListener(this);

				 …

				}

				The most important method of this activity is the onSensorChanged(…) method. It has lots of code, so we show it to you twice. The first time, we show it to you with most of the code removed so that you can see how it receives changed sensor values and then writes their details to the debug log by using Log.d(…):

				public void onSensorChanged(SensorEvent event) {

				 …

				 String sensorEventString = sensorEventToString(event);

				 …

				 Log.d(LOGTAG, “--- EVENT Raw Values ---\n” + sensorName + “<\n” +

				 “Distance Last= >” + distanceOfLastValue + “<\n” +

				 “Distance This= >” + distanceOfThisValue + “<\n” +

				 “Change = >” + change + “<\n” +

				 “Percent = >” + percentageChange + “%\n” +

				 “Last value = “ + lastValueString + “<\n” +

				 sensorEventString);

				 …

				}

				While we’re at it, here’s sensorEventToString(…):

				private String sensorEventToString(SensorEvent event){

				 StringBuilder builder = new StringBuilder();

				 builder.append(“Sensor: “);

				 builder.append(event.sensor.getName());

				 builder.append(“\nAccuracy: “);

				 builder.append(event.accuracy);

				 builder.append(“\nTimestamp: “);

				 builder.append(event.timestamp);

				 builder.append(“\nValues:\n”);

				 for (int i = 0; i < event.values.length; i++) {

				 builder.append(“ [“);

				 builder.append(i);

				 builder.append(“] = “);

				 builder.append(event.values[i]);

				 }

				 builder.append(“\n”);

				 return builder.toString();

				}

				Most of the code in onSensorChanged(…) is there to deal with sensor “noise” — which is sensors returning sensed values at a high frequency. You have to filter out most of these values in order to detect the real change you’re looking for (such as changing the orientation or darkening the room). However, different sensors have different ranges and resolutions, so you need to filter out values differently. For example, the accelerometer returns values in meters per second squared, with a baseline value of 9.8 m/s2 on one of three axes when the device is laid flat; the orientation sensor returns azimuth values between 0 and 359 degrees around one axis, pitch between 0 and 180 degrees around a second axis, and roll from between –90 and 90 degrees on a third.

				We want to give you at least an idea of how to filter values, so we include some code in onSensorChanged(…). In the interest of full disclosure, this code is somewhat crude, but it should give you an idea of what to do and how to do it:

				…

				private static final float TOLERANCE = (float) 10.0;

				…

				public void onSensorChanged(SensorEvent event) {

				 String sensorName = event.sensor.getName();

				 String lastValueString = “No previous value”;

				 String sensorEventString = sensorEventToString(event);

				 float percentageChange = (float)1000.0 + TOLERANCE;// Greater than tolerance

				 float distanceOfLastValue = (float)0.0;

				 float distanceOfThisValue = (float)0.0;

				 float change = (float)0.0;	

				 float[] lastValue = lastSensorValues.get(sensorName);

				 lastSensorValues.remove(sensorName); // Hash table is “open” and can store multiple entries for the same key

				

				 lastSensorValues.put(sensorName, event.values.clone()); // update the value

				 if (lastValue != null){

				 // Compute distance of new value, change and percentage change

				 StringBuilder builder= new StringBuilder ();

				 distanceOfLastValue = (float)0.0;

				 for (int i = 0; i < event.values.length; i++){

				 distanceOfLastValue = distanceOfLastValue + (float) Math.pow (lastValue[i], 2);

				 distanceOfThisValue =

				 distanceOfThisValue + (float) Math.pow (event.values[i], 2);

				 change = change + (float) Math.pow ((event.values[i]-lastValue[i]), 2);

				 builder.append(“ [“);

				 builder.append(i);

				 builder.append(“] = “);

				 builder.append(lastValue[i]);

				 }

				 lastValueString = builder.toString();

				 change = (float) Math.sqrt(change);

				 distanceOfLastValue = (float) Math.sqrt(distanceOfLastValue);

				 distanceOfThisValue = (float) Math.sqrt(distanceOfThisValue);

				

				 percentageChange = (float)1000.0 + TOLERANCE; // large value > tolerance

				 if (distanceOfLastValue != 0.0)

				 percentageChange = change*(float)100.0/distanceOfLastValue;

				 else if (distanceOfThisValue != 0.0)

				 percentageChange = change*(float)100.0/distanceOfThisValue;

				 else percentageChange = (float) 0.0; // both distances are zero

				 }

				 Log.d(LOGTAG, “--- EVENT Raw Values ---\n” + sensorName + “\n” +

				 “Distance Last= >” + distanceOfLastValue + “<\n” +

				 “Distance This= >” + distanceOfThisValue + “<\n” +

				 “Change = >” + change + “<\n” +

				 “Percent = >” + percentageChange + “%\n” +

				 “Last value = “ + lastValueString + “<\n” +

				 sensorEventString);

				 if (lastValue == null || percentageChange > TOLERANCE){

				 Log.d(LOGTAG+sensorName,

				 “--- Event Changed --- \n” +

				 “Change = >” + change + “<\n” +

				 “Percent = >” + percentageChange + “%\n” +

				 sensorEventString);

				 }

				}

				This code sample is intended to detect a significant change in the element being sensed and to then report a value. Essentially, it saves (in a hash table) the previously sensed value for every sensor modality, and when a new value arrives that’s more than a certain tolerance percentage (defined in the constant TOLERANCE) away from the old value, it writes it with a special tag (in the form Sensors<Sensor Name>; for example, TestSensorsCM3602 Light sensor) to the log file. The code sample computes the percentage change as the vector distance between the previous and new values divided by the distance of the previous value from the origin (or the distance of the new value from the origin, if the previous value is <0, 0, 0>.

				You can observe this filtering in the logcat window, shown in Figure 11-11 (check out Chapter 12 for more on the logcat window), by defining a filter on the log tag for every type of sensor and one using the tag. For example, for the light sensor, the filter is for the log tag TestSensorsCM3602 Light sensor. When you run the app and enter the Sensors activity, you see the main sensor filter showing a rapidly growing number of lines, whereas the others show changes only when you move the sensor around, change its orientation, or dim the room, for example.

					

				
					Figure 11-11: The logcat window, showing filtered sensor values.

				

					[image: 9781118008256-fg1111.tif]

				A sample log entry (for the light sensor) is shown here, for good measure:

				Light Sensor:

				

				04-23 16:17:42.784: DEBUG/SensorsCM3602 Light sensor(2389): --- Event Changed

				04-23 16:17:42.784: DEBUG/SensorsCM3602 Light sensor(2389): Change = >0.0<

				04-23 16:17:42.784: DEBUG/SensorsCM3602 Light sensor(2389): Percent = >1010.0%

				04-23 16:17:42.784: DEBUG/SensorsCM3602 Light sensor(2389): Sensor: CM3602 Light sensor

				04-23 16:17:42.784: DEBUG/SensorsCM3602 Light sensor(2389): Accuracy: 3

				

				04-23 16:17:42.784: DEBUG/SensorsCM3602 Light sensor(2389): Timestamp: 13348252950000

				04-23 16:17:42.784: DEBUG/SensorsCM3602 Light sensor(2389): Values:

				04-23 16:17:42.784: DEBUG/SensorsCM3602 Light sensor(2389): [0] = 320.0 [1] = 0.0 [2] = 0.0

				04-23 16:17:50.514: DEBUG/SensorsCM3602 Light sensor(2389): --- Event Changed ---

				04-23 16:17:50.514: DEBUG/SensorsCM3602 Light sensor(2389): Change = >160.0<

				04-23 16:17:50.514: DEBUG/SensorsCM3602 Light sensor(2389): Percent = >50.0%

				04-23 16:17:50.514: DEBUG/SensorsCM3602 Light sensor(2389): Sensor: CM3602 Light sensor

				04-23 16:17:50.514: DEBUG/SensorsCM3602 Light sensor(2389): Accuracy: 3

				04-23 16:17:50.514: DEBUG/SensorsCM3602 Light sensor(2389): Timestamp: 13355983358000

				04-23 16:17:50.514: DEBUG/SensorsCM3602 Light sensor(2389): Values:

				04-23 16:17:50.514: DEBUG/SensorsCM3602 Light sensor(2389): [0] = 160.0 [1] = 0.0 [2] = 0.0

				Understanding the SDK Components Used in This Chapter

				After you read the examples in this chapter of how to work with SMS, e-mail, telephony, audio, video, images, and sensors, you’re ready for a little more detail about the components (packages and classes) of the Android framework and its add-ons that provide the functionality covered in this chapter. We don’t go into much detail because Google already provides comprehensive web pages, but we want to give you at least an idea of what a component can do and our insights on it.

				SDK communication components: SMS, e-mail, and telephony

				In this chapter, we show you only how to send text (SMS) messages and e-mail and make calls via built-in applications. However, these applications are built on classes in the Android SDK that are also available to your application (at least for SMS and telephony). The Android SDK does not appear to have any classes for sending and receiving e-mail (there is an interesting discussion thread on this issue here: http://groups.google.com/group/android-developers/browse_thread/thread/c58d75c1ccfe598b/3bb7cf1ad6fd3a4f). However, open source resources, that work just fine for Android, are available on the web for this task.

				For sending SMS messages, the only class needed is SmsManager (see http://developer.android.com/reference/android/telephony/SmsManager.html for details). You can get a handle on the (singleton) object via the class method SmsManager.getDefault(), after which this class has methods to send single and multipart messages.

				Currently the Phone app on a device is the only way (that we know of) to programmatically make a call from an app. However, starting in version 2.3, Android provides the Session Initiation Protocol (SIP) package for VOIP-based calling (see http://developer.android.com/reference/android/net/sip/package-summary.html for details). Anyone you call must have a SIP account from a provider, and many providers provide free accounts. Because this package is new and we’re still experimenting with it, we don’t include an example of its use. Look for it at this book’s URL at www.dummies.com/go/androidsdkprogramming, or feel free to e-mail one of us.

				SDK components for handling media

				The main classes for playing and recording both audio and video media are MediaPlayer (see http://developer.android.com/reference/android/media/MediaPlayer.html) and MediaRecorder (see http://developer.android.com/reference/android/media/MediaRecorder.html). The MediaStore class (see http://developer.android.com/reference/android/provider/MediaStore.html) contains the resources necessary to operate on media — to extract metadata and the constants you need in order to form intents, for example. In case you’re wondering, the MediaRecorder class uses the built-in audio recorder app as the input source. The Camera class (see http://developer.android.com/reference/android/hardware/Camera.html) serves as an interface to the Camera service.

				Finally, BitmapFactory (see http://developer.android.com/reference/android/graphics/BitmapFactory.html) creates bitmap objects from various streams. You may have seen how it’s used to create a bitmap from an image stored in a file. The Bitmap class (see http://developer.android.com/reference/android/graphics/Bitmap.html) is used for manipulating bitmaps, such as returning image dimensions for scaling.

				SDK components for handling sensors

				In the sensor examples earlier in this chapter, we cover four classes. The first, SensorManager (see http://developer.android.com/reference/android/hardware/SensorManager.html), gives you access to the sensors on the device. In other words, you can use it to get back objects of the Sensor class (see http://developer.android.com/reference/android/hardware/Sensor.html), which you can use to find details about the sensors on the device, such as their names, types, and range. Finally, you register activities with SensorManager to get sensed data, which is returned as objects of type SensorEvent (see http://developer.android.com/reference/android/hardware/SensorEvent.html). These objects have methods that return sensed values, with the range and meaning of the values dependent on the type of sensor.

				The last component relevant to sensors is the SensorEventListener interface (see http://developer.android.com/reference/android/hardware/SensorEventListener.html), with two methods:

				[image: check.png] onSensorChanged(SensorEvent event), which is the callback for receiving sensor events

				[image: check.png] onAccuracyChanged (Sensor sensor, int accuracy), which should be used to change how you handle (for example, smooth and filter) these events.

				Other SDK components for handling media

				To complete this section, we need to mention the SDK components for one of the support components in this chapter: services. The page at http://developer.android.com/guide/topics/fundamentals/services.html and the pages it links to provide information in detail. The main class here is Service (see http://developer.android.com/reference/android/app/Service.html), and the main methods are the life cycle methods of the service (onStart(…), onBind(…), and onDestroy(…), for example).

			

		

	
		
			
				
					
				

				
					Part V

					Effectively Developing, Testing, and Publishing Apps

						
							[image: 9781118008256-pp0501.eps]
						

					

					In this part . . .

					In this part, we visit (or revisit) Eclipse, in Chapter 12, to cover in more detail the Android add-ons to Eclipse. In particular, we describe the unit testing and performance optimization capabilities that Eclipse on Android gives you. We also provide an example of a couple of unit tests used to test the sample Tic-Tac-Toe application. Chapter 13 focuses on the endgame; after you develop your app, you probably want to make it commercially available.

				

			

		

	
		
			
				Chapter 12

				Effectively Using Your Integrated Development Environment

				In This Chapter

				[image: arrow] Maximizing the capabilities of Eclipse in developing Android applications

				[image: arrow] Finding and fixing bugs in Android applications by using the debugger

				[image: arrow] Tracking the progress of your app by using the logcat window

				[image: arrow] Writing specialized unit tests for Android apps

				javac to compile Java programs, java to run them, and jdb to debug them. These tools were simple to use and did the job well. When Java was made open by Sun Microsystems, the size of the Java software development community exploded and companies making Java products just couldn’t leave well enough alone. Sun itself, and then IBM and Oracle, created open (and open source) integrated development environments (IDE) aimed at making large-scale Java development easier.

				What we mean by open that is that the Java IDE had an extensible “plug-in” architecture in which new functionality could be added to a foundation (that was essentially a framework, like the Android framework — except for building development and development support tools), such as language-specific editors, integration with version controls systems such as CVS (http://www.nongnu.org/cvs/) and SVN (http://subversion.apache.org/), and extensions for specific frameworks such as the Android SDK. Of these IDEs, Eclipse has become the most widely used. It was pushed by IBM (which, in addition to providing a high-quality initial code base, invested a considerable amount of money to spur Eclipse development via Eclipse innovation grants).

				The Eclipse integrated development environment (IDE) with the Android extensions is a powerful tool for app development. This chapter builds on Chapter 2 to discuss specifically the specialized support that Eclipse provides for Android development — how to use Eclipse effectively for making Android apps. First, we give you a brief overview of Eclipse (because we want to quickly get to the Android-specific information). We then talk about how to use Eclipse tools to develop and debug Android apps and trace their progress. Finally, we cover the cool topic of the unit test framework that’s provided within Eclipse to test Android apps. Our goal is to give you the knowledge necessary to effectively leverage your IDE’s capabilities to build enterprise-class and commercial-quality Android apps.

				Eclipse and Android: A Beautiful Friendship

				Eclipse provides a complete suite of tools to develop, debug, test, and deploy Android programs. The tools are really well integrated, and will mostly seem to you like they are one seamless tool. With that, let’s get into Eclipse functionality.

				Let’s start by quickly going over Eclipse’s standard capabilities. Every Eclipse instance is associated with a workspace in which multiple projects can exist. Projects serve as conceptual repositories for the software developed in Eclipse. The software resides in folders and files in your computer’s file system. Workspaces, projects, folders, and files are collectively known as resources. Figure 12-1 illustrates the relationships among these resources.

					

				
					Figure 12-1: Relationships among Eclipse resources.

				

					[image: 9781118008256-fg1201.eps]

				Projects are specific to the kind of software you’re developing (such as a pure Java project, an Enterprise Java (J2EE) project, or an Android project). The kind of project is known as its nature. (You can determine the nature of a project by looking at its project icon in the Eclipse Package Explorer window: A Java project has the letter J in its icon, and an Android project has a tiny, barely distinguishable “Android squiggle.”) The nature of a project determines how it’s configured and built, for example.

				Gaining perspective in Eclipse

				A perspective is a collection of views in which you can perform specific actions. Eclipse usually comes with eight standard perspectives (although this depends on the version of Eclipse that you install). Three (source code control, team synchronization, and plug-in development) are for development teams and for extending Eclipse, so we don’t discuss them in detail in this book. The remaining five types of perspectives — the most useful ones — are described in this list:

				[image: check.png] Resource: From this default perspective, shown in Figure 12-2, you can browse projects and their contents and run programs, for example.

				[image: check.png] Java: This perspective, shown in Figure 12-3, shows you the classes in a project and lets you view one class at a time. It also has (by default) a console window in which you can track running programs.

					

				
					Figure 12-2: The Eclipse Resource perspective.

				

					[image: 9781118008256-fg1202.eps]

					

				
					Figure 12-3: The Eclipse Java perspective.

				

					[image: 9781118008256-fg1203.eps]

				[image: check.png] Java Browsing: This perspective, shown in Figure 12-4, is useful for exploring large projects because it’s a single perspective that shows you all resources in a project.

					

				
					Figure 12-4: The Eclipse Java Browsing perspective.

				

					[image: 9781118008256-fg1204.eps]

				[image: check.png] Java Type Hierarchy: To see the source code, members, and type hierarchy of a single class at a time, use this perspective, shown in Figure 12-5.

					

				
					Figure 12-5: The Eclipse Java Type Hierarchy perspective.

				

					[image: 9781118008256-fg1205.eps]

				[image: check.png] Debugging: See the state of your running code in the debugger by using the Debugging perspective, shown in Figure 12-6. Note that certain debugging actions (such as setting breakpoints) can be done in the other perspectives but that any action related to the runtime state of the program (such as inspecting variables) must be done in the Debugging perspective.

				[image: tip.eps]	If you haven’t already done so, create a Java project (choose File⇒New Java Project) using a couple of files, and browse the perspectives we describe in the previous list. Also, browse the menus and actions in these perspectives and notice that they have no Android-specific information. The default Eclipse installation only has tools for you to develop Java programs and enterprise Java applications.

					

				
					Figure 12-6: The Eclipse Debugging perspective.

				

					[image: 9781118008256-fg1206.eps]

				Customizing Eclipse for Android

				After you install the Android SDK Starter Package, the Android SDK Components, and the Eclipse Plug-In for Android (as explained in Chapter 2), you bring Android-specific components into Eclipse and it becomes a powerful tool for developing Android apps, with Android-specific actions and menus. For example:

				[image: check.png] In the Resource perspective, choose File⇒Project. You see that the New Project Wizard now has a group for Android (see Figure 12-7) that contains Android Project and Android Test Project.

				[image: check.png] If you right-click an Android project, you see the menu selection Run As⇒Android Application, as shown in Figure 12-8.

				[image: check.png] From under the main Window menu in Eclipse, you can bring up the Android SDK and AVD Manager, which lets you download updates to the SDK and create and manage Android emulators (Figure 12-9 shows the Android SDK and AVD Manager).

					

				
					Figure 12-7: The New Project Wizard selection, showing the Android group.

				

					[image: 9781118008256-fg1207.eps]

					

				
					Figure 12-8: Running an Android application.

				

					[image: 9781118008256-fg1208.tif]

					

				
					Figure 12-9: Android SDK and AVD Manager.

				

					[image: 9781118008256-fg1209.eps]

				Observing, Debugging, and Tracking an Android App Using Eclipse Perspectives

				You will need to use a set of key Eclipse components in order to do Android development. To familiarize yourself with these components, start in either the Resource or Java perspective and see whether a window at the bottom of the perspective is labeled Console. If it isn’t, choose Window⇒Show View⇒Console and add this view to the perspective. When you run an Android app in the IDE, you will see this window explode into action and show the progress of the start-up sequence of the app, as shown in Figure 12-10. If a problem occurs during start-up (such as having no virtual devices with the correct API level), you see them here. After the app is properly installed and the main activity is started (in the case of Tic-Tac-Toe, it’s the SplashScreen activity), this window comes back to normal.

					

				
					Figure 12-10: The Console window in Eclipse.

				

					[image: 9781118008256-fg1210.tif]

				A second (and even more useful) window is the LogCat window (see Figure 12-11). You add this view by choosing Window⇒Show View⇒Other, going into the Android folder, and selecting logcat. This view shows you everything the Android runtime can tell you about the app as it’s running, such as

				[image: check.png] When activities are launched

				[image: check.png] When the debugger is attached and detached from your application

				[image: check.png] How much memory is allocated or freed from the heap, and when

				[image: check.png] Which error messages are generated when the app is loaded

				[image: check.png] When the AndroidManifest.xml file is read and parsed

				Finally, and by default, all app output sent to System.out (for example, by using System.out.println) or to System.err is redirected to the logcat window.

					

				
					Figure 12-11: The logcat window, shown in Eclipse.

				

					[image: 9781118008256-fg1211.tif]

				[image: tip.eps]	Familiarize yourself thoroughly with the logcat window. It is extremely useful in helping determine why something went wrong with your program. It has helped us many times and has even been useful in finding errors we’ve made in the manifest file, such as putting an element in the wrong place in the file. If you are trying to figure out why your app isn’t working, start by looking inside the logcat window to see if there are any error messages.

				Notice that every message has associated with it a priority and a tag, which indicates the component that’s generating the message. Just look at the two columns of the message (following the timestamp and separated by the process ID). In the following example, the priority is D (for debug) and the tag is AndroidRuntime:

				03-12 23:14:32.200: D 7480 AndroidRuntime Shutting down VM

				The priority is one of these character values, in order from least to highest priority:

				[image: check.png] V: Verbose

				[image: check.png] D: Debug

				[image: check.png] I: Info

				[image: check.png] W: Warning

				[image: check.png] E: Error

				[image: check.png] F: Fatal

				[image: check.png] S: Silent

				In addition to being message parameters, these values can be set as filter parameters in logcat. The filters are ordered; thus, if a priority is set as a filter, messages with that priority and higher are shown. In other words, if you set I as the filter, messages with I, W, E, and F priorities are shown. If the S priority value is set as the filter parameter in the logcat window, nothing is printed.

				In the logcat window, you can click on a priority (see the top bar of that window to find where to click) and apply it as a filter. You can also create a filter by clicking on the Plus (+) icon and entering filter parameters in the dialog box that opens. The example shown in Figure 12-12 is filtering out everything except the println messages.

					

				
					Figure 12-12: Setting up a logcat filter.

				

					[image: 9781118008256-fg1212.eps]

				Following the execution of an Android app is straightforward — and much the same as for a Java application. From the Resource perspective or the Java Browsing perspective, right-click on the project and choose Debug As⇒Android Application. The Debug perspective, shown in Figure 12-13, displays. Note that the Console and the logcat window aren’t shown, by default. In Figure 12-13, we added them by choosing Window⇒Show View⇒Console and Window⇒Show View⇒logcat, respectively.

				In the Debug perspective, you can set break points in the source file, step through the program in a variety of ways, and inspect variables, for example.

					

				
					Figure 12-13: Debugging Android apps in Eclipse.

				

					[image: 9781118008256-fg1213.eps]

				A useful, Android-specific Eclipse perspective is the Dalvik Debug Monitor Server (DDMS) perspective, shown in Figure 12-14. From there, you can see what resources have been allocated to every virtual device. Navigate to data⇒data⇒com.wiley.androidsdk.tictactoe⇒shared_prefs or data⇒data⇒com.wiley.androidsdk.tictactoe⇒databases. For example, you can see that the Tic-Tac-Toe application has (among other things) a database named TicTacToe.db (which is what we name the database in DatabaseHelper.java). Note that if you uninstall Tic-Tac-Toe from the virtual device, the database is also deleted, along with the preferences file and any data files created by the app.

					

				
					Figure 12-14: The Android DDMS perspective in Eclipse.

				

					[image: 9781118008256-fg1214.eps]

				You can inspect files from the device by selecting the file (the shared_prefs file or the tictactoe.db file, for example) and clicking the Pull a File from Device button in the upper-right corner of the device’s file browser in DDMS. (The button looks like a small floppy disk with an arrow piercing it.) You can also interact with the program from this perspective by sending it (fake) GPS locations from the Emulator Control pane.

				You can do other tasks from here as well: Determine how heap memory is being used or how objects are being allocated and inspect threads, for example. An in-depth discussion of these topics is beyond the scope of this book. We’re sure that you’ll want to explore these features, however, so visit the Android page on DDMS (http://developer.android.com/guide/developing/debugging/ddms.html) to see all the details.

				Getting Serious about Testing — Using the Android Testing Framework

				One slick piece of application development capability provided in the Android SDK is a unit test framework built on the Java JUnit framework. We illustrate the use of this framework by using a couple of simple tests, written to test the game-playing functionality of Tic-Tac-Toe.

				The Java JUnit framework?

				The Java JUnit framework (www.junit.org) is a simple framework for structuring, writing, running, automating, and managing unit tests — tests written by the developer (you) to individually test the components of a program — such as methods, functions, and classes.

				In JUnit, a test class is written for every target class (a class you want to test). The methods of the test class are in two categories: test methods that call methods in the class and verify their results and setup and tear-down methods that act as “fixtures” that set up the initial conditions of the test and then clear at the end any permanent resources allocated (delete all objects created by the test).

				To begin unit testing, you have to create a test project (to use with the development project). You do this in either the Resource or Java perspective by choosing File⇒New⇒Other⇒Android Test Project. We created the test project named TicTacToeProject-Test by using the dialog box shown in Figure 12-15, where we gave it its name and set the name of the Android development project that it’s testing.

					

				
					Figure 12-15: Creating an Android test project.

				

					[image: 9781118008256-fg1215.eps]

				You see that the project, shown next, has its own AndroidManifest.xml file with its own settings. In this project, we requested permission to disable the key guard so that when the test starts, it can run immediately without waiting for you to swipe the key guard:

				<?xml version=”1.0” encoding=”utf-8”?>

				<manifest xmlns:android=”http://schemas.android.com/apk/res/android”

				 package=”com.wiley.fordummies.androidsdk.tictactoe.test”

				 android:versionCode=“1“

				 android:versionName=“1.0“>

				 <application

				 android:icon=“@drawable/icon“

				 android:label=“@string/app_name“>

				 <uses-library android:name=“android.test.runner“ />

				 </application>

				 <uses-permission android:name=“android.permission.DISABLE_KEYGUARD“/>

				 <instrumentation

				 android:targetPackage=“com.wiley.fordummies.androidsdk.tictactoe“

				 android:name=“android.test.InstrumentationTestRunner“ />

				</manifest>

				Inside this project, we created the test class named GameSessionTest with three tests: testPreconditions(), testUI(), and testUIThreadTest(). Here’s the skeleton of the class:

				public class GameSessionTest extends

				 ActivityInstrumentationTestCase2 <GameSession>{

				 private GameSession gameSessionActivity;

				 private Board board;

				 private Instrumentation gameSessionActivityInstrumentation=null;

				 final float x[]={(float)56.0, (float) 143.0, (float) 227.0};

				 final float y[]={(float)56.0, (float) 143.0, (float) 227.0};

				 int i = 0;

				

				 public GameSessionTest(){

				 super(“com.wiley.fordummies.androidsdk.tictactoe.GameSession”,

				 GameSession.class);

				 }

				

				 protected void setUp() throws Exception {

				 super.setUp();

				 setActivityInitialTouchMode(false);

				 gameSessionActivityInstrumentation = getInstrumentation();

				 gameSessionActivity = getActivity();

				 board = (Board) gameSessionActivity.findViewById(R.id.board);

				 }

				 public void testPreconditions() {

				 …

				 }

				 public void testUI() {

				 …

				 }

				 @UiThreadTest

				 public void testUIThreadTest(){

				 …

				 }

				 protected void tearDown() throws Exception {

				 gameSessionActivity.finish();

				 }

				}

				This skeleton highlights the important elements of how this class is set up. To begin with, this class is created from a generic class ActivityInstrumentationTestCase2, which is passed the test target class (GameSession) as the class parameter for the generic. Its constructor simply calls the constructor on the generic and again passes the target of the test as a parameter to the constructor. Next, note the use of the setUp() method to get references to the necessary member variables from the GameSession class. Finally, note the use of the tearDown() method to clean up after the test is complete.

				The three methods testPreconditions(), testUI(), and testUIThreadTest() are the three tests in the class. If you simply run this class from Eclipse (by choosing Run As⇒Android JUnitTest after right-clicking on the test project), these three tests are run. Take a look at each one of them, beginning with testPreconditions():

				public void testPreconditions() {

				 assertNotNull(gameSessionActivity);

				 assertNotNull(board);

				}

				Note the use of the assert statements (assertNotNull) — it’s standard JUnit material. Essentially, you’re testing to ensure that the GameSession activity and the Board object have been properly created. The two methods testUI and testUIThreadTest make similar tests. The testUI method is creating a MotionEvent object and dispatching it to the board (and thereby simulating a Tic-Tac-Toe move by the human user). Then it tests to verify that two moves have been made — one by the human user and one by Android.

				public void testUI() {

				 System.out.println(“Thread ID in testUI:” + Thread.currentThread().getId());

				 getActivity().runOnUiThread(new Runnable() {

				 public void run() {

				 System.out.println(“Thread ID in TestUI.run:” +

				 Thread.currentThread().getId());

				 board.requestFocus();

				 MotionEvent newMotionEvent =

				 MotionEvent.obtain((long)1,(long)1,MotionEvent.ACTION_DOWN,

				 (float) 53.0,(float) 53.0,0);

				 board.dispatchTouchEvent(newMotionEvent);

				 }

				 });

				 . uals(gameSessionActivity.getPlayCount(), 2);

				}

				testUIThreadTest is making a similar test, except that it’s simulating a series of three moves. Then it verifies that six moves have been made — three by the human user and three by Android. testUIThreadTest does this (like testUI) by making use of the assertEquals(…) method that is part of the generic JUnit framework (incidentally, the assertEquals(…) statements will sometimes fail and sometimes succeed. Can you see why? We explain why later on in this section.):

				@UiThreadTest

				public void testUIThreadTest() {

				 System.out.println(“Thread ID in testUI:” + Thread.currentThread().getId());

				 board.requestFocus();

				 for (i=0; i<3; i++){

				 MotionEvent newMotionEvent = MotionEvent.obtain((long)1,

				 (long)1,

				 MotionEvent.ACTION_DOWN,

				 (float) x[i],

				 (float) y[i],

				 0);

				 board.dispatchTouchEvent(newMotionEvent);

				 }

				 assertEquals(gameSessionActivity.getPlayCount(), 6);

				}

				We have much more to tell you about these tests. First, you might be wondering how to get the coordinates you’re using for the test (–53.0, 53.0) in the first test (testUI) and the values in the two arrays x[…] and y[…] in the second test (testUIThreadTest)). You get these from actually playing Tic-Tac-Toe. All you do is insert a few println(…) statements in the onTouchEvent(MotionEvent event) method of the Board class in Tic-Tac-Toe to see the pixel values of the motion events sent to it. You then use these pixel values in the testing.

				Incidentally, we figured out how to create motion events by rooting around in the Android Developer Guide on the web (specifically, at http://developer.android.com/reference/android/view/MotionEvent.html) and taking an educated guess at how obtain works. Similarly, we rooted around the View class (http://developer.android.com/reference/android/view/View.html) to find out how to send the Board an event (noting that Board is a subclass of View). Another alternative is to call the onTouchEvent(…) method of Board directly, but Board may delegate the handling of this event, and such a method may not exist in Board. The way we did it more or less simulates a human interacting with Board.

				You most likely have noticed the elephant in the room, so to speak — the reference to threads in two of the methods. In testUI(…), you’re creating an instance of a runnable class and running it in the gameSessionActivity of the user interface thread. In testUIThreadTest, you’re annotating the entire method with the annotation @UIThreadTest. Before we explain why you do this, we need to briefly explain the Android thread model.

				The Android framework runs all its user interface (UI) operations in a single thread. In fact, all user interface operations must run on this thread because the UI libraries on Android aren’t thread-safe. In other words, because user interface operations in multiple threads cause strange behaviors, they’re disallowed.

				Therefore, any tests that involve the user interface (such as these two tests) must run on the UI thread. You can do this in two ways:

				[image: check.png] Create a runnable object and assign it to the UI thread (as in the method testUI(…)).

				[image: check.png] Designate that the entire method must run in the UI thread by using the @UIThreadTest annotation (as we did in testUIThreadTest(…)).

				By the way, we added println statements in the test methods and also in some of the Tic-Tac-Toe methods that send the current thread ID to System.out — and hence to the logcat window. After you run the test, look at this window to identify the thread IDs. (For easy viewing, create a filter that shows you only the println statements.) You can clearly see the test running in a separate thread from the UI.

				Incidentally, if the logcat window doesn’t show anything, click on the Devices tab and select the device on which the test was deployed on and is running.

				We need to add one more topic related to threads and testing: When an application runs normally, the UI thread starts whenever the application begins and remains active until the application ends — but that isn’t the case when testing. The UI thread is subordinated to the thread that runs the JUnit test, and when this thread ends, the UI thread is also terminated. Programs that run normally, therefore, may not work when being unit tested. Tic-Tac-Toe has this issue because of the way machine play is implemented. Look at the method scheduleAndroidsTurn(…) in the GameSession activity (we reproduced this method here, for your convenience):

				private void scheduleAndroidsTurn() {

				 System.out.println(“Thread ID in scheduleAndroidsTurn:” +

				 Thread.currentThread().getId());

				 board.disableInput();

				 if(!testMode){

				 Random randomNumber = new Random();

				 Handler handler = new Handler();

				 handler.postDelayed(new Runnable(){

				 public void run(){

				 androidTakesATurn();

				 }

				 },

				 500 + randomNumber.nextInt(2000)

);

);

				 }else{

				 androidTakesATurn();

				 }

				}

				You post the machine move as a delayed task in order to make the machine play more realistically — the delay is intended to be perceived as the machine “thinking” about which move to play. Note that the task is posted on the UI thread. However, in Test mode, the test thread (which spawned the UI thread, as you know) terminates before the posted task becomes active. In Test mode, therefore, the machine never gets a chance to make a move!

				You can work around this problem and allow unit testing by implementing Test mode in Tic-Tac-Toe wherever machine play is directly executed (and not posted as a delayed task). Take another look at scheduleAndroidsTurn(…) in the preceding example. For completeness, we show you the (simple) method setInTestMode() now:

				private void setInTestMode(){

				 testMode=true;

				}

				We call this method in the onCreate(…) method of the GameSession activity, in which we also turn off the key guard (recall that we requested the permission to do so in the manifest file) by using this bit of code:

				public void onCreate(Bundle savedInstanceState) {

				 super.onCreate(savedInstanceState);

				 KeyguardManager mKeyGuardManager = (KeyguardManager)

				 getSystemService(KEYGUARD_SERVICE);

				 KeyguardLock mLock = mKeyGuardManager.newKeyguardLock(“GameSession”);

				 mLock.disableKeyguard();

				 this.setInTestMode();

				 this.startSession();

				}

				Here’s a final note about the assertEquals(…) statements at the end of the two user interface test methods: Because machine play has been implemented as a random selection from the empty squares in the Tic-Tac-Toe grid, determining whether the simulated human moves play an empty square or a square where the machine has already played is a hit-or-miss issue. Sometimes, assertEquals(…) turns out to be true, therefore, and sometimes it‘s false. We deliberately left this behavior in place so that you can see how the test framework behaves when the tests pass, as shown in Figure 12-16, and when a test fails because an error is found, as shown in Figure 12-17.

				[image: remember.eps]	This extremely rich framework is neither fully developed nor, especially, fully documented. For example, the sample code you see on the Android SDK site shows only a test with keyboard events. We had to hack our way through the SDK to figure out how to test with MotionEvent and had difficulty getting the example to work within the Android thread model. Thus, we have only barely introduced the testing framework to you in this book. We expect this framework, and in particular, its documentation, to improve eventually. As we learn more, we will figure out and post more examples on this book’s website. So check the website periodically, and feel free to contact us and ask us questions.

					

				
					Figure 12-16: The JUnit window, showing passed unit tests.

				

					[image: 9781118008256-fg1216.eps]

					

				
					Figure 12-17: The JUnit window, showing a failed test.

				

					[image: 9781118008256-fg1217.tif]

				Understanding the SDK Components Used in This Chapter

				In this section, we give you a little more detail about the package and class components of the Android framework and its add-ons, which provide the functionality we cover in this chapter. We don’t go into great detail because Google provides comprehensive web pages, but we want to give you an idea of what the component can do and any insights we have.

				The Android logging framework

				The standard methods provided in the logging framework consist of Log.v(…), Log.d(…), Log.i(…), Log.w(…), and Log.e(…), where the suffixes (v, d, i, w, and e) stand for verbose, debug, information, warning, and error, respectively. When you’re deciding which method to use, follow these guidelines:

				[image: check.png] Log.v(…): Provides every detail about your program’s execution. You use this method to provide a detailed execution trace of the program.

				[image: check.png] Log.d(…): Allows observers to debug key aspects of the program.

				[image: check.png] Log.i(…): Allows observers to verify that key states in the application have been reached. For example, you can use it to report on the start of an activity or when a certain key service (such as Google Maps) is invoked.

				[image: check.png] Log.w(…), Log.e(…): Used, obviously, when you want to report a nonfatal warning and a nonfatal or fatal error in processing, respectively.

				You will find the variants of these methods with the signature (String tag, String message) to be most useful. Every method also has a variant with a three-parameter signature. The first two parameters are as just described; however, the third parameter is an exception that may have been thrown and that the app will report.

				You can find more details on the logging API at http://developer.android.com/reference/android/util/Log.html.

				The testing framework API in Android

				The Android testing classes essentially extend the Java unit-testing framework JUnit (www.junit.org) to provide testing services specific to Android components. The base class in the Android SDK is AndroidTestCase, which extends the base TestCase class from JUnit. This base class has added assert(…) methods to test whether an activity requires permission to launch a service or gain access to a Universal Resource Identifier (URI). Note that this test class is used for testing characteristics about an activity (such as permissions) that doesn’t require it to be running. For tests on running activities, you need a test class that returns a handle to an Instrumentation object that allows you to monitor and control a running instance. In the example, we use the ActivityInstrumentationTestCase2 generic class.

				Finally, you should understand how to create events of various sorts and then dispatch them to views. The MotionEvent class that we use in the example is described at

				http://developer.android.com/reference/android/view/MotionEvent.html

				Key events are described at

				http://developer.android.com/reference/android/view/KeyEvent.html

				To help build your knowledge beyond the introduction to the testing framework that we just presented, we list some links that we find useful (and we hope that you do, too):

				[image: check.png] Find an overview on the Android testing framework at

				http://developer.android.com/guide/topics/testing/testing_android.html

				[image: check.png] Find a link to the unit testing framework fundamentals at

				http://developer.android.com/guide/topics/testing/testing_android.html#JUnit

				[image: check.png] Find the details of the base testing class at

				http://developer.android.com/reference/android/test/AndroidTestCase.html

						Note that we show a sample use of the ActivityInstrumentationTestCase2 generic class.

				[image: check.png] Special considerations for testing Android activities are presented at

				http://developer.android.com/guide/topics/testing/activity_testing.html

			

		

	
		
			
				Chapter 13

				Selling Your Application on the Market

				In This Chapter

				[image: arrow] Setting up your application for publishing

				[image: arrow] Publishing your application to the Android Market

				[image: arrow] Selling your app on other marketplaces

				[image: arrow] Marketing and support hints to make your application commercially successful

				Android is by itself a platform on which mobile phone applications run. Android needs apps in order to be useful, because the platform is only as successful as the apps that are created for it. As a relative latecomer to the mobile phone market, Google realized that in order to compete with Apple and others in this area, it had a lot of catching up to do. Rather than try to become an app developer and app seller, Google, like Apple, decided to let its users become its app developers, and they completed the deal by making it easy for users to sell (or at least give away) apps to other users.

				Because Google wants to establish market share as quickly as possible, it has tried to make publishing and selling apps as easy as possible: Though it has set up its own, well-known electronic marketplace, known as the Android Market, it also allows almost anyone else to set up a marketplace for Android apps. A major player, Amazon.com, has recently taken advantage of this policy to set up a portal for selling (and buying) Android apps. Two other major marketplaces for Android apps are AppBrain (at www.appbrain.com) and GetJar (at www.getjar.com), which serves up free apps for more platforms than just Android. Consistent with Google’s open approach to Android so far (and, unlike with iPhone apps), you can distribute your applications directly to your users, by allowing them to download your apps from your website — you don’t have to use the Android Market. However, if you want to make your applications available to the masses, publishing to a market is the best route to take.

				Another way Google makes selling apps easier is that, unlike iPhone apps sold at the Apple App Store, no long process for vetting apps is required by Google. (Essentially, every marketplace can set its own policy; the Amazon Appstore has an approval process.) Google’s own Android Market, in particular, doesn’t vet apps: After you upload your app, it almost immediately becomes visible on the Market.

				In this chapter, we first cover the tasks you need to complete to prepare your app for all markets. Then we detail how to publish your app at the main Google marketplace: Android Market. We also briefly cover other online marketplaces for Android: Amazon Appstore, AppBrain, and GetJar. Finally, we give you some guidance on how to help your application gain market acceptance.

				Preparing Your App for the Market

				In this section, we walk you through all the tasks you need to complete to prepare your application (and yourself) for the various app marketplaces.

				Testing your application

				We describe how to test Android apps in Chapter 12, and in this chapter, we reemphasize testing. We can’t emphasize this point enough: Make your application as bug-free as possible, and ensure that it works well (see Chapter 8) and is safe and secure (see Chapter 9). The quality of an app is the primary determinant of its long-term success in the market.

				Because Android devices come in many shapes and sizes, and with different screen resolutions and different versions of the operating system, you have to be sure to test your app on a wide range of devices. You don’t have to own a bunch of devices in order to test them (although most software companies that build Android apps usually have extensive labs featuring all kinds of devices — old and new, small and large). You can simply use different emulators to ensure that your application runs reasonably well on the range of devices you want to target. However, make at least one complete test on a physical phone: Handling one in a real-life environment is a different experience from using an emulator and you have to make sure that your app is easy to use on a real device. Also, on a real device operating in the real world, your app may have to deal with several issues such as low network bandwidth, a complete loss of connectivity, loss of battery power, low-light situations, errors in GPS locations, difficulty in using the tiny buttons on the keypad, and so on. If you develop and test only on an emulator, you simply won’t see these issues in order to be able to deal with them.

				After you’re satisfied with the quality (including the user experience of your app), you’re ready to move on.

				Naming and versioning your application

				To finalize the package name of your application, pick a name that makes sense and that is general enough that it doesn’t lose its applicability even as the app evolves, say by adding more features or by changing its look and feel. Most folks follow the format below for the package name:

				com.businessname.applicationname

				Note that every application must have a unique package name that is the primary identifier of the application in the Android Market.

				[image: warning_bomb.eps]	After an app is on the market, the package name cannot be changed — not easily, anyway. To change the package name of an app, you would have to remove the app from the market and force all users to uninstall it (a proposition that isn’t easy to enforce) and then put it on the market again as a new app.

				The package name is entered into the AndroidManifest.xml file (for details on the AndroidManifext.xml file, see Chapter 2). Here’s a snippet from this file that shows a package name entry and where it needs to be placed:

				<manifest xmlns:android=”http://schemas.android.com/apk/res/android”

				 package=”com.wiley.fordummies.androidsdk.tictactoe”

				 android:versionCode=”15”

				 android:versionName=”Uno.1.0.1”>

				. . .

				</manifest>

				Next, you have to take care of versioning your application for two reasons:

				[image: check.png] “Pest” control: When users report a bug, they can report it against the correct version. Or, whenever a bug is fixed, you can tell potential and new users which version fixes the bug.

				[image: check.png] Marketing: Every time you upload a new version, you can advertise it, thus keeping your app in the consciousness of your potential users.

				Two version fields, both in the AndroidManifest.XML file, must be set for your application:

				[image: check.png] android:versionCode: Think of this number (and it must be an integer) as the release count (known sometimes as the “minor” version). Increment this number every time you release the app after any change, be it a significant change such as the addition of a new feature or a bug fix for a customer, or even a minor change that does not change the behavior of the app at all, such as the removal of a few unused variables or package declarations. If you are putting out a new release of the app, change this number.

				[image: check.png] android:Name: A string — think of this entry as a descriptive version string.

				For android:Name, we recommend that you use a three-part string, with the parts separated by periods:

				<major-version>.<minor version>.<maintenance release>

				Here’s what you do with this name. Periodically, you should review the code for all hastily fixed bugs and refactor the app to deal with all the things you fixed in a proper way (you might have also released different patches to different customers; this is the step in which you consolidate all these patches into a single release). After you have done so, increment the maintenance release number before releasing the app again. Next, if you add a few new features, increment the minor version. If you make a major design change to the application, change the major version. That’s about it!

				Some folks (Google, for example) often add a “marketing” name android:versionName. So, if you like, give your app a cool name and prepend it to the three-part string you created for android:versionName.

				[image: technicalstuff.eps]	Android names its operating system versions after desserts, in alphabetical order: Cupcake (1.5), Donut (1.6), Eclair (2.0), Froyo (2.2), Gingerbread (2.3), Gingerbread maintenance release (2.3.3), and Honeycomb (3.0).

				Globalizing your application

				You’re most likely building an application for one market, such as speakers of a certain language. However, if you want to provide an application for multiple markets — for people who speak different languages, for example — you must set up display strings in your application for all markets (in this case, languages) that your application must work with.

				The res folder in your Android project becomes a factor now. (Read more about this folder in Chapter 2.) Assuming that you haven’t hard-wired strings into your code, the values of all strings are in the file res/values/strings.xml. Follow these steps:

					1.	Make a copy of the values directory.

					2.	Name the copy

				values-<language suffix>

						where <language suffix> is the suffix for the language you want to target.

				[image: tip.eps]	For a list of allowed language suffixes, go to http://developer.android.com/sdk/android-2.3.html#locs to see the suffixes along with a region code (for example, ar_EG for Arabic, as written in Egypt).

				The region code isn’t required. If you omit it (when naming the values directory for a language), the default version of the language is used.

				Dealing with devices that have limited capabilities

				Suppose that you have built a useful app that’s feature-rich and uses a wide range of capabilities, such as the camera, touchscreen, accelerometer, and light sensors. As a result, your application requires a full-featured Android device on which to run. You need to at least warn potential users about — if not prevent them from — installing your app on devices that lack all the capabilities necessary for all the features of your app to work properly. Android provides you with a way to specify the capabilities your app needs: the AndroidManifest.xml file. These specifications may (this is not a requirement) then be looked at by the installer of your app (such as the Android Market application), which may either require you to approve the installation or simply filter out the apps that require capabilities your device doesn’t have.

				You specify required capabilities by using two XML elements: uses-configuration and uses-feature. As you can likely guess, uses-configuration lets you state which input devices are needed, or preferred, for your app.

				Suppose that your application requires a trackball. Add the following line to AndroidManifest.xml:

				<uses-configuration android:reqNavigation=”trackball”/>

				You can find the full set of allowable configurations online at

				http://developer.android.com/guide/topics/manifest/uses-configuration

				For other capabilities you need — hardware devices such as the camera or software versions such as the OpenGL library version — you use uses-feature. For example, to state that your application needs Bluetooth and OpenGL (for embedded systems) version 2.1, add the following entries to the AndroidManifest.xml file:

				<uses-feature android:name=”android.hardware.bluetooth” />

				<uses-feature android:glEsVersion=”0x00020001” />

				The full set of features that you can specify is listed at

				http://developer.android.com/guide/topics/manifest/uses-feature

				Setting permissions requests

				[image: remember.eps]	The capability elements described in the preceding section are used to ensure compatibility, but they are guidelines that may be considered by applications that install apps — such as Android Market — yet are not automatically enforced by the Android framework.

				However, those elements are different from permissions requests, such as requests to gain access to system functionality in order to prevent the device from sleeping when your app is playing. (We cover permissions requests in depth in Chapter 9.) To recap, these requests are specified using the uses-permission element:

				<uses-permission android:name=”android.permission.WAKE_LOCK”/>

				When the app is being installed, the user is asked to grant these permissions. (Figure 13-1 shows you an example from the popular, and addictive, Angry Birds game.) These permissions are indeed enforced by the Android runtime. If the user doesn’t grant permission, certain features of the application don’t work.

				Signing your application

				Google requires that every application package (or APK) be signed with a certificate establishing that you’re providing the application and certifying it. You must create a new certificate for every application. Every certificate is encrypted by a private key that you provide — and should keep private. All your certificates are stored in a keystore file on your development computer. This keystore file is password-protected.

					

				
					Figure 13-1: Granting permissions to an app.

				

					[image: 9781118008256-fg1301.tif]

				You use the Java tools keytool, jarsigner, and zipalign, all of which are available in your development environment, to create the keystores and certificates. Because you’re using Eclipse with the Android Development Toolkit (ADT) plug-in (see Chapter 3), we show you how to sign your app using Eclipse, by using the Export Android Application Wizard to export a signed APK (and even create a new keystore, if necessary). This wizard will perform all the necessary interactions with the Java tools.

				To create a signed .apk in Eclipse, follow these steps:

					1.	Right-click on the project and choose Android Tools⇒Export Signed Application Package (as shown in Figure 13-2).

					2.	After the wizard launches, click Next.

						The wizard will walk you through the process of signing your package.

				Using embedded maps

				If (and only if) you’re using the Android MapView class to embed maps in your application, you need to get a separate MapView API key. You do this from the command line because the ADT plug-in doesn’t yet provide a wrapper for this task. Find all the details at

				http://code.google.com/android/add-ons/

				Briefly, you must first generate the certificate for the app and then get the Map key by registering the certificate with the Google Maps service. Next, you have to modify the layout file for MapView to include the key and then export the program again.

					

				
					Figure 13-2: Exporting a signed application package using Eclipse.

				

					[image: 9781118008256-fg1302.tif]

				Publishing on the Android Market

				The Android Market, which is Google’s own online store for buying and selling Android applications, is the most well-known marketplace for Android apps. According to Google bloggers (at http://googleblog.blogspot.com/2011/05/android-momentum-mobile-and-more-at.html), hundreds of thousands of applications are now available on the Android Market, more than half of them free.

				The Android Market has two components: a website (www.android.com/market) and the Android Market application, installed on most Android phones. The website, shown in Figure 13-3, serves as a publicity site that showcases “featured” and highly ranked apps that are available on the Android Market. It also provides a link that walks developers through the process of putting apps on the store.

				The Android Market app, shown in Figure 13-4, is how potential users of Android devices can browse the Marketplace and download Android apps for free or by purchasing them. The Market app is free and comes installed on all Android devices purchased from “accepted” vendors — such as service providers (Sprint, T-Mobile, and others) — and from Google.

				

					

				
					Figure 13-3: Home page of the Android Market website.

				

					[image: 9781118008256-fg1303.tif]

					

				
					Figure 13-4: Browsing the Android Market by using the Market app.

				

					[image: 9781118008256-fg1304.tif]

				Let us just add in passing that if the Market app isn’t installed on your device (because you bought your device from someplace other than a Google-accepted vendor), you have to find the install package for the Market app on the web. Just Google the term “vending.apk” to find sites that have this package for download and manually install it on your device. We can’t vouch for the provenance of the package or the sites, so do this at your own risk. A less risky approach may be to extract vending.apk from a device on which it has been pre-installed and copy it to your device. Once again, in the interest of full disclosure, let us state that Google has not explicitly forbidden (or allowed) doing this! So once again, do this at your own risk.

				In later sections, we give you a tour of the Android Market and show you how to prepare and then publish your application to it.

				Before you can publish your apps to the Android Market, you have to complete a couple of steps, as described next.

				Creating a developer account

				The first step before publishing an app to the Android Market is to create a developer account: Navigate to http://developer.android.com/ and click on Learn more … in the Publish section of the page (you may also directly use the http://market.android.com/publish link). This opens the page shown in Figure 13-5. Sign in to your Google account. (Or create a Google account and then sign in, if you don’t already have an account.) The page is essentially a wizard that guides you through the account creation steps.

					

				
					Figure 13-5: The Developer account login page.

				

					[image: 9781118008256-fg1305.tif]

				

				On the Getting Started page, shown in Figure 13-6, set your developer profile. Completing certain fields is mandatory, such as your e-mail address and valid phone number. Google requires a telephone number only in case someone there needs to call you, but Google promises to not reveal your phone number to anyone else. A web page is also required. Of course, if you have a dedicated web page that applies to (and can promote) your application, enter its link. However, any valid URL is accepted. A final note: You have to pay a small one-time registration fee ($25, as of this writing, see http://www.google.com/support/androidmarket/developer/bin/answer.py?hl=en&answer=113468) to create a developer account.

					

				
					Figure 13-6: Creating a developer profile.

				

					[image: 9781118008256-fg1306.tif]

				Creating a merchant account

				After you create a developer account, you must create a merchant account in Google Checkout, the payer site that all customers must complete. (Google has said that other payer sites, such as PayPal, will be allowed, but at the time this book was written, they weren’t.) Figures 13-7 and 13-8 show the landing page and the account creation page, respectively, in Google Checkout.

					

				
					Figure 13-7: The Google Checkout landing page.

				

					[image: 9781118008256-fg1307.tif]

				[image: tip.eps]	When you create an account, we suggest that you provide a support e-mail address — one that your customers can use to contact you for support — and that is separate from the e-mail address you normally use for regular communications with friends and family.

					

				
					Figure 13-8: The Google Checkout account creation page.

				

					[image: 9781118008256-fg1308.tif]

				After you do all this, you see the page shown in Figure 13-9, which means that you’re ready to upload your application to the market. This page is known as the Developer Console.

				After you upload your app to the market, it almost immediately becomes visible. You don’t have to endure a long validation period.

				Now that you know what to do to sell your app, you can find out about other information — such as how to prepare your app and check out some legalities.

					

				
					Figure 13-9: The Android Market management page on the Developer Console.

				

					[image: 9781118008256-fg1309.tif]

				Understanding the Android Market license agreements

				Placing your app in the Android Market binds you to legal agreements with Google in order for it to continue to permit you to sell your app there. In this section, we summarize these agreements for you, but you should still look at the documents. In spite of the fair bit of legalese, the agreements are reasonable. We see nothing that would qualify as an impediment to your selling your app as long as you act in good faith. Incidentally, the developer account creation page (refer to Figure 13-6) guides you through the various legal agreements; you don’t have to manually find and click through every agreement.

				In addition to perusing some branding guidelines, you should consider three legal agreements, as discussed in the following sections.

				The Google Terms of Service agreement

				The first agreement you have to consider is the Google Terms of Service (ToS) agreement. You can find it in its entirety at www.google.com/accounts/TOS. It governs your “use of Google’s products, software, services and web sites,” — in other words, you consent to abide by this agreement whenever you use any Google service, such as Gmail or Google Groups, Sites, or Docs or whenever you access Google Maps from within your application. In a nutshell, the ToS agreement says that Google

				[image: check.png] Makes no guarantees of how well the service will work

				[image: check.png] Can update or change its products in any way it sees fit

				[image: check.png] Is used at your own risk

				Your content is your responsibility, and it is up to you to behave responsibly. You get an assurance that Google doesn’t own your content; however, you give Google a license to host it and to show it to others to whom you give access. Finally, you may not disclose any Google trade secrets, in case you run across them as you use its services.

				The Android Market Developer Distribution agreement

				The most relevant agreement to you as an Android app developer is the Android Market Developer Distribution agreement, available at

				www.android.com/us/developer-distribution

				Wherever overlap occurs, the terms of this agreement override the ToS agreement (see the preceding section) or the Google Checkout Merchant agreement (see the following section). As the name of this agreement indicates, the Android Market Developer Distribution agreement is composed of the terms that govern you when you place an app on the Android Market, for sale or as a free app, including these terms:

				[image: check.png] You must have a developer account in good standing. Google hasn’t closed your account because you did something bad, and you’re legally allowed to use and develop Android software.

				[image: check.png] If you charge for your app, you must also have an account with a “payment processor” affiliated with Android Market. That way, payments, refunds, and similar transactions can take place, and a transaction fee (currently 30 percent), payable to Google, can be charged.

				[image: remember.eps]	[image: check.png] The Android Market Developer Distribution agreement overrides any agreement with the payment processor.

				[image: check.png] If your application has a free version along with an upgraded version you charge for, you must process the charge through the aforementioned payment processor so that Google can take its cut when you get paid, in return for allowing you to market your free app on the Market.

				[image: check.png] If you have an app advertised as free, you may not charge a subscription for it. Essentially, free means free.

				[image: check.png] Buyers can download and install your app as many times as they want unless you remove your app from the Market. They can also “return” your app for a full refund within 48 hours. Of course, they must also uninstall it from their devices, but, as far as we know, Android has no means of ensuring that they do so.

				[image: check.png] You (more accurately, your app) must protect the information of its users, and it must not use any user information without permission.

				[image: check.png] Google may display product ratings given to your app by your customers.

				[image: check.png] You must provide accurate information about your product, such as what it does, including the permissions it needs on your device. You also may not spam the Market with repetitive information.

				[image: check.png] You may not (obviously) break any laws via your application; display sexually explicit material or hate speech; allow gambling; or engage in deceptive practices (such as impersonating the operating system) or in malicious activity (such as transmitting viruses).

				The Google Checkout Merchant agreement

				Another agreement you have to consider is the one between you and the payment processor. At the time of this writing, Google Checkout is the only payment processor affiliated with the Android Market, so the Google Checkout Merchant agreement is the only payment processor agreement that governs you. It’s posted here:

				https://checkout.google.com/termsOfService?type

				The merchant agreement basically says that

				[image: check.png] Google is only a payment processor. It neither warrantees your product nor guarantees the buyer a good product, nor does it endorse the buyer in any way.

				[image: check.png] You must process payment only when the product has been shipped or otherwise transferred to the buyer.

				[image: check.png] There is no minimum or maximum payment amount.

				[image: check.png] Google Checkout transfers funds by the second business day. It can issue a chargeback if the credit card or bank requests one.

				[image: check.png] Google states that collecting sales tax is not its responsibility, so you have to collect the sales tax appropriate to your state. A good resource for calculating sales tax is BizTaxLaw.com (specifically, http://biztaxlaw.about.com/od/typesofbusinesstaxes/ht/statesalestax.htm).

				[image: check.png] You may promote your association with Google Checkout, and it can promote you. However, see the next bullet.

				[image: check.png] Every party retains the right to its brand and features.

				[image: check.png] You’re responsible for protecting buyer information, if you gather it.

				Branding restrictions

				Google has the following rules for branding your app, available online at

				http://www.android.com/branding.html

				[image: check.png] You may not use Android or Droid in any name.

				[image: check.png] You may describe your app using Android or Droid — for example, Tic-Tac-Toe for Android — but Android must be in a smaller font than the name of your application so that it’s clear that Android (or Droid) is only a descriptor.

				[image: check.png] You may not use fonts from the Android custom typeface in your marketing material.

				Uploading your application to the Android Market

				After you process and deal with everything in this chapter (whew!), you’re ready for the final step: literally uploading your app to the Market. This part is easy. Go to the Developer Console (refer to Figure 13-9) and upload your app. As we say elsewhere, there’s no long waiting period where Google checks out your app (unlike the Apple Store, for example). Your app almost immediately shows up. Keep a couple of points in mind when you upload:

				[image: check.png] Set the Locations to All Current and Future Countries with Payment for paid apps and All Current and Future Locations for free apps. You might as well sell your app everywhere.

				[image: check.png] Turn off copy protection. This option is useless because it’s just an inconvenience and a determined user can simply work around it.

				Taking Advantage of Other Marketplaces for Android Apps

				In this section, we describe other online marketplaces for Android apps, including a look at the Amazon Appstore and a couple of mostly niche sites.

				The Amazon Appstore for Android

				The Amazon Appstore for Android (navigate to http://www.Amazon.com and select Appstore For Android in the menu down the left side, or directly click on http://www.amazon.com/mobile-apps/b/ref=sa_menu_adr_app4?ie=UTF8&node=2350149011 as of this writing) debuted in March 2011. Given Amazon’s presence and reach, this online marketplace for Android apps is likely to become a serious, mainstream competitor to Google’s Android Market.

				The developer sign-up process is straightforward. To begin with, your developer account is also your Amazon customer account (the one you use to buy items from Amazon.com), so you don’t have to set up a seller account, as you have to do with the Android Market. For every application, you have to provide a description of the application and a few other bits of information, such as its category, the form factor of the targeted device, the date you plan to release the app, its content rating, and your support contact information. You can also upload any promotional material you want to make available about the app — icons used in the app, screen shots, and any other images and videos. You pay a yearly registration charge of $99 to set up a developer account on the Appstore; however, it’s waived for the first year.

				Buyers from the Appstore also use an app as their way into the store. However, this app doesn’t come preinstalled on any Android device. Instructions for installing the app have been provided by Amazon. Essentially, you have to request a link to the app to be sent to you from Amazon (www.amazon.com/app-email) and then install the app from that link. You can also enter the link from a browser on your device. You might have to change a setting on your device to allow the installation of applications from sources other than the Android Market: First, open Settings on your device, tap Applications, and then select Unknown Sources if it’s deselected.

				Your legal relationship with the Amazon Appstore

				As with Google, placing your app on the Amazon Appstore binds you to a legal relationship with Amazon. The complete agreement may be found at https://developer.amazon.com/settings/docs.html after you click Get Started and sign in. You will see that the agreement is quite similar to the one you enter into with Android Market.

				To begin with, Amazon pays you a royalty on the sale of every copy of your app, and it takes care of collecting and remitting sales taxes on the sale. You have to make sure that the app you place on the Amazon Appstore is the latest version for sale anywhere else and is priced no higher than anywhere else. Next, to continue to have the rights to your software, and Amazon to theirs, you must make sure that you have rights to use any digital material you use in your app (ranging from the code to any bitmaps, music, video, or other elements), and Amazon has the right to use this material to promote your app and its store. This is, of course, obvious, but you may not use your app as spyware, and you must adequately protect private user information that your app may have access to. Finally, you must adequately support your app. You must respond within 24 hours to any critical support request and within five business days for other requests.

				Amazon Web Services — cloud services from Amazon

				Just as Google has done with Google Maps, Amazon has tried to sweeten the pot for developers by providing cloud-based services — known as Amazon Web Services, or AWS — that developers can use within their apps. These services are provided via the AWS Android Library that hides, according to Amazon, “much of the lower-level plumbing, including authentication, request retries, and error handling.” In addition, these services may be used to access Amazon’s existing cloud services, such as Amazon Simple Storage Service (Amazon S3), SimpleDB, Simple Queue Service (Amazon SQS), and Amazon Simple Notifications Service (Amazon SNS). Included in the AWS SDK are code samples and documentation.

				We have to tell you that because all this AWS information is new, we haven’t had the opportunity to include examples of using the AWS in this book. However, check this book’s website later, because we hope to have examples showcasing these services soon.

				Other marketplaces for Android apps

				Two other online Android app marketplaces worth mentioning are AppBrain (www.appbrain.com) and GetJar (www.getjar.com). AppBrain isn’t a marketplace but, rather, an enhanced portal into the Android Market. As its marketing material says, “AppBrain is a website which makes sense out of the high number of Android apps available in the Google Android market!” Apps are easier to find. Also, using the downloadable AppBrain app means that any updates to apps you already have are automatically downloaded and installed, thus keeping your device in sync with the latest versions of your stuff. (Now you can see how the versioning information we cover earlier in this chapter can be useful in interesting ways!)

				The GetJar site (at http://www.getjar.com) provides apps on a range of platforms — Android, of course, but also Blackberry and Windows Mobile. Apps on GetJar are free.

				Becoming Successful in the Market

				Here’s our two cents’ worth on how to be successful in the Android Market.

				Fee or free?

				We believe that the predominance of free apps will slowly change over the next few years as Android Market comes into the commercial mainstream (like the Apple Store) and as (or if) larger companies (with many more employees to pay) start putting their wares on the Android Market.

				So what should you do? Offer a free app or ask people to pay for it? Make a free app paid after a time? People complain like crazy if you make an app paid that was once free, so our advice is to offer two versions from the start: a free version with limited functionality and a paid version with all the bells and whistles. You can certainly make a paid app free, but don’t do it too often, either, lest people simply wait for your app to become free before buying it.

				Your free app can help upsell your paid app by incorporating Android Market itself. As we talk about in Chapter 3 (where we cover intents), you can even invoke the Android Market app! So, from an appropriate activity in your free app, you can ask the user to upgrade to the Pro version, and if the answer is yes, you fire off the Market app with an intent with an embedded Search key that takes you directly to your paid app. Below are two code snippets for the intent creation. If you want to search for the app by giving part of its name (for example if you want to let the user select between multiple versions of paid apps), use:

				Intent intent =

				 new Intent(Intent.ACTION_VIEW, Uri.parse(“market://search?q=pname:MY_PAID_APP_NAME_SUBSTRING”)); startActivity(intent);

				If you want to use the exact name of the app, the intent creation code is shown below:

				Intent intent =

				 new Intent(Intent.ACTION_VIEW, Uri.parse(“market://search?q=pname:MY_PAID_APP_NAME”)); startActivity(intent);

				How to drive customers to your app

				Most books we have read about apps say that if you do the fly-right things we mention in this book, your app has a good chance of doing well.

				We think you have to do that, of course. But you have to do more to give your app commercial legs. Clayton Christensen, the guru of disruptive innovation theory, says that people buy stuff not because they’re members of certain demographic groups (teenagers, seniors) but, rather, because they want to address certain circumstances (such as peer pressure). Geoffrey Moore, another guru with respect to how start-ups succeed, says you must create a “whole product” — something that addresses a need completely. He also says that after you’re able to sell to the key players in a market segment, the others will fall like bowling pins in a tornado. (Yes, we’re paraphrasing heavily!) But their points are well taken. For your app to sell well, you have to do more than have a cool idea; you have to use that cool idea to target a circumstance that people want to address, such as tracking appointments, or even emotional circumstances such as boredom or peer pressure. If you plan to create a paid-for app, make sure it solves someone’s circumstance in as complete a manner as you can make it, and then find a way to market it — outside the Android Market itself — to key people who want that need addressed and that others think of as players to be imitated.

				Good citizenship: Providing good service

				After you create a high-quality (stable, usable, high-performing) product that works as expected, be a good seller. In the information about the app you provide on the store, you obviously want to advertise your app’s capabilities in order to sell it, but also be transparent about what your application does, which capabilities it needs, and why it needs them. That way, when customers install the app, they aren’t surprised by what it wants to do.

				Be responsive to customer requests and feedback. Fix bugs promptly. Be polite to your elders! And, of course, don’t do anything illegal in your app.

				A few more hints

				Even if you haven’t targeted your app for selling outside the United States, you might as well sell it in all countries and take advantage of any long tail, if one exists. We show you how to do this for the Android Market earlier in this chapter.

				[image: remember.eps]	Always watch the ratings for your app and be sure to respond quickly with updates and fixes if you see them start to drop.

			

		

	
		
			
				
					
				

				
					Part VI

					The Part of Tens

						
							[image: 9781118008256-pp0601.eps]
						

					

					In this part . . .

					No For Dummies book is complete without a Part of Tens. Chapter 14 covers the top ten developer resources on the Web, and Chapter 15 covers the best of the Android applications, not so much to advertise these apps as to give you examples of how these cool apps (and they are cool) leverage the Android SDK.

				

			

		

	
		
			
				Chapter 14

				The Ten Best Developer Resources for Android

				In This Chapter

				[image: arrow] Knowing where to find more detail about the Android SDK

				[image: arrow] Illustrating how Android works by using sample code

				[image: arrow] Locating help for solving programming problems

				Not so long ago, folks began programming by reading books written by a small number of experts and gaining expertise from only the people they worked with. Now that the World Wide Web exists, the expertise pool is vastly larger. Virtually anyone can contribute their own ideas and learn from other contributors in forums where people with like interests communicate, interact, and learn.

				This chapter covers forums related to the Android SDK and Android app development — places where you can visit freely, gain knowledge, and find help. We hope that as you gain expertise in Android development, that you will even contribute your knowledge to these forums.

				Every site we mention in this chapter has been invaluable to us in understanding how to develop Android apps and how to find help and handle bugs, for example. Interestingly, one author (who shall remain nameless!) thought he had discovered a bug in his code but could find no mention of the bug in the Android developer forums. Eventually, he realized his mistake: There was no bug! The forums are so active and up-to-date that if you believe you have discovered a problem in the SDK and can find no mention of it in the forums, you should seriously consider reviewing your code again because that’s likely where the bug is located.

				[image: tip.eps]	Browse a site for a while to develop a feel for its content. The sites we describe in this chapter are in various stages of organization; some are monitored, managed, and generally organized much better than others.

				Learning More About Android Development

				Hopefully this book has whetted your appetite about Android development. Now you want to know more, more, MORE! These first two sites described below are perfect for quenching your thirst for Android knowledge.

				Seeking out information at the Android Developers home page

				http://developer.android.com

				The place to look to find information about the Android SDK is the Android Developers home page, created by Google and shown in Figure 14-1.

					

				
					Figure 14-1: The Android developer site.

				

					[image: 9781118008256-fg1401.tif]

				At this site, clicking the SDK tab opens pages that describe the various SDK versions, from SDK level 1.5 to SDK version 3.2 (the version that was current when we wrote this book).

				You can view SDK highlights, new features, and revisions within SDK levels, and, if you search for Android API Differences Report, read about changes made in the SDK since the previous API level (from 6 to 7 or from 8 to 9, for example). View every difference, or filter them by package, class, constructor, method, or field. Don’t forget to click the Statistics link in the upper-right corner to view statistics — for example, the number of changed packages. If you’re trying to decide which API level to target for an app, these statistics are especially useful when correlated against the market penetration of the various Android versions. You can also download SDK packages.

				The Dev Guide tab is a hyperlinked programmers’ guide that describes the various capabilities in the SDK and links you to the Java documentation of the SDK classes on the Reference tab — which holds a package-by-package documentation of the SDK. The rest of the site includes a grab bag of how-to articles (on the Resources tab), videos (Videos tab), and a blog.

				We admit that we spend quite a bit of time on this treasure trove!

				Getting advice from experts at the Google I/O sessions

				Google I/O, held at the Moscone Center in San Francisco since 2008, is an annual two-day (so far, anyway) developer conference where the geeks meet to rub elbows with the Android developers at Google. You might think that the presentations here are esoteric and over everyone’s head who has not been immersed in Android for years. And you would be wrong! Remember that Android is an emerging platform; Google is using this forum for sharing its vision with the world. Thus, the presentations here have plenty of introductory material for developers (although there’s the really deep stuff too for dessert!). Visit these sites to find videos of talks and other material presented at the conferences:

				[image: check.png] Google I/O 2008: http://sites.google.com/site/io

				[image: check.png] Google I/O 2009: www.google.com/events/io/2009

				[image: check.png] Google I/O 2010: www.google.com/events/io/2010; see Figure 14-2

					

				
					Figure 14-2: Android informational resources at Google I/O 2010.

				

					[image: 9781118008256-fg1402.tif]

				Taking Advantage of Android Resources On the Web

				This section talks about where you can get tangible resources to speed your development of Android apps. You can get enhanced widgets, fonts, and skins to make your app look pretty, as well as sample code to accelerate your development.

				Finding window dressing at Speckyboy.com

				http://speckyboy.com/2010/05/10/android-app

				Speckyboy Design Magazine, shown in Figure 14-3, was launched in October 2007 and has now become a comprehensive design resource. Check out its collection of GUI kits, icons, fonts, and tools for Android.

					

				
					Figure 14-3: Android resources at Speckyboy.

				

					[image: 9781118008256-fg1403.tif]

				Finding sample code at the Google Code site directory

				http://code.google.com/more

				To paraphrase Hans and Franz from the infamous Saturday Night Live skit, hear us now, listen to us later, and believe us some other time: Before you try to write new code for any Google product, including Android, check out the offerings at the Google Code site directory, shown in Figure 14-4. For Android-specific code, simply enter Android in the Search field. In particular, look for Google Maps code and anything related to location services.

					

				
					Figure 14-4: Code repositories at the Google Code site directory.

				

					[image: 9781118008256-fg1404.tif]

				Finding Android Development Help from Experts and Others Like You

				There were so many times we wanted to see if the bugs we were seeing or the head-scratching issues we were encountering were legitimate issues, and if they were, had others run into them before us and found a way to solve them. Or if they were issues no one had seen before (which, as it turned out, is actually quite rare), was there a forum to post a question and have a like-minded crowd help us think our way through to an answer? We found two wonderful sites, which we describe in this section.

				Android Developers Google Groups

				http://groups.google.com/group/android-developers

				As you might already know, Google has created a set of cloud services for collaboration and sharing documents, for example. (One well-known cloud service is Google Groups, at http://groups.google.com.) Google itself uses these services for its own collaborations, so be sure to check out the special Android Developers Google Groups page, shown in Figure 14-5. It’s probably the most qualified resource for getting questions answered or problems solved because the responses to questions are (usually) from Google engineers, such as those working on Android.

					

				
					Figure 14-5: Navigating the Android Developers Google Groups page.

				

					[image: 9781118008256-fg1405.tif]

				StackOverflow.com

				http://stackoverflow.com/tags

				The excellent Stack Overflow site lets you pose questions about programming — and find answers. The folks who run this site (apparently, about 75 percent are developers, and the rest are in sales and management) have tried to combine the best features of wikis, forums, blogs, and recommendation sites. The questions and their related answers are grouped and then tagged with keywords so that you can search for already posted Q&A combinations using specific tags and tag combinations. Figure 14-6 shows search results for the Android tag.

					

				
					Figure 14-6: Searching for Android answers.

				

					[image: 9781118008256-fg1406.tif]

				The Android forums at Phandroid.com

				http://androidforums.com/

				AndroidForums.com, which by the way, redirects to http://phandroid.com/, advertises itself as “the FIRST independent website dedicated to delivering Android news.” It does go back to 2007, so its claim might be mostly true. But regardless, we are not here to judge its pedigree but to proclaim its usefulness!

				Pondering the Direction of Android Technology

				Let’s say that you’re thinking of sticking with Android for a while, and you’re wondering if this loyalty will be a wise decision. Or, you’re a developer on another platform and are looking to see whether Android is a smart addition to your portfolio of expertise. The two sites in this section are good places to visit to stay ahead of the game.

				Gizmodo.com

				www.gizmodo.com

				The Gizmodo blog, shown in Figure 14-7, generally blogs about technology, and specifically about consumer electronics. Rather than provide help to developers, this current — and somewhat controversial — site (you might recall the police search of the Gizmodo blogger who acquired an unreleased version of the iPhone 4) showcases hot new gadgets, including, of course, Android gadgets.

					

				
					Figure 14-7: Finding Android-related material at Gizmodo.

				

					[image: 9781118008256-fg1407.tif]

				TalkAndroid.com

				www.talkandroid.com

				The TalkAndroid site serves as another resource database for Android. Although its focus appears to be on handsets, it also aggregates (and publishes articles containing) the latest news — and rumors. The site also features Android development resources related to the Open Handset Alliance and the Android platform.

				Looking for Help When You Don’t Know Where to Start

				www.google.com

				When we were frantically trying to figure out how to get an app to work with deadlines looming, and needed to find information quickly, we didn’t waste our time with the other sites listed in this chapter — we visited the Google home page, shown in Figure 14-8. After typing a few keywords about our problem (you can even enter error messages or lines of code verbatim), we simply followed wherever the search results led us. (Thank you sincerely, Google Search page!)

					

				
					Figure 14-8: The classic Google Search page.

				

					[image: 9781118008256-fg1408.tif]

				

				

				

			

		

	
		
			
				Chapter 15

				The Ten Most Illustrative Applications for Android

				In This Chapter

				[image: arrow] Useful and engaging Android apps

				[image: arrow] Applications that illustrate the various features of the Android SDK

				After experimenting with approximately 300 apps in the Android Market, we have found what we think are the 10 outstanding Android apps to showcase in this chapter. We present these 10 apps in four popular categories: gaming and entertainment, productivity, health and wellness, and map-based. The idea is to give you a sense of how feature-rich and engaging an app must be in order to be successful in the Android Market. The apps we chose also nicely illustrate the use of the various Android capabilities we describe in earlier chapters, so we point out these uses in our descriptions.

				Some apps in this chapter showcase the more complex capabilities of the Android SDK that we don’t cover in this book. We point them out as well so that at least you know they exist and can find out more from the resources we list in Chapter 14.

				The nice part about these apps is that you don’t have to spend money for them — because they’re all free.

				Angry Birds (Rovio Mobile Ltd.)

				Angry Birds is one of the most addictive games ever, and it’s technically well done. In addition to its attractive, smooth, and silky graphics, it incorporates realistic physics and has a plethora of levels (440 of them) to keep you engaged.

				Playing Angry Birds is simple (see Figure 15-1): In a nutshell, you catapult cute — and annoying — birds at the enemy pigs’ fortresses, hoping to demolish them and, er, make irrelevant the pigs inside.

				As you’re playing the game, click the Menu button to see the pop-up Options menu, shown in Figure 15-2. It uses the Android SDK menu capabilities we discuss in Chapter 3. You can see that these menus have no text — only icons (albeit cool icons).

					

				
					Figure 15-1: Playing Angry Birds.

				

					[image: 9781118008256-fg1501.tif]

					

				
					Figure 15-2: The Options menu in Angry Birds.

				

					[image: 9781118008256-fg1502.tif]

				While you’re at it, notice that you can click the Speaker icon on the Options menu to stop and start the background music. The app does this by making a call to a music service, in a manner similar in implementation to the service illustrated in the Tic-Tac-Toe application in Chapter 11.

				Sudoku Free (Genina.com)

				We freely admit that anything beyond the Easy level of Sudoku is beyond us, too! That said, Sudoku Free, shown in Figure 15-3, helps us while away the time while watching students struggle during our long, difficult, and boring exams.

					

				
					Figure 15-3: Playing Sudoku.

				

					[image: 9781118008256-fg1503.tif]

				We have found more than one Sudoku game on the market. Of these, we consider Sudoku Free the best. Understanding how to play the game is easy — winning a game is, of course, quite difficult.

				This game provides good examples of multiple SDK capabilities:

				[image: check.png] The use of 2D graphics (refer to Figure 15-3)

				[image: check.png] An animated and threaded splash screen on which you tap your way to a new game even while the animation is progressing

						The animated image shown in Figure 15-3 also shows an example of live wallpaper — a topic we don’t cover in this book but still a cool capability in the Android SDK.

				[image: check.png] The use of PreferenceActivity (see Figure 15-4)

					

				
					Figure 15-4: Sudoku preferences.

				

					[image: 9781118008256-fg1504.tif]

				[image: tip.eps]	Change the orientation of the device to see the use of different layouts for different orientations.

				Pandora (Pandora Internet Radio)

				Move over, iTunes — here comes Pandora! Okay, we might be exaggerating, but even with a collection of a thousand or more songs in a library, all of us grow bored with our collection and want to listen to something new. Pandora, shown in Figure 15-5, is just the thing — an Internet radio-like application that streams music to an Android device, just like a radio station streams to a radio.

				We want to point out a feature intended to make Pandora more usable. When you first open the app, notice that it presents a data usage warning, as shown in Figure 15-6. Pandora is looking out for users by sensibly pointing out that accessing numerous songs over the Internet, most likely via cellular networks, will cost some serious green. Note also that the app lets users choose not to see the warning so that it doesn’t continually annoy them after they have been warned.

					

				
					Figure 15-5: Pandora Internet Radio for Android.

				

					[image: 9781118008256-fg1505.tif]

					

				
					Figure 15-6: The Pandora data usage warning.

				

					[image: 9781118008256-fg1506.tif]

				Pandora uses threading, an Android SDK feature, within its splash screen activity, to implement the waiting period of the splash screen (like we do in the Tic-Tac-Toe app). Pandora then makes use of the Options menus (tap the Menu button on various Pandora screens to see these menus) and the LinearLayout layout element, along with the ListView widget to list users’ radio stations. When you tap the name of a radio station, you see an ImageView element that shows a picture of the band playing the current song. Note that Pandora (most likely) uses an audio player service, similar to the one used in our Tic-Tac-Toe example, because the music continues to play even when you open another app on top of Pandora. However, unlike the simple audio service in Tic-Tac-Toe, Pandora’s service is streaming the music over the network (using a web service; see Chapter 10).

				Voice Recorder (Mamoru Tokashiki)

				The simplicity of design in the Voice Recorder app has won it four stars and more than 20,000 downloads. Someone using this app can record any type of audio, such as a memo or a music performance. The audio is then saved on the device, and the file is automatically titled by the date and time of the recording (see Figure 15-7).

					

				
					Figure 15-7: The Voice Recorder Home screen.

				

					[image: 9781118008256-fg1507.tif]

				Users can, of course, replay files, send them via Gmail, or set them as ringtones. Other neat touches include being able to search by title and date and schedule recordings to start at specific times and for specific durations (see Figure 15-8).

					

				
					Figure 15-8: Additional options in Voice Recorder.

				

					[image: 9781118008256-fg1508.tif]

				A Voice Recorder walk-through shows these elements of the Android SDK in use:

				[image: check.png] PreferenceActivity

				[image: check.png] Options menu

				[image: check.png] Intents (to launch other applications, such as Gmail)

				[image: check.png] ListView layout (in its listing of the audio files that are created)

				[image: check.png] A browser being launched and directed to the developer’s website (www.tokasiki.com) when users make donations

				Most of these topics are covered in Chapter 3, with additional details and examples in Chapter 11. Layouts are covered in Chapter 5, and launching a browser is covered in Chapter 10.

				AppAlarm LITE (episode6)

				The free version of AppAlarm LITE (as we were writing this book, AppAlarm Pro also became free) allows an Android device to be used as a reminder service, and even as a clock radio. You use AppAlarm to set alarms that are tied to other apps. You can see the alarm setup screen in Figure 15-9. When an alarm goes off, the app tied to the alarm is launched. When you hook up the app to Pandora, for example, you can have Pandora launch a specific radio station.

					

				
					Figure 15-9: The alarm settings screen in AppAlarm LITE.

				

					[image: 9781118008256-fg1509.tif]

				So how does AppAlarm fire off the apps the alarms are linked to? If you guessed “By using an intent” (see Chapter 3 and Chapter 11), you guessed correctly. In fact, the screen from which you select the app, shown in Figure 15-10, lets you define a custom intent. Go ahead — launch your e-mail from AppAlarm (see Chapter 11) — we don’t care!

					

				
					Figure 15-10: The App to Launch screen in AppAlarm LITE.

				

					[image: 9781118008256-fg1510.tif]

				Evernote (Evernote Corporation)

				In Evernote, shown in Figure 15-11, you create notes representing thoughts, plans, and reminders and then save them to the cloud. You can access these notes on your Android device, and also through the web.

					

				
					Figure 15-11: The Evernote Welcome screen.

				

					[image: 9781118008256-fg1511.tif]

				When you create an account, note that as you enter your username, you receive immediate feedback, via a web service (see Chapter 10), about whether the username already exists.

				We imagine that the layout of the note creation screen, shown in Figure 15-12, was created using GridView.

				Finally, try to create a Snapshot note. Note how the built-in camera app is launched using an intent and the startActivityForResult(. . .) method (see Chapter 11).

					

				
					Figure 15-12: The Evernote note creation screen.

				

					[image: 9781118008256-fg1512.tif]

				Cardio Trainer (WorkSmart Labs, Inc.)

				Yes, as the Cardio Trainer app description, shown in Figure 15-13, says, it is our app for walking, running, biking, and other activities.

					

				
					Figure 15-13: Cardio Trainer has lots of features.

				

					[image: 9781118008256-fg1513.tif]

				Cardio Trainer has a comprehensive set of features; you can create workouts, exercise by using your phone, and (as you become fitter by the day) track your progress!

				From the Home screen, tap Settings to view the Settings menu, shown in Figure 15-14. We hope that you thought, “Aha! It’s a PreferenceActivity!” (Refer to Chapter 3.)

					

				
					Figure 15-14: The Cardio Trainer Settings menu.

				

					[image: 9781118008256-fg1514.tif]

				RunKeeper (FitnessKeeper Inc.)

				The RunKeeper website says, “RunKeeper makes tracking your workouts fun, social, and easy to understand so that you can improve the quality of your fitness.” We agree.

				From an Android SDK point of view, RunKeeper is an outstanding location-based application. When you create an activity with the GPS input type, as shown in Figure 15-15, and tap the Start Activity button, the app tracks the total distance, as shown in Figure 15-16.

					

				
					Figure 15-15: Creating an activity in RunKeeper.

				

					[image: 9781118008256-fg1515.tif]

					

				
					Figure 15-16: Recording activity data in RunKeeper.

				

					[image: 9781118008256-fg1516.tif]

				Yelp (Yelp.com)

				According to the Yelp.com website, “Yelp is the fun and easy way to find and talk about great (and not so great) local businesses.” As you can see in Figure 15-17, the types of businesses are shown in GridView (see Chapter 5).

					

				
					Figure 15-17: The Yelp Home screen.

				

					[image: 9781118008256-fg1517.tif]

				Based on the number of posted reviews, Yelp is most often (and best) used for finding restaurants and bars and similar locations. (If you’re wondering whether For Dummies authors visit bars, the answer is “Heck, yeah!”) Yelp is also helpful for finding anything local, ranging from auto repair to ATM machines.

				After you select a category, such as Restaurants, Yelp shows you a sorted list using ListView (see Chapter 5). Though, by default, the list is sorted by Best Match, you can filter the sort order to sort by distance and rating, by distance and price, and whether the business is open at this moment. (By using these criteria, you can look for a nearby gas station or cheap restaurant that’s open late, for example.)

				Implicit in this functionality is that Yelp is using the user’s location to identify locations close to him. We describe how to use location services in Chapter 10. Considering that Yelp is a location-based app, you can expect it to use MapView (described in Chapter 10), and it does, as shown in Figure 15-18.

				Try turning off the network and then using the app. You will see an error message about the network. See Chapter 8 to find out how to test the network before accessing it so that the app does not appear to hang.

					

				
					Figure 15-18: Using Map view in Yelp.

				

					[image: 9781118008256-fg1518.tif]

				Places (Google Inc.)

				A blurb on AndroidAndMe (a new Android-specific forum; also see http://androidandme.com/2010/07/applications/google-maps-bringsplaces-to-android-with-4-4-update/) says, “Google Maps brings Places to Android with 4.4 update.” The Places Home screen is similar to Yelp (described in the preceding section), as you can see in Figure 15-19, though you can see some differences and subtle improvements on the Yelp interface, such as showing the filtering and sorting criteria on the list screen itself.

					

				
					Figure 15-19: The Places Home screen.

				

					[image: 9781118008256-fg1519.tif]

				The SDK capabilities that Places uses are also similar to the ones Yelp uses:

				[image: check.png] GridView: Used on the Home screen (refer to Figure 15-19).

				[image: check.png] ListView: Used on lists (see Chapter 5).

				[image: check.png] MapView: Used when locations are shown on a map (see Chapter 10 for how to use MapView). Another small Places improvement over Yelp is in performance — see the speed with which the Map view is displayed. For hints on how to make your app perform well, see Chapter 8.

				Of course, the various menus are shown using the Options menu capability of the Android SDK. You can see how to implement Options menus in Chapter 3.

				The screen shown in Figure 15-20 illustrates how to ensure responsiveness and, consequently, usability in an app. When you tap a category name and the network is slow, you see the screen shown in the figure. This slight delay is by itself a good thing because it shows the user that the computer isn’t frozen — just working away. You can see that the application is still responsive because the message is being displayed in a thread and the main application thread is still active. If you tap either the Back or Home button, Android navigates away from the application.

					

				
					Figure 15-20: Waiting for network response.

				

					[image: 9781118008256-fg1520.tif]

				

				

				

			

		

	
		
			
				[image: IFC_top]

				To access the cheat sheet specifically for this book, go to www.dummies.com/cheatsheet/androidsdk.

				[image: IFC_bottom]

				Find out "HOW" at Dummies.com

			

		

	OEBPS/images/9781118008256-fg1203_fmt.jpeg
I EBals

185 d]3-0-Q

-]gne]osm] AP é'.]

%2 Hierarc | Juunit] = B
Ble~

[% Package 52

> 12 HelloAndroid
» (& My First Java Project
» 3 Spinner
Q
> g8 src
» &8 gen [Generated Java Files]
» m) Google APIs [Android 2.3.1]
= assets
> Sres
|l AndroidManifest.xml
[default.properties
» 32 TicTacToeProject-Refactored-Test
» 32 TicTacToeProject-Restructured-Zoya

1) GameSessionTestjava 82 _”5

public void testPreconditions() {
assertNotNulI(gameSessionActivity]
assertNotNull(board);

£

public void testUIQ) {
System.out.println("Thread ID in {
getActivity().runOnUiThreadCnew Ru
blic void run() {
System.out.println("TH

board. requestFocus();

MotionEvent newMotionl
(long)1,
MotionEvent. ACTI!
(float) 53.90,
(float) 53.0,

2);
board. dispatchTouchEv

b;
assertEquals(gameSessionActivity.

B

@UiThreadTest
public void testUIThreadTest() {
System.out.println("Thread ID in
board. requestFocus();
for (i-0; i<3; i+){
MotionEvent newMotionEvent = A

.

n viawewv"

b
v

comwiley. tictactoe.t

= import declarations
O GameSessionTest
o gameSessionActivity : GameSession
o board : Board
4© gameSessionActivitylnstrumentation - In
aF x:float])
aFy:floatf)
a i:int
© © GameSessionTest()
© a setUp0)
@ testPreconditions()
v o testUl)
» @ newRunnable() {..}
@ testUIThreadTest()
© a tearDown()

OEBPS/images/9781118008256-fg1105_fmt.jpeg
00

) DDMS - TicTac ject-| /res/menu/menu_ingame.xml - Eclipse Platform - /Users/

/CET1/Projects/Mirror/Dev...

It-Eelal8fdlu oL | 48§t oo

&

[&’Java if§iDDMS

@ Devices 52 _E Console|

=8

© Heap [Allocation Tracker [File Explorer £3

#|6®06(22|0(m”

Name

. HTO8HHL10436 Online

com.google.android.apps.uploader |42
com.sprint.dsa 596
com.handson.h2o.nfl 664
‘com.handson.h20.nascar09 676

2.2
186(

86(
186(

Name
& data
& mnt

(& Android
=3l

> HTC Sync

(> LOST.DIR

& Music

(& My Documents
(& Sample Photo

SampleVideo.3gp
(& downloads
(& media
G rosie_scroll
(& rssreader
& secure
& system

Bwa|-""

OEBPS/images/9781118008256-fg1301_fmt.jpeg
()
o

™ Arcade & Action

Angry Birds
Rovio Mobile

Allow this application to access:
System tools
Prevent phone from sleeping

Network communication
Full Internet access

@ 11:23pm

More

Q,

OEBPS/images/9781118008256-fg0301_fmt.jpeg
xml - Eclipse Platform - /Users/ramnath/Docum

/CETI/Projects/Mirror/Development/Eclipse/... €

O O O Java EE - TicTacToeProject

In-Hela|88d]$0-Q (8- 6 185+ 410|245 -©6- - ¢S Java e
25 project Explorer £3_% Hierarchy| = 04 TicTacToeDummies Man [1 *TicTacToeProject Ma 52 _[E] default.properties | 38 =
Jintent-Filters
Bgle~ s r
= TicTacToeProject = z::::‘::;y’
@ src r android:name=". Login”
£ com.wiley.fordummies.androidsdk android: label- "8string/app_name”
[3) Accountjava android: launchMode= "standard”
[Blockjava android:screenOrientation="portrait"s
m Board java (Intentff\lter)
, <action android:name= "com. wiley. fordummies. androidsdk.Login” />
[3) ContactsViewjava <category android:name="android. intent. category. DEFAULT" />
[7) DatabaseHelper java </intent-filter></activity>
[9) Game java <activity android:name=".Account”
[GameOptions java android: label~ "@string/app_name”
@ HelpJava android: launchMode="standard”
Pys android:screenOrientation="portrait™
[3) toginjava Zaetivitys
[3) Music java <activity
MyMusicService java android:name=". GameOptions
droid “. GameOptions”
[Names.java android: label- "8string/app_name”
droid: launchMode= "standard”
[3) Playerinfo java ajenor g . -
3 android:screenOrientation="portrait”s
[3) settings java Jactty
[3] splashscreen java <activity
Symboljava android:name=". Game
ymbol.ja droid ”. Game"
gen [Generated Java Files) android: label- "8string/app_name” ~
: android: launchMode- "standard”
G E“:"j:x"’"’“"‘"‘""""’°""" android:screendrientation="oortrait’s Y
Gr Manifest | [[1 idManifest.xmi |
=\ Android 2.2 = - - —
e [2 Markers fD Properties (m Servers f‘ Data Source Ex fE Snippets fE! Console 52 _%* Call Huerarcny]
& [Android EYyl=A=N=
(& drawable 5 2 5 R . Il oo ;
-12- :41:29 - TicTacToeProject] Performing com.wiley.fordummies.androidsdk.Splas
_ [2010-12-20 21:41:29 - TicTacToeProject] Perf ley. ford droidsdk.Splash!
& drawable-hdpi [2010-12-20 2: 29 - TicTacToeProject] Automatic Target Mode: using existing emulator 'er
(= drawable-Idpi 4 ||r2010-12-20 2 - TicTacToeProject] Uploading TicTacToeProject.apk onto device 'emula
& drawable-mdpi L ||r2010-12-20 21: - TicTacToeProject] Installing TicTacToeProject.apk. ..

C

J Jai»

Joe |d AndroidManifest.xml - TicTacToeProject

| Android SDK Content Loader

OEBPS/images/9781118008256-fg0203_fmt.jpeg
¥ DEVICES
=} Macintosh HD
£ ibisk

¥ SHARED

» PLACES
¥ SEARCH FOR
(© Today
(L) Yesterday
(L) Past Week
(@] All Movies
All Images
ﬁ All Documents

- add-ons

» [addon_google_apis_google_inc_8

& docs
market_licensing
(& platforms
(23 samples
SDK Readme.txt
3 temp
@ tools
M adb
M android
> @l ant
M apkbuilder
M ddms
M dmtracedump
M draw9patch
M emulator
M etcltool
M hierarchyviewer
M hprof-conv
> (3l Jet
M layoutopt
> [l lib
M mksdcard

| " source.properties
M sqlite3

M traceview

M zipalign

Date Modified

Jul 17, 2010 12:41 PM
Jul 17,2010 12:41 PM
Jul 17,2010 12:38 PM
Oct 29, 2010 10:41 PM
Oct 29, 2010 10:41 PM
Today, 8:40 PM

May 7, 2010 2:47 PM
Oct 29, 2010 10:41 PM
Oct 29, 2010 10:34 PM
Oct 29, 2010 10:34 PM
Oct 29, 2010 10:34 PM
Oct 29, 2010 10:34 PM
Oct 29, 2010 10:34 PM
Oct 29, 2010 10:34 PM
Oct 29, 2010 10:34 PM
Oct 29, 2010 10:34 PM
Oct 29, 2010 10:34 PM
Oct 29, 2010 10:34 PM
Oct 29, 2010 10:34 PM
Oct 29, 2010 10:34 PM
Oct 29, 2010 10:34 PM
Oct 29, 2010 10:34 PM
Oct 29, 2010 10:34 PM
Oct 29, 2010 10:34 PM
Oct 29, 2010 10:34 PM
Oct 29, 2010 10:34 PM
Oct 29, 2010 10:34 PM
Oct 29, 2010 10:34 PM
Oct 29, 2010 10:34 PM

[Kind
Folder
Folder
Folder
Folder
Folder
Folder

Plain Text

Folder

Folder

Unix E...|
Unix E...|
Folder

Unix E...|
Unix E...
Unix E...|
Unix E...
Unix E...|
Unix E..|
Unix E...
Unix E...
Folder

Unix E...|
Folder

Unix E...|

le File
le File

le File
le File
le File
le File
le File
le File
le File
le File

le File

le File

Plain Text
Document

Unix E...|
Unix E..|
Unix E..|

le File
le File
le File

OEBPS/images/9781118008256-fg0803_fmt.jpeg
/var/folders/vY/ i 227810191780.tmp
msec: 605.025

T T
0 504
[41Jowp, |
(11 main | N STV EN TIPSO eyl |
e 11 T O 1 N A T I LA O R [
O | ({1 1 A R AR |
[2] HeapWorker lll. I'l

Name Incl %
» B0 (toplevel) 100.0%
g Bt andrord/os/Handlev dispatchMessage (Landroid/os/Message;)V 91.0%
» 02 android /view/' (Landroid/os/Message;)V 80.3%
» 13 android/view/ViewRoot.performTraversals OV 67.7%
» 14 android/view/ViewRoot.draw (2)V 59.3%
» 15 com/android/internal/policy/impl/PhoneWindow$DecorView.draw (Landroid/graphics/Canvas;)V 54.0%
» 06 android/widget/FrameLayout.draw (Landroid/graphics/Canvas;)V 54.0%
» | 7 android/view/View.draw (Landroid/graphics/Canvas;)V 54.0%
» 08 android/view/ Vi roup.di Draw (Landroid/ ics/Canvas;)V 52.5%
» B9 android/view/ViewGroup.drawChild (Landroid/graphics/Canvas;Landroid /view/View;))Z 52.4%
> 10 com/wiley/fordummies/androidsdk/tictactoe/Board.onDraw (Landroid/graphics/Canvas;V 34.6%
» W11 com/wiley/ i i /tictactoe/Board. i bol (Lcom/wiley/ i i /tictactoe/Symb 21.3%

OEBPS/images/9781118008256-fg1512_fmt.jpeg
< A P &> . 10:08 pm

EVERNOTE Q
LB ©
New note Snapshot
[)
ki T
All Notes (1) Tags (0)
]
Notebooks (1) Shared (0)

Last sync: May 12 10:07pm

OEBPS/images/9781118008256-fg0509_fmt.jpeg
Table

TableRow —l

View
(table cell)
1
Name
Title
|

View
(table cell)

TableRow —|

View
(table cell)
1

View
(table cell)
- 1

View
(table cell)

TableRow
]

View
(table cell)
1

View
(table cell)

View
(table cell)

OEBPS/images/9781118008256-fg1509_fmt.jpeg
a--AE D32, F11:26m
ppAlarm

12:00 PM

ZZ Top Radio

5:50 PM

morning

Add New ggle

28!
Alarm Notification

OEBPS/images/9781118008256-pp0201_fmt.jpeg
The 5th Wave By Rich Tennant

(]

M/

we’ll begin the outsourcing process.”

OEBPS/images/9781118008256-fg0512_fmt.jpeg

OEBPS/images/9781118008256-fg0602_fmt.jpeg
DM@ 2:22om

MeltdownButton

OEBPS/images/9781118008256-fg1406_fmt.jpeg
(4)2)= () () () (o mupy ssckovertow comyiage 7 v)G

=] stackoverflow
Tags popular | name

Atag is a keyword or label that categorizes your question with other, similar questions. Using the right tags makes it easier for others to
find and answer your question.

Type o e
1 android x 54344 android-emulator | % 1198 android-layout | % 1022 android-widget | X 964

Google's software stack for mobile devices 9 asked today, 49 this week 14 asked today, 70 this week 7 asked today, 42 this week
that includes an operating system,
middleware and key applications. For

347 asked today, 1913 this week

&8 android-ndk | X 440 android-manifest | X 306 android-market | 239 android-intent | % 221

a companion tool o the Android SDK that 8 asked this week, 41 this month 10 asked this week, 47 this month 9 asked this week, 35 this month
lets you build performance-critical portions

of your apps in native code. It provides

5 asked today, 22 this week

android-iistview | % 168 android-webview |X 161 android-preferences | 128 android-sdk-2.2 | % 117
11 asked this week, 44 this month 22 asked this month, 160 this year 14 asked this month, 122 this year 8 asked this month

android-service |% 100 android-sdk-2.1 | X 99 android-sqlite |% 98 android-camera |% 78
20 asked this month, 98 this year 7 asked this month, 86 this year 5 asked today, 10 this week 20 asked this month

OEBPS/images/9781118008256-fg0306_fmt.jpeg
] R & 3 % . B 11:32em

AndroidforDummies

Login New Account
Enter Username Username
Enter Password Password

. Confirm Password

AN S X T 812am T OAL S 3 % 0812

AndroidforDummies AndroidforDummies

Tic-Tac-Toe Awaits!
New Account

Enter Username

Username

Enter Password Password

Confirm Password

Clear

Create

New User

OEBPS/images/9781118008256-fg1211_fmt.jpeg
QOOR®+# ~|B~"0

03-14 21:00:11.535
03-14 21:00:11.564
03-14 21:00:12.915

03-14 21:00:18.855
03-14 21:00:24.375

PR

‘tag Message o
jawp adbd disconnected r
Start proc il i tictactoe for activity com.wiley.fordummies.an
dalvikvm GC_EXTERNAL_ALLOC freed EﬂK, 53% tree 2558K/5379K, external 716K/1038K, paused 100ms
ivi Displayed 11 +18955m8
ActivityManager Starting: Intent (act=com. wuq tictactoe.Logi m.vim.lm’
i Displayed i .Login: +472ms ’e
skia purging 137K from font cache [16 entries] 3
B

| Launching TicTacToePr...estructured

OEBPS/images/9781118008256-fg0211_fmt.jpeg
Select a device compatible with target Google APIs (Google Inc.).
® Choose a running Android device

Serial Number AVD Name
@ HTO8HHL10436 N/A

Debug State
Online

O Launch a new Android Virtual Device

|AVD Name Target Name Platform API Level
Android-3.1 Google APIs (Google Inc.) 3.1 12

ABI || Details...
ARM (armeabi)
Start...

Refresh

Manager..

OK

OEBPS/images/9781118008256-fg0502_fmt.jpeg
L
Jayoumgabew|

L
18yomgIXaL

L
18yoUMGMAI

L
Jaddiymaip

L € ¥ €
19]]01U0) MBIAISOH maipAeiang MaIN||0198 L L L Ll L L
elpay 1eBpiddy ainisag |ewozLI0N MaIp|010S 19yo1daw| 1ojewiugmalp | | maipiepusie 1SOHqe] 19y01deleq
[I I | I I 1 I I I
|
3 i €
noAeawely mng_.umm_w%ww_m 1ameigbuipis
L I I
I
L - L
dnoigmalp MBI
[
[I []
L
pajesaidsg <iaydepy L L
L Spuapxa] > noAeieaur noAe7anne|a
InoAe7aIn|0sqy Ve noAeesur] noAeaAne|ay
] 1 1
Ll
L Jojewiuy L L H Ll L
MBINGBM MmaipIeidepy Jauuidgsqy Mmoysjqel MaIAYoess wayfsiaurjom
Ll L 3 il L
MaINYIBIS Jeuuldg $|0JJU09W007 noAeTa|qe]
L Ll L 3
Mo aNdepy Misjieg 18y01dlaquiny dnoigoipey
L
MBIAISI] r
a1qepuedxg 18BpImgeL

OEBPS/images/9781118008256-fg1502_fmt.jpeg

OEBPS/images/9781118008256-fg1306_fmt.jpeg
()2)= (@)) () Gl g/ /marketandroid.com/publish/signup 77 v WS android market Q)

ano30D | Home | Help | Android.com | Sign out
D market

Getting Started

Before you can publish software on the Android Market, you must do three things:

« Create a developer profile
« Pay a registration fee ($25.00) with your credit card (usmg Google Checkout)
+ Agree to the Android Market Develop

Listing Details
Your developer profile will determine how you appear to customers in the Android Market

Developer Name
Will appear to users under the name of your application

el —
Website URL [,...,,:,, “

Phone Number

Include plus sign, country code and area code. For example, +1-650-253-0000. why do we
ask for this?

(O Contact me i about and Market opportunities.

OEBPS/images/9781118008256-fg1519_fmt.jpeg
3:46em

Find places (M

@ near 2435 Wimbledon Rd

@)

Restaurants

Bars Attractions

ATMs Gas Stations

%
@

Explore Nearby school

¥ At Potts Co? Rate it!

OEBPS/images/9781118008256-fg1520_fmt.jpeg
o o il &= 12:25pm°

Q, Find places ™

@ near 2435 Wimbledon Rd

@

Restaurants

Searching for:
vq, = restaurants

ATMs Gas Stations
Explore Nearby Add

(@ AtPotts Co? Rate it!

OEBPS/images/9781118008256-fg1514_fmt.jpeg
QAL S

Account Settings
Link CardioTrainer to your Google Account ®

and never again lose your workout history.

Use miles & pounds
Check this box to use miles/pounds and
uncheck it for kilometers/kilograms

Send tracks automatically
Turn on if you want CardioTrainer to send
your tracks to the server automatically

Notification Settings
Enable notifications for the calorie medal,
weigh ins and scheduled exercises

/]
Enable Voice Output .
(O]

Turn on audio notifications

Voice Output Settings
Set time interval or minimum distance
between notifications

Music Settings

Controls the music integration features.

OEBPS/images/9781118008256-fg1103_fmt.jpeg
/0N

Look at my AWESOME 76 /160
TicTacToe Score!Rajiv score
is 3 and Android scoreis 0

(0

OEBPS/images/check.png

OEBPS/images/9781118008256-fg1201_fmt.jpeg
Workspace

Project

Folder

> File

OEBPS/images/check.jpg

OEBPS/images/frown.jpg

OEBPS/images/9781118008256-fg0103_fmt.jpeg
Applications

Com) CGomn) (o) Gow) (-

Android Application Framework

Q-\ctivity ManageD mﬂgg‘g’r > (PEE\Titggrts) (S\\;is?(‘évm) (XMPP Service)
(Telephony Resource Fragment Location Notification
Package Manag@ (Manager) C Manager) (Manager Manager Manager

Libraries Android Runtime

Media ;
Gurface Manag@ ([et > SQLite
Core Libraries

(OpenGL | ES) FreeType WebKit
Machine
(SGL)

SSL libc

ok

Linux Kernel

. Flash Memory Binder (IPC)
Camera Dr|ver> C Driver) C Driver
o Audio Power
WiFi Driver) (Drivers) CManagement)

USB Driver

Display Bluetooth
Driver Driver
CKeypad Driver) C)

YA

OEBPS/images/9781118008256-fg0201_fmt.jpeg
(L eclipse

G EBlom &) (e)(@)(#] ?

¥ DEVICES Name 4 Date Modified

:3 Macintosh HD ¥ artifacts.xml Jul 15, 2010 12:07 PM

3 iDisk [configuration Today, 12:12 PM
([dropins Feb 23, 2009 2:39 PM
M eclipse Feb 23, 2009 2:39 PM
& Eclipse.app Feb 23, 2009 2:39 PM
» PLACES [¢] epl-v10.html Feb 23, 2009 2:39 PM
S CEARCHIEOR [features Jul 15, 2010 12:07 PM
{3 links Dec 6, 2009 10:50 PM
[¢] notice.html Feb 23, 2009 2:39 PM
il p2 Jul 15, 2010 12:03 PM
3 plugins Jul 15, 2010 12:07 PM
(] readme Feb 23, 2009 2:39 PM
[3 startup_fo.jar Dec 6, 2009 10:49 PM

¥ SHARED
B Arman Ramnath...

(© Today

(L) Yesterday

(L) Past Week

All Movies

ﬁ All Images

All Documents

13 items, 128.45 GB available

OEBPS/images/smile.jpg

OEBPS/images/wileycopyrightlogo_fmt.jpeg
WILEY

OEBPS/images/downarrow.jpg

OEBPS/images/9781118008256-fg0605_fmt.jpeg
ITicTacToeButtons

OEBPS/images/9781118008256-fg0308_fmt.jpeg
ANPDELED R . = 526m

AndroidforDummies

About Tic-Tac-Toe

Tic-Tac-Toe is a two-player game.

Each player claims one of two symbols
-"0" or “X" - and attempts to
alternately place their symbol in empty
locations in a 3-by-3 grid, so as

to get three of the same symbol
adjacent to each other in a straight

line - either in a row or column._ or
Tic-Tac-Toe on Wikipedia

Tic-Tac-Toe on Wikipedia in Web View

Exit Help

OEBPS/images/9781118008256-fg1308_fmt.jpeg
LA Welcome to Google ut! O
(4))= (@) CO ™) & https:/ /checkout.google.co 17 v) (*§:(android market Q)

3

Google checkout =

Welcome to Google Checkout !

Sign up for a free Google Account in order to use Google Checkout : A faster, safer and more convenient way to shop online.

developer@gmail.com Sian in as a different user
Location: | United States 2]
Don't see your country? Learn More

| el
Expiration date: Month [5)/(Year [)CVC: | Whats this?

Cardholder name:

Card number:

Billing Address:

City/Town:
State:

Zip: [?]

Phone number:

Required for account verification.

® My billing address

OEBPS/images/9781118008256-fg0303_fmt.jpeg
5554:Device-Android-2.2-API-v8

fﬁmﬂ 8:25am

AndroidforDummies

Tic Tac Toe Awaits!

Enter Username

Enter Password

OO0 0

6({sh o
o6 O

1 J2 3 Ja|s 6 |7 |8 o Jo
o w [e [& |7 v Ju |t fo |

als lo s lnfy [kl [&)
2z [x e v e v Iw]. |&
| e | .|/] |

OEBPS/images/spades.jpg

OEBPS/images/9781118008256-fg0208_fmt.jpeg
Hello World, HelloActivity!

OEBPS/images/tip_fmt.jpeg
¥

OEBPS/images/9781118008256-fg1303_fmt.jpeg
Top Paid

Cut the Rope
ZEPTOLAB

https://market.android.

Search

FEATURED FEATURED TABLET APPS

H

| W
Hashable
HASHABLE INC.

wikitude

Wikitude World Br...
WIKITUDE GMBH

©

Localicious

2,
Galataxi i
MEASUREDSOFT|Y

Yol 4

OEBPS/images/diamonds.jpg

OEBPS/images/9781118008256-fg1208_fmt.jpeg
e la|8La8]s 0 |86 |@c 9] 4

P P8 Fl el

[oig

Close Project
Close Unrelated Projects
Assign Working Sets...

Debug As
TicTacToep; Profile As >

1] merauny].mjumq Bg|e Y "0|se*7 =0|Ec
» 5= HelloAndroid /%% £
» 2 My First Java Project @ ov 49
» < spinner = pu v
a
b 5’ L New >
i Go Into
» &8 gen [Generat
> Gﬂ Google APIs Open in New Window =
Sassars Open Type Hierarchy F4 =
> Bres Show In XEW >
[AndroidMani
defaultpropi [12 Copy #C
> i TicTacToeProject 2, Copy Qualified Name
» 32 TicTacToeProject [Paste v
% Delete ®
£ Remove from Context O\l
Build Path >
Source XS 14
Refactor N®T >
23 Import... }
&4 Export...
= eovl
" Refresh 3 1Runon Server ©XXR

[@ 2 Android Application

J¢' 3 Android JUnit Test

4 Java Applet N8X A
315 Java Application 88X J
Ju 6 JUnit Test X®8XT

Run Configurations...

OEBPS/images/turnover.jpg

OEBPS/images/9781118008256-fg1206_fmt.jpeg
In-Ealals

K] O QU |@SP | SP S0 8-5-% oD [%5 Debug &l1ava >

35 Debug 52

L EIEN

v .p Thread [<1> main] Suspended (breakpoln(at line 19 in SplashScreen))

(=)

Inslmmenlallorl (alIActlvllyOnCream(A(lMly, Bundle) line: 1047

Activity

performl , Intent) line: 1586

Activity

A(lNI!yThreada((essS 1500(ActivityThread, ActivityThread$ActivityClientRecord, Intent) line: 117

handleLaunc| T , Intent) line: 1638

>

=

@

ava [0 onjava [(3] Accountjava | 3] SplashScreenjava 58 N3 =0

- @0verride

/%% Called when the activity is first created. */

a public void onCreate(Bundle savedInstanceState) {

» super.onCreate(savedInstanceState);
setContentView(R. layout. splash);

// _thread for displavina the SelashScreen

e

i

! LogCar|

Bt B-r8-=0

97 -

8
1
7
7
7
7
8
ol
3
3
5
6

il

TicTacToeProject-Refactored] Success! =
TicTacToeProject-Refactored] Starting activity com.wiley.fordummies.androidsdk. tictactoe.SplashScreen on
TicTacToeProject-Refactored] ActivityManager: Starting: Intent { act-android.intent.action.MAIN cat-[andr
TicTacToeProject-Refactored]
TicTacToeProject-Refactored] Android Launch!
TicTacToeProject-Refactored] adb is running normally.
TicTacToeProject-Refactored] Performing com.wiley.fordummies.androidsdk. tictactoe.SplashScreen activity
TicTacToeProject-Refactored] WARNING: Application does not specify an API level requirement!
TicTacToeProject-Refactored] Device APL version is 9 (Android 2.3.1)
TicTacToeProject-Refactored] Application already deployed. No need to reinstall.
TicTacToeProject-Refactored] Starting activity com.wiley.fordummies.androidsdk. tictactoe.SplashScreen on
TicTacToeProject-Refactored] ActivityManager: Starting: Intent { act-android.intent.action.MAIN cat-[and
TicTacToeProject-Refactored] Attempting to connect debugger to 'com.wiley.fordummies.androidsdk.tictactoe
v

Ja»

| taunching TicTacToePr...estructured

OEBPS/images/9781118008256-fg0102_fmt.jpeg
OO

OO

X O X O X O X

X X X X

OEBPS/images/9781118008256-fg1215_fmt.jpeg
Select a wizard

» (& General
¥ (& Android
% Android Project
b
[d Android XML File
» [Connection Profiles
> E&cvs
» (= Eclipse Modeling Framework
| =]
» (& Flex Builder
» & Java
» (& Java EE

E— |
. . [T

OEBPS/images/uparrow.jpg

OEBPS/images/9781118008256-fg1304_fmt.jpeg
amazon

Kindle for Android *#*#*+ FREE

All applications
Gmail, Google Maps, Pandora Radio

Books & Reference
Google Sky Map, Dictionary.com, Bible

Business
GTunes MP3 Music Download, Documents To G

Comics
Yo Momma Jokes, Chuck Norris Facts, & 20

Communication
Gmail, TiKL - Touch To Talk (PTT), KakaoTalk

OEBPS/images/9781118008256-fg1402_fmt.jpeg
(4)»)(c)CI(a) (*3 http:/ /www.google.com /events/io/2010/sessions.htmi 17 v) (3 google i/o 2010

19 20, 2010

Center, San Francisco

Google - [O

Home Session Videos
Agenda Google /0 offered 90+ sessi highly in-depth content covering a number of technologies and developer pr
Session Videos videos and slides are available below.
Photos \' ‘ Search sessions) e.g. "Mobile", "App Engine", "HTMLS", “Java"
Developer Sandbox Al Android App Engine Chrome Enterprise Geo Google APls GWT Social Web Wave Tech Talks —Fireside Cl
akers
Session videos and slides Track
- M Abeginner's guide to Android Android
«Last year Writing real-time games for Android redux Android
The world of ListView Android
ing a wide net: target all Android devi Android
[J 9T BN id Ul design patt Android
submit to delicious peveloping Android REST client applications Android
AJIT iler f ik VI Android
Writing zippy Android apps Android
Android audio I Android

Building push applications for Android Android

nstrume and ootimizations for Aoo Enaine

OEBPS/images/IFC_bottom.jpg
Get Smart at Dummies.com ¥

b 23

Dummies.com makes your life easier with 1,000s
of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
+Videos
* [llustrated Articles
« Step-by-Step Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
- Digital Photography
* Microsoft Windows & Office
* Personal Finance & Investing
* Health & Wellness
« Computing, iPods & Cell Phones
* eBay
* Internet
* Food,Home & Garden

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

OEBPS/images/9781118008256-fg0604_fmt.jpeg
il @ 5:21em

OEBPS/images/fingerpoint.jpg

OEBPS/images/9781118008256-fg0506_fmt.jpeg
reorsr S

Select how files should be imported into the project:

OEBPS/images/9781118008256-fg0210_fmt.jpeg

OEBPS/images/arrow.png

OEBPS/images/warning_bomb_fmt.jpeg

OEBPS/images/9781118008256-fg1501_fmt.jpeg

OEBPS/images/9781118008256-fg1507_fmt.jpeg
<a :F- @* 2 iwl“:11:‘9m

00:00:00
: |

test
5-12-23-48-00 0:00:07

OEBPS/images/tomato.jpg

OEBPS/images/9781118008256-fg0305_fmt.jpeg
Java Build Path

» Resource
Android " BSource | Projects | mi & Order and Export |
Builders
CDI (Context and Dependen JARs and class folders on the bulld path:

Drools » s android-supp jar - TicTac /lib
FreeMarker Context ») Google APIs [Android 3.0]
Hibernate Settings

Java Build path

»Java Code Style

»Java Compiler Add Variable...

»Java Editor
i (addibary..)
Project Archives

Project Facets

Project References Add Class Folder.

Refactoring History
Run/Debug Setings
Seam Settings

b Task Repository
Task Tags Edit....

—e
» Validation

WikiText P

Migrate JAR File...

OEBPS/images/9781118008256-fg1110_fmt.jpeg
N F ® 3 % ., = 7:56am

AndroidforDummies

Sensors

0. BMA150 3-axis Accelerometer
Ver :1 Range: 2.8 Power: 3.0 Res:
2.480159E-4
1. AK8973 3-axis Magnetic field sensor
Ver :1 Range: 2000.0 Power: 6.7 Res: 1.0
2. AK8973 Orientation sensor
Ver :1 Range: 360.0 Power: 9.7 Res: 1.0
3. CM3602 Proximity sensor
Ver :1 Range: 1.0 Power: 0.5 Res: 1.0
4. CM3602 Light sensor
Ver :1 Range: 10240.0 Power: 0.5 Res: 1.0

OEBPS/images/macapple.jpg

OEBPS/images/9781118008256-fg1205_fmt.jpeg
I-Hela|8id]s 0 | EHFGC- O #] 45

[Package Explorerm Junmﬂ 8 % Y =0

Account
v © Object - javalang
v @* Context - android.content
v @ ContextWrapper - android.content
v® ContextThemeWrapper - android.view
v @ Activity - android.app

® Account 5| 1%|R W e
o dh

o etConfirm

o etPassword

o etUsername

® CreateAccount()
@ . onClick(View)
@ . onCreate(Bundle)

OEBPS/images/9781118008256-sb0502_fmt.jpeg
5554:Long320

Stretching - all columns

Stretching - column 1

ke
WFixed small width and No Stretching

lleed small width and Stretching - all columns

--

OEBPS/images/9781118008256-fg0401_fmt.jpeg
ldpi mdpi hdpi xhdpi

small | 33%
normal 11% 17.0% 752%
large 28% |
xlarge Com% |

Data collected during a 7-day penod ending on June 1, 2011

OEBPS/images/9781118008256-pp0401_fmt.jpeg
The Sth Wave By Rich Tennant
GRICKTENNANT

“Why, of course. T'd be very interested in seeing this
new milestone in the project.”

OEBPS/images/clubs.jpg

OEBPS/images/9781118008256-fg1517_fmt.jpeg
9:03 am

(e.g. tacos, Max's)

Nearby

o

About Me

O

Monocle

Check-Ins

N\

Bookmarks

Recents

OEBPS/images/9781118008256-fg1002_fmt.jpeg
W [fictacos """ Q)

" Text WIKI to 25383 to donate $10. ‘
Msg & Data Rates May Apply

Tic-tac-toe

"Noughts and Crosses” redirects here. For the series
by Malorie Blackman, see Noughts & Crosses series.
"Tic tac toe" redirects here. For the band, see Tic Tac
Toe (band).

Tic-tac-toe, also spelled tick tack toe, or noughts
and crosses/Xs and Os as it is known in the UK,
Australia and New Zealand, is a pencil-and-paper
game for two players, X and O, who take turns
marking the spaces in a 3x3 grid. The X player
usually goes first. The player who succeeds in
placing three respective marks in a horizontal,
vertical, or diagonal row wins the game.

The following example game is won by the first
player, X:

I I O X O IX O IX O

OEBPS/images/9781118008256-fg0204_fmt.jpeg
Virtual Devices
Installed Packages
Available Packages
Settings

About

» & Google APIs by Google Inc., Android API 7, revision 1
» & Google APIs by Google Inc., Android API 4, revision 2
» & Google APIs by Google Inc., Android API 3, revision 3

Description

SDK Source: https://dl-ssl.google.com/android/repository/repository.xml
19 packages found.

('Add Add-on Site...) (Delete Add-on Site... | @ Displ (Refresh) ((Install Selected)

s

OEBPS/images/9781118008256-fg0302_fmt.jpeg
SplashScreen

Settings

GameSession

OEBPS/images/9781118008256-fg0207_fmt.jpeg
| rjv

181 51+ 15 v

18|8HE]$ 0 |x | #6 | @@ 9]

IR

= @ooms &lava »

£ Package Explorer 83

a

-

¥ 2> Hello Android
v @ src

¥ {3 com.wiley.androidfordummies.

gen (Generated Java Files]
¥ {3 com.wiley.androidfordummies.
v [Rjava
vEr
& anr
» & drawable
» & layout
» & string
v @ Android 3.1
» (@ android.jar - /Users/ramnath/|
2 assets
v&res
¥ (& drawable-hdpi
Ficon.png
¥ (= drawable-Idpi
& icon.png
¥ (& drawable-mdpi
Aicon.png
¥ (= layout
[X) main.xml
¥ & values
[X) strings.xm|
|dl AndroidManifest.xml
=) default.properties

[3) HelloActivityjava 33

=g

package com.wiley.androidfordummies.HelloAndroid;

@ 1import android.app.Activity;[]

public class HelloActivity extends Activity {
/** Called when the activity is first created. */
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R. layout.main);

(2 problems | @ javadoc [(& Declaration [Console £33, ' LogCat | @ Devices |

BB 5 =0

Android

OEBPS/images/9781118008256-fg1202_fmt.jpeg
In-Bael8|84d]5 0- Q[0 |SPS0[H-F - CE-o- 55 [Resource 8

[2 project Explorer 53 =g D SplashScreen.java fm GameSessionTestjava 52 _[J] ion java]"3 =0
B%|s ° public void testPreconditions() {]
— - assertNotNull(gameSessionActivity);
¥ i HelloAndroid assertNotNul 1(board); o
» (= My First Java Project }
» 52 Spinner . .
» 32 TicTacToeProject-Refactored e "‘"‘;‘ :‘“‘ “:‘”!Ql{(,m T I ot = ey EThread(). get1d0)) '
e g » ystem. out.println("Threa in testUI:" + Thread.currentThread().ge ;
P g6 TicTacToekroject-Aefactored Test o getActivity().runOnUiThread(new Runnable() {
» 32 TicTacToeProject-Restructured-Zoya L public void run0) {
System.out.println("Thread ID in TestUL.run:" + Thread.currentThs
° board.requestFocus();
Iy
M E sdlcitonEvant = MotionE obtain((long)1,

[E] Task Llsz] = E]

intin
CERYe x| =
comwiley.fordummies.androidsdk ticta Time pid tag Message
: : 03-14 21:00:11.525 FRRETH AndroidRuntime NOTE: attach of thread ‘Binder Thread #3' fail™
> import declarations
03-1¢ 21:00:11.535 b 39 Jdwp adbd disconnected
v P GamesessionTest 03-14 21:00:11.564 P ActivityManager Start proc com.wiley.fordummies.androidsdk.tic
L i G 03-14 21:00:12.91 D 404 dalvikvm GC_EXTERNAL_ALLOC freed 50K, 53% free 2558K/53
o board : Board 15 X g ActivityManager Displayed com.wiley.fordummies.androidsdi.tict
4 gameSessionActivitylnstrumentatio 354 x- ek ActivityManager Starting: Intent { act=com.wiley.fordummies.ar
a2 foatl) 855 1 e ActivityManager Displayed com.wiley.fordummies.androidsdi.tic
i 375 T sida purging 137K from font cache [16 entries]
4" y:floatl] 21:00:24.495 b &1 dalvikm GC_EXPLICIT freed 679K, 463 free 4256K/7815K, 4
a i:int 21:00:29 D 127 dalvikvm GC_EXPLICIT freed 81K, 52% free 2916K/5959K, €V
©° GameSessionTesto E===ssssssssy s
© a setUp() (2
© testPreconditions() v|| Fiter:
Jair

OEBPS/images/9781118008256-fg1510_fmt.jpeg
® App To Laun

Choose App

Create Shortcut

Home Screen Shortcut
Pandora Radio Station

Custom Intent

Clear App Selection

OEBPS/images/9781118008256-fg1504_fmt.jpeg
Resume Game

Easy

Medium

Hard

Extreme

History

Settings

How-To

Share

Buy Ad-Free

About

OEBPS/images/9781118008256-fg0309_fmt.jpeg
Accounts

Name
Rajiv
Paul
Roger

Password
R#241rr
$55541@#
#44%%1@

OEBPS/images/9781118008256-fg1107_fmt.jpeg
resetf release / \
setDataSource() OnErrorListener.onError() e
Initia@

OnPreparelistener.onPrepared() prepare()

seekTo()

start()

prepareAsync()

Preparing

Looping=true&&
playback completes

prepare()

prepareAsync()
Started
seekTo()/start()

seekTo()/pause()

Stopped

start()
(note: from beginning)

Looping=false&&
onCompletion() invoked on
OnCompletionListener

seekTo()

Playback
Completed ’

OEBPS/images/9781118008256-fg0801_fmt.jpeg
&mullne t|ﬁ|§>§|°|-vnﬁ

Name

v ' HTO8HHL10436 Online 22
com.google.android.apps.uploader 416 8600 ‘
com.handson.h2o.nfl 595 8601
‘com.handson.h2o.nascar09 641 8602

IEECECEL)

OEBPS/images/9781118008256-fg1307_fmt.jpeg
()2)= (@)) () Gl o/ /marketandroid.com/publish/signup 77 v WS android market Q)

| Home | Help | Android.com | Sign out

D Fﬁg?ket

Register as a developer

Registration fee: $25.00

Your registration fee enables you to publish software in the market. The name and billing address used to register will bind you to the Android
Market D per D \Q| So make sure you double check!

Pay your registration fee with
Q Checkout =

Fast checkout through Google

Continue »

©2010 Google - Android Market D

OEBPS/images/9781118008256-fg1405_fmt.jpeg
ﬂﬂ () (x)(a) (8l http://groups.google.com/group/android-developers Bwv m

e
&
Gmail Calendar Documents Photos Reader Web more v

Google groups
* Android Developers (Soarcn s group) (Searh Grous

Home New since last time: 601 messages Home
(=) Discussions 7 of 169756 messages view all » + new post
[android-developers] Writing Version-Specific Code

By Dianne Hackborn - 7:41pm - 5 authors - 5 replies
[android-developers] error with Trafficstats View this group in the ng
By Dianne Hackborn - 7:39pm - 2 authors - 5 replies Google Groups
is there any idea that files are only used lication those are stored on media card?
By gjs - 7:29pm - 7 authors - 12 replies o i Sponsored links
[android-developers] In-app billing as a method of activating a trial feature?
3 Columbus Coupons
By Miguel Morales - 7:26pm - 2 authors - 1 reply 1 ridiculously b
The "Blinking Activity of Death” o e o oot o
By gjs - 6:56pm - 2 authors - 2 replies ‘www.Groupon.com/Columbus
Read send sms ‘Show Your Ad on Google
By Mochamad Basofi - 6:35pm - 3 authors - 5 replies Promote your Business and Get
[android-developers] NoClassDefFoundError in Google Maps More Customers. Try Google B
By New Developer - 6:16pm - 5 authors - 6 replies ‘places.google.com/boost
iPhone SDK Programming
Learn Objective-C & iPhone SDK.
5-10 Day Workshops. View Sched:
Report this group Send email to this group: android-developers@googlegroups.com AboutObjects.com

Group info
Members: 46284

OEBPS/images/9781118008256-fg1209_fmt.jpeg
000

Virtual Devices
Installed Packages
Available Packages

D Override the existing AVD with the same name

(cancel) (cCreateavp)

OEBPS/images/9781118008256-fg0212_fmt.jpeg
< A‘I’ ® 38 @ 2 o . F9:23am

AndroidforDummies

OEBPS/images/9781118008256-fg1212_fmt.jpeg
Filter Name: printin

by Log Tag: [System.oull

by pid:

by Log level: [<none>

& (o

OEBPS/images/hearts.jpg

OEBPS/images/9781118008256-fg0310_fmt.jpeg
| 6:22pM

OEBPS/images/9781118008256-fg1518_fmt.jpeg
&R . X, F11:59am

Restaurants

Restaurant Silla & Karaoke Bar

FNEEEW 14 Reviews
Korean $$

OEBPS/images/9781118008256-fg1503_fmt.jpeg
AL

© 3

Easy 00:41

a1 &5 10:56 pm

8| [2]3
9/12(4]6 51
1 B) 9
}he best_ iy g
daily deals Imngsocial

OEBPS/images/9781118008256-fg0307_fmt.jpeg
onCreate()

!

Y

onStart() < onRestart()
User navigates back l
to the activity
onResume()

The activity comes
to the foreground

Another activity comes
in front of the activity

Other applications
need m@i onPause()

Another activity
is no longer visible

The activity comes
to the foreground

onStop()

Android cleans up
activity

onDestroy()

OEBPS/images/9781118008256-fg0503_fmt.jpeg
clock = new DigitalClock(this):;
Button btn = new Button(this);
btn.

@ onKeylLongPress(int keyCode, KeyEvent event) : boolean -

@ onKeyMultiple(int keyCode, int repeatCount, KeyEvent ev

@ onKeyPrelme(int keyCode, KeyEvent event) : boolean - Vil

@ onKeyShortcut(int keyCode, KeyEvent event) : boolean - 1 |
@ onKeyUp(int keyCode, KeyEvent event) : boolean - TextVi| |
@ onPreDraw() : boolean - TextView

@ onPrivateIMECommand(String action, Bundle data) : boo

@ onRestorelnstanceState(Parcelable state) : void - TextView

© onSavelnstanceState() : Parcelable - TextView

@ onStartTemporaryDetach() : void - TextView
< | m |
Press ‘Ctrl+=Space’ to show Template Prop

OEBPS/images/jwsinctitlepage_fmt.jpeg
WILEY
John Wiley & Sons, Inc.

OEBPS/images/9781118008256-fg0209_fmt.jpeg
Select root directory of the projects to import

12 package Explorer ¥ () (35S m) (£12011-08-02 2] Q

s s || il |

odified
» &l ClockWidger | 7 DEVICES e S
»iZoucarnomensy B b ctonk ff 1 08T 1045 v
¥ 2 Helios-Project 2} Macintosh HD = o
v @ £ ipisk » [Tic-Tac-Toe-Using-Fragments 10:45 PM
¥ & com.androi
» [J) Testjavi
» 28 gen (Generate|
» =) Google APIs (A4
= assets
»Eares
|c AndroidManife
= default.proper
proguard.cfg
v 55 Hello Android
v @ src
> 3 com.wiley.z
» @8 gen [(Generate,
» @i Android 3.1
= assets
> Eres
i AndroidManifest.xml Working sets:
=) default.properties
proguard.cfg
v ;< Shakespearelnstrumented
» @ src
» @8 gen [Generated Java Files]
» @i Android 3.0

> T libs ®@ C<sack) (_Next>) (cCancel) Finish
Io° I L

(] Add project to working sets

OEBPS/images/9781118008256-fg0601_fmt.jpeg
L
uonnga|bbo)

L

L MBIAIXBL
X0Q98y9 aj0|dwogonyn
L Em_\ﬁux@_. >>m_>mommt:m._w :otzm—EooN _mm_vﬂmmm
uonngoipey a18|dW00INY :
[
zsw:m £ H o ; '
punoduioy RCINDE LIRS | MaIp8IBUNSSY uonngabeuw| legbuney
I —
G
Em_\”ﬁa._. l Is l L L abpeg L
payaay) uopng 1Xa1Up3 Jsajewouodyy | | ¥20eNbIg MBIA0BPIA J0BJUOYDIND legyesgsqy
T I | I I |
L L L L L L L €
MBIAIXSL MaIABOBUNS dnoigmaip malpabeu| qniSMaIp tegssaiboig | | yo0gb0jeuy | [maippieogAsy

1

I

1

OEBPS/images/9781118008256-fg0513_fmt.jpeg
Golden Gate

OEBPS/images/9781118008256-fg1104_fmt.jpeg
NS T @D % % ., = 751am

\\

1-842-822-4357

AR

OEBPS/images/9781118008256-fg1513_fmt.jpeg
CardioTrainer

WorkSmart Labs In

Description

Your app for walking, running, biking & other
activities.

"... better than any fitness app on the iPhone"
-Bob Tedeschi,New York Times

* Free Weight Loss Trainer and Calorific diet
add-ons make weight loss with your phone easy
* Seamlessly tracks indoor/outdoor activities -
calories, GPS, pedometer

* Integrated voice output & music player

* Friend activity feed to motivate you

* Workout schedule with reminders

* First mobile Google Health partner

* Heart rate monitor - see & record heartrate
with Polar's Bluetooth Heart Rate Monitor and
use Fat Burn Zones

* Racing, high score

* CardioTrainer Pro with interval workouts

Recently changed in this version
* Improved stability with a few rare crash fixes
* Improved data uploading to the server

OEBPS/images/9781118008256-pp0501_fmt.jpeg
The 5th Wave By Rich Tennant
@ RUCHTENNANT

“Of course your current cell pke takes pictures,
functions as a walkie-talkie, and browses the
internet. But does it shoot silly string?”

OEBPS/images/remember_fmt.jpeg

OEBPS/images/9781118008256-fg1217_fmt.jpeg
If-dela|85d]s0- A | EH#G- @S -] 459

Lﬂ Package Explorer (T: Hierarchy m =g

Finished after 7.527 seconds a e III @ [% & ™ l;? =
Runs: 3/3 B Errors: 0 B Failures: 2
v Eg com.wiley.f i idsdk.tictactoe.test.C. ionTest [Runner: JUnit 3] (

¢l testPreconditions (1.763 s)

£ testUIThreadTest (3.216 s)

e ———)<T>

= Failure Trace 3= 2P
' Junit. Iramemrk.AssemonleedError expected:<0> but was:<2>

at com.wiley.f droi tactoe.test.G: ionTest.testUI(G ionTe

at java.lang.reflect.Method.invokeNative(Native Method)

at android.test.| ionTestCase.| ionTestCase java:204)

at android.test.InstrumentationTestCase.runTest(InstrumentationTestCase.java:194)

at android.testActivitylnstrumentationTestCase2.runTest(ActivitylnstrumentationTestCase:
at android.test. AndroidTestRunner.runTest(AndroidTestRunner java:169)

at android.test. AndroidTestRunner.runTest(AndroidTestRunner j; Java 154)

at android.test.| ionTi .onStart(Instr T Java:529)
at android.app.| ionThread.run(instr java:1447)

OEBPS/images/9781118008256-fg0804_fmt.jpeg
~Chiéren
ot

Parents
7 androd iew/View draw (Landroidgraphics Canas)V
~Chidren

sl
n
1

15276 android contentesResources.ge:Color 01
64 android raphics Paint<int> OV

34.6% 1460.267
100,08 1460267
268 38552

 oouses
177 259124
130k 169606

oax 12105

o 6095

OEBPS/images/9781118008256-fg0802_fmt.jpeg
[Xe) 5554:Device-Android-2.2-API-v8

gﬂ] 8 8:27am

Options

Music On/Off

Settings

Help

O000

6{=) e
QO O

DEL

OEBPS/images/9781118008256-fg0511_fmt.jpeg
DM@ 2:34em

Table Layout Test

Type here:

OEBPS/images/9781118008256-fg0603_fmt.jpeg
M@ 1:33em

TicTacToeButtons

OEBPS/images/9781118008256-fg0508_fmt.jpeg
1:37 pm

Calculator

0.07858757856

OEBPS/images/9781118008256-fg0505_fmt.jpeg
B e 7:14em

Ontacey

Roger Crawfis
Computer Science
2015 Neil Ave.

Phone number ...

OEBPS/images/9781118008256-fg1508_fmt.jpeg
[c AP SDE S, »’ﬂs:3sm1
00:00:00
Recordj

5-12-23-48-00 0:00:07

Search

Timer recording Delete/Sync

'O
7/

)
Preferences Donation & Option

OEBPS/images/IFC_top.jpg
Get More and Do More at Dummies.come®

Start with FREE Cheat Sheets

("\Ne'az\' Cheat Sheets include
(,\\Q' * Checklists
* Charts
* Common Instructions
» And Other Good Stuff!

OEBPS/images/9781118008256-pp0601_fmt.jpeg
The 5th Wave By Rich Tennant

- NE
——

“Until we wWwork the Kinks out, David will
be providing the audio portion of our game
demonstration.”

OEBPS/images/checkmark.jpg

OEBPS/images/cover.jpg

OEBPS/images/9781118008256-fg1106_fmt.jpeg
N @ 3 2. = 7:52am

Androidfor[;unimies

Start Audio

Stop Audio

Record Audio

OEBPS/images/9781118008256-fg1403_fmt.jpeg
ene Speckyboy Design Magazine | Search Results

GE' @ ® @ bo, Pmn://gpeckyboy.(om/index.php7s=Andro\'d

{j v) -‘iv what is gizmodo

Most Visited - Getting Started ~ Latest Headlines Vanguard - Registra...
i i

Weekly Design News - Resources,
Tutorials and Freebies (N.81)

April 11, 2011 - 5 Comments and 56 Reactions

Graphic Design, Web Design, Weekly News

This is our weekly column were we share our favorites design related articles,
resources and resources all from the previous week. If you would like to be kept up
to date with loads of fresh design news and resources, you can follow us on Twitter,
on ,on orby to our RSS [..]

Weekly Design News - Resources,
Tutorials and Freebies (N.79)

March 29, 2011 - 3 Comments and 14 Reactions

Graphic Design, Web Design, Weekly News

This is our weekly column were we share our favorites design related articles,
resources and resources all from the previous week. If you would like to be kept up

on Facebook, on Stumbleupon or by subscribing to our RSS [..]

[Expired] We Have Five Year-Long
Licenses to JustProto (Prototyping
App) up for Grabs - Comment to
Enter

to date with loads of fresh design news and resources, you can follow us on Twitter,

3,395,427
wsnsms
CREATED

GNYOfJRS'
E>.

design sets

and more

OEBPS/images/9781118008256-fg1516_fmt.jpeg
ad s O3 2., F1050mm

0:00 "‘...'7"‘"
0 cal. ;

=1 00:08

©CoachingOn GPS™

|S|S========
0 00 Current Pace
" L. 0:00
total miles min/mile

OEBPS/images/9781118008256-fg1101_fmt.jpeg
/N &3 5.

AndroidforDummies

Rajiv to play.
Rajiv:3....Android:0

i =

Help Email Score

H | ® 6

Send SMS Call A Friend End Game

OEBPS/images/9781118008256-fg0101_fmt.jpeg
1

OEBPS/images/9781118008256-fg1214_fmt.jpeg
It-Bel8l85d]|3 0 |oQ | SP S0 [8-§- e [i DDMS 5

B Devices =X = O|(% Threads [@ Heap [§ Alocation Tracker ({5 File Explorer £30), Ba|="-0|

(00 (2 Y Q07| Nme Stze | Date

ere— — - L

Name

v @ emulator-sssa
system_process
com.android.inputmethod.latin

(& com.android.settings 2011-03-12
(& com.android.soundrecorder 2011-03-12
(& com.android spare_parts 2011-03-12
(& com.android.speechrecorder 2011-03-12
(& com.android.systemui 2011-03-12
(& com.android.term 2011-03-12
(& com.android.wallpaper livepicker 2011-03-12
(& com.google.android.apps.maps 2011-03-12
(& com.google.android.gsf 2011-03-12
(& com.google.android.location 2011-03-12
(& com.google.android.street 2011,
(& com.svox.pico 2011-03-12
(> com.wiley.fordummies androidsdk tictactoe 2011-03-14
T — 23 v e dltabases 2011-03-13
TicTacToe.db 2011-03-13
Telephony Status 2011-03-14
Voice: @ e @ v & shared_pvsls A » » 2011-03-13
:_preferences.xml 2011-03-13
Data: Latency: [Nor » = jp.co.omronsoft.openwnn 2011-03-12
» & dontpanic 2011-03-12
» G local 2011-03-12
» (& lost+found 2011-03-12
» G misc 2011-03-12
>
>
>

com.android.phone
com.android.systemui
com.android.launcher
android.process.media
com.google.process.gapps
com.android.protips

& com.android.quicksearchbox
com.svox.pico

>
>
>
>
>
>
>
>
>
>
>
>
v

Telephony Actions

Incoming number:

(® Voice & property 2011-03-12
& secure 2011-03-12
& system 2011-03-14
> & mnt 2011-03-14
> @ system 2011-01-20

O sms
Message:

To¢ | taunching TicTacToePr...estructured IEX;

OEBPS/images/9781118008256-fg1505_fmt.jpeg
All Along The Watchtower
Jimi Hendrix

Experience Hendrix - The Best Of Jimi
Hendrix

OEBPS/images/maccmd.jpg

OEBPS/images/9781118008256-fg1001_fmt.jpeg
AndroidforDummies

TicTacToe Help
Layout container for a view hierarchy
that can be scrolled by the user, allowing
it to be larger than the physical display. A
ScrollView is a FrameLayout, meaning
you should place one child in it
containing the entire contents to scroll;
this child may itself be a layout manager

with a complex hierarchy of objects. A

Tic-Tac-Toe on Wikipedia
Tic-Tac-Toe on Wikipedia in Web View

Exit Help

OEBPS/images/9781118008256-fg1511_fmt.jpeg
ANAPP &3 2., F1010m

EVERNOTE

Welcome to Evernote

Welcome to

Evernote

Use Evernote to save your ideas, things you see,
and things you like. Then find them all on any
computer or device you use.

A few simple ideas Click the link
to get you started to install
Evernote to

@ Click New Note your
and take down an computer:
idea or task.
® (Clipand savea o
webpage using a .
.
® Use Evernote on

your phone to

snap a photo of a Click the link
whiteboard, to install
business card, or Evernote onto

OEBPS/images/9781118008256-fg1108_fmt.jpeg
N F ® 3 % ., = 7:54am

AndroidforDummies

Start Video

Stop Video

Record Video

OEBPS/images/9781118008256-fg1102_fmt.jpeg
/0N

Compose

From ramnath.rajiv@gmail.com

s ™

\ J

Look at my AWESOME TicTacToe Scc

Rajiv score is 3 and Android score
is 0

Send Save as draft Discard

OEBPS/images/9781118008256-fg1111_fmt.jpeg
® Eclipse

%

D % = ¢ (09 MonApr25 8:00:52AM Q

O O O Java - TicTac j /

ingame.xml -

-] =) -— B,
Eclipse Platform - /Users/ramnath/Documents/CETl/Projects/Mirror/Devel... O

It Hela|8L8d]s 0 A |86 @S| 5]8-§-0 6D

2 Package Exp 52 _f3 Hierarchy| Ju junit| = O

Ble~
3 HelloAndroid
1 My First Java Project
32 spinner

12 TicTacToeProject-Refactored
12 TicTacToeProject-Refactored-Test

[dl menu_ingame.xml 83\, @ GameSessionjava |21 = O

<?xml version="1.0" encoding="utf-8"25 a
<menu
xmlns:android="http://schemas.android. c:
<item
android:title="Help”
android:id="@+id/menu_help"
id:icon="@android:drawable/ic_me:

B Devices 52

@022 0m”

| Name

[emulator-5554
system_process

‘com.android.inputmethod.latin

1
/> -
P ¥ com.android.phone 1
‘com.android.systemui 1.
com.android.launcher 1
Filter Name: | | comgoogleprocess.gapps 2
com.android.deskclock 2
com.android.mms. |24
by Log Tag: SensorsBMA150 3-axis Accelerometer android.process.media 244
L 28"
<
by pid:)
(1 Logcar 527\ & console] [ViCIoICICIEN" Al Raal=
by Log level: [Debug 2]
Log (24) | Audio | Senst) | Proximity (56) | Light
e id |)
i B - - () —— =
07:58:52.552 o 816 SensorsBM
07:50:52.552 D 836 SensorasALSOISCaxiaiRcceleromstaR NN Eage I TaRaae
07:58:52.552 o 816 SensorsBMA150
52.552 o 816 SensorsBMA150 Sensor: BMA150 3-axis Accelerometer
07:58:52.552 D 816 SensorsBMA150 Accuracy: 3
07:58:52.552 o 816 SensorsBMA150 Timestamp: 1224309194000 O
07:58:52.552 o 816 SensorsBMA150 Values: e d
07:58:52.552 o 816 SensorsBMA150 [0] = -1.4165162 [1] = 0.95342433 [2] = 9.575105 v
B yaTe]
Filter:
1o ! leReB s

OEBPS/images/9781118008256-fg0206_fmt.jpeg
@ size:
O File: Browse...)

@ Built-in:

(O Resolution:

' Property ' Value

l De{gte]

[] Override the existing AVD with the same name

(Cancel) (" Create AVD)

OEBPS/images/9781118008256-fg0304_fmt.jpeg
AndroidforDummies

About Tic-Tac-Toe

Tic-Tac-Toe is a two-player game.

Each player claims one of two symbols
-"0" or "X" - and attempts to
alternately place their symbol in empty
locations in a 3-by-3 grid, so as

to get three of the same symbol
adjacent to each other in a straight

line - either in a row or column, or

Tic-Tac-Toe on Wikipedia

Tic-Tac-Toe on Wikipedia in Web View

Exit Help

OEBPS/images/9781118008256-fg0402_fmt.jpeg
Platform APlLovel Distribution
Android 1.5 3 14%
Android 1.6 K 2.2%
Android 2.1 7 17.5%
Android 2.2 8 59.4%
Android 2.3 - 9 1%
Android 2.3.2

Android 23.3- 10 17.6%
Android 2.3.4

Android 3.0 n 0.4%
Android 3.1 12 0.5%

OEBPS/images/arrow.jpg

OEBPS/images/9781118008256-fg1515_fmt.jpeg
ad s O A, F04a9m
[RunKecped GPS Strength ®

Input Type

Activity Type Running p

Coaching 20 Minute Easy Workout |

Start Activity

OEBPS/images/9781118008256-fg1408_fmt.jpeg
| http:/ /www.google.com/webhp?rls=ig | (=9~ what is gizmodo

Web |mages Videos Maps News Shopping Gmail more v

Advanced search
Language tools

Google Search ‘ I'm Feeling Lucky ‘

Advertising Programs ~ Business Solutions ~ About Google
©2011 - Privacy

Change background image

Done

OEBPS/images/9781118008256-fg1506_fmt.jpeg
(» Data Usage Warning

This product will use a large amount
of data and you are responsible for
all data charges.

Please contact your carrier's
customer service to confirm / add an

OEBPS/images/9781118008256-fg0507_fmt.jpeg
L B e

B R B R A ot 4+ W

] PushButtonjava m

& Android Resources (default)
Lo S ©O0C00FIOEM

il

%

Resources | strings.xmi |

Eﬁ_ﬁw(@ Javadoc | Declaration [& Console £3

OEBPS/images/9781118008256-fg0501_fmt.jpeg
L
uonnga|bbo)

L

L MBIAIXBL
X0Q98y9 aj0|dwogonyn
L Em_\ﬁux@_. >>m_>mommt:m._w :otzm—EooN _mm_vﬂmmm
uonngoipey a18|dW00INY :
[
zsw:m £ H o ; '
punoduioy RCINDE LIRS | MaIp8IBUNSSY uonngabeuw| legbuney
I —
G
Em_\”ﬁa._. l Is l L L abpeg L
payaay) uopng 1Xa1Up3 Jsajewouodyy | | ¥20eNbIg MBIA0BPIA J0BJUOYDIND legyesgsqy
T I | I I |
L L L L L L L €
MBIAIXSL MaIABOBUNS dnoigmaip malpabeu| qniSMaIp tegssaiboig | | yo0gb0jeuy | [maippieogAsy

1

I

1

OEBPS/images/9781118008256-fg1216_fmt.jpeg
I-Helal88d]%s-0
[£ Packa fg Hiera m =0
Finished after 6.431 seconds =

O aREQR ® E-
Runs: 3/3 B Errors: 0 B Failures: 0

v EE com.wiley.fordummies.androidsdk.
] testPreconditions (1.400 5)
£ testUl (2.739 5)
E testUIThreadTest (2.863 s)

— RIE

= Failure Trace 3=

OEBPS/images/technicalstuff_fmt.jpeg

OEBPS/images/9781118008256-fg1305_fmt.jpeg
0“ (@) (<) (a) hnps:[Iwww.google.comlaccounlsﬁV m

D Fﬁg?ket

Distribute your applications to users of Android mobile Sign in with your

phones. Google Account

Android Market enables developers to easily publish and distribute their
applications directly to users of Android-compatible phones.

B Come one. Come all.
Android Market is open to all Android application developers. () Stay signed in
Once registered, developers have complete control over when
and how they make their applications available to users.

Easy and simple to use. Can't access your account?
Start using Android Market in 3 easy steps: register, upload,
and publish.

Great visibility. Don't have a Google
Developers can easily manage their application portfolio where Account?

they can view information about downl ratings and Create an account now
comments. Developers can also easily publish updates and

new versions of their apps.

To learn more about how to use Android Market, visit the
Android Market help center.

OEBPS/images/9781118008256-fg1003_fmt.jpeg
AP

AndroidforDummies

& Login/ create account

L ok

g Q " }!ory Article
1
-

Qh

WIKIPEDIA
The Free Encyclopedia tac-

OEBPS/images/WileyTitlePageLogo_fmt.jpeg
%)

ViLEY
Wiley Publishing Inc

OEBPS/images/9781118008256-fg1401_fmt.jpeg
http://developer.android.com/index.html

and>3on

developers search developer docs

Dev Guide Reference Resources

The Android SDK has the

tools, sample code, and docs
Google I/O is a two-day developer event that you need to create great apps.
will take place May 10-11 at Moscone Center,
San Francisco. The agenda includes several
sessions about Android, presented by Android
engineers and other team members.

Developer Announcements

Learn more »

s Publish

Leamn more » Android Market is an open
service that lets you distribute
your apps to handsets.

Android 3.0 is here! Learn more »

Android 3.0 is now available for the Android
SDK. It offers a redesigned Ul and all new Contribute
devel APIs for an optimi i on
tablets and similar devices. For more
information about what's in Android 3.0, read
the version notes.

Android Open Source Project
gives you access to the entire
platform source.

OEBPS/images/checkbox.jpg

OEBPS/images/9781118008256-fg1407_fmt.jpeg
806 Why An Android-Powered Universal Remote? Games, Of Course!

@E)'@ @ (LG\ _hup://gi com/#15791434 /the-fi droid +pe d-universal- B 17 ¥

Most Visited ~ Getting Started Latest Headlines » Vanguard - Registra...

A & Q SEARCH

android

All Today Lastweek Last month

Relevance Date Popularity

‘Why An Android-Powered Universal
Remote? Games, Of Course!

APP OF THE
DAY

B -
App of
the day
REMOTES E/S)- Bk |5 GIZMODO

Why An Android-Powered Universal Remote? Games, Of
Course!
. Davey Alba — Could anything be better AND INSTANTLY

p s TURN IT INTO A
than lazing around on your couch with your Mil CHARACTER.

Postagram for iPhone

DEALZMODO

Transferring data from ping.chartbeat.net...

OEBPS/images/9781118008256-fg1004_fmt.jpeg
NP @ 5 . = 1:21em

ndroidforbummies

OEBPS/images/9781118008256-fg0205_fmt.jpeg
Available Software
Check the items that you wish to install.

Work with: | https://di-ssl.google.com/android/eclipse

B CAd.)

Find more software by working with the "Available Software Sites" preferences.

type filter text

{Name
() » 0 Developer Tools

Details

[Show only the latest versions of available software

™ Group items by category
Contact all update sites during install to find required software

(] Hide items that are already installed
What is already installed?

(©)

<Back) (Nexx>) (cancel) Finish

OEBPS/images/9781118008256-sb0501_fmt.jpeg
5 5554:ongHVGA U | WCw| . S
Rl @ 7:23am

Table L.
rinking not needed, No

No Shrinking is allowed.

Shrinking on all columns

Force other columng
to Shrink.

Force other columns
to Shrink.

this
column
to Shrink.

OEBPS/images/9781118008256-fg0606_fmt.jpeg

OEBPS/images/9781118008256-fg0701_fmt.jpeg
""" Controller

Model

View

OEBPS/images/9781118008256-pp0301_fmt.jpeg
The 5th Wave By Rich Tennant
ORIGHTENNANT ?
A R

Well, heck — that’s just
dayn impressive! And

you say it’s programmed
to sew up and dress

the incision a&erwﬁ

as wWell?

-
Q)

< AN
=X
~ o~
~ -
NN
-
—
’
/
—Z
N =)z
<

AT
> -3 L\ {,
............ VAR ~
............ s 1\
AR/ B\ |

OEBPS/images/9781118008256-fg1109_fmt.jpeg
N ® 3 R, =7:55m

AndroidforDuMmies

Show Image

Take Picture

Exit

OEBPS/images/9781118008256-fg1207_fmt.jpeg
Select a wizard

Wizards:

C

2% Java Project
s Java Project from Existing Ant Buildfile
1% Plug-in Project
» (= General
¥ (& Android
{22 Android Project
Jﬁ'mdmid Test Project
> & Cvs
» (= Drools
» (= Eclipse Modeling Framework
> EB
> (= ESB
» (&= Guvnor
» (= Java

(__ cancel

) (

Finish

OEBPS/images/9781118008256-fg1302_fmt.jpeg
Eclipse File Edit Refactor Run Data Navigate Search Project Window Help (= (Charged) Thujan6 11:57:39AM Q

JRlEAxlts-0-Q- 12 - & | @S-]| S]] R]L -5 0 G- £ §dsavaBrowsing >
New > =
£ mainxml 82\l strings.xml]@ HelloAndroid Manifes 1@ Accountjava]”13 =]
Show In X#W > | <2xml version="1.0" encoding="utf-8"2>]
- <LinearLayout xmlns:android="http://schemas.android. con/apk/res/android" B
> ixgv HelloAn/ Copy %®C android:orientation="vertical”
v & ictach . android: layout_width="fill_parent”
> @8 src & Copy Qualified Name android: layout_height="fill_parent”
» @8 gen (% Paste 8’V >
> miang X Delete = Jexw;“'d-l idth="Fill -
e o R ot Context O3 android:layout_width="fill_parent
& ass = Remove from Context X1 android: layout_height="wrap_content”
» @=res Build Path » android:text="@string/hello”
[d Anc Refactor X#T > />
B defl </LinearLayout>
2 Import...
4 Export...
2 Refresh FS

Close Project
Close Unrelated Projects

Validate

Create Ajax Bridge..

Run As >
Debug As >
Profile As >
Team >
Compare With »
Restore from Local History... 7 New Test Project... o [snippets [B Console 2\ 3* Call Hierarchy| = O

Graphical Layout | main.xmi |

:V;:%e;/leslopmem Tools : |d New Resource File... EepB| et B- 9~
JPA Tools »> Export Signed Application Packag
» Export Unsigned Application Package
Flex Project Nature >
1 Source : S Display dex bytecode b
z - Rename Application Package -
lo & Properties X Fix Project Properties | Android SDK Content Loader

OEBPS/images/9781118008256-fg1204_fmt.jpeg
I-delalBfdls 0 a |see-|ulos s

18- - e o D
&2 Projects 52 ER=

#5 packages 53

[$JjavaBrowsing >

» 2 HelloAndroid
» 1= My First Java Project
» 52 Spinner
» 32 TicTacToeProject-Refactored
¥ 32 TicTacToeProject-Refactored-Te
@i
&8 gen [Generated Java Files)
{8 android jar - /Users/ramna
{8 maps.jar - /Users/ramnath|
» 12 TicTacToeProject-Restructured-

java icTacToeProject-Res

=) (%0 1ypes > =
D GamesessionTest

a

fem[Zc[@e[¥o X\ =0

RO 0l B 2D RT
AR

assertNotNul1(board);
}

public void testUI()

public void testPreconditions() {
assertNotNull(gameSessionActivity);

System.out.println("Thread ID in testUI:" + Thread.currentThread().getld());
e getActivity().runOnUiThread(new Runnable()
pub

System.out.println("Thread ID in TestUL.run:" + Thread.currentThread().getId());

MotinnEuant naubntinnEyvant — MakinnEvant ahtninf(1ana)1

X s blic void run() {
° board. requestFocus();
g

(=N

Smart Insert 39:27 |

OEBPS/images/9781118008256-fg1210_fmt.jpeg
i logCa(l

id

UI1-93-14 21:90:97 - TicTacToeProj.] SuccessT -

[2011-03-14 21:00:08 - TicTacToeProject-Refactored] Starting activity com.wiley.fordummies.androidsdk. tictactoe.SplashScreen on

[2011-03-14 21:00:11 - TicTacToeProj ed] Activi : Starting: Intent { act-android.intent.action.MAIN cat-[andr

[2011-03-14 21:06:37 - TicTacTocProject Refactored]

[2011-03-14 21:06:37 - TicTacToeProject-Refactored] Android Launch!

[2011-03-14 21:06:37 - TicTacToeProject-Refactored] adb is running normally.

[2011-03-14 21:06:37 - TicTacToeProject-Refactored] Performing com.wiley.fordummies.androidsdk. tictactoe.SplashScreen activity

[2011-03-14 21:06:40 - TicTacToeProject-Refactored] WARNING: Application does not specify an API level requirement!

[2011-03-14 21:06:40 - TicTacToeProject-Refactored] Device API version is 9 (Android 2.3.1)

[2011-03-14 21:06:43 - TicTacToeProject-Refactored] Application already deployed. No need to reinstall.

[2011-03-14 21:06:43 - TicTacToeProject-Refactored] Starting activity com.wiley.fordummies.androidsdk. tictactoe.SplashScreen on

[2011-03-14 21:06:45 - TicTacToeProject-Refactored] ActivityManager: Starting: Intent { act-android.intent.action.MAIN cat-[and

[2011-03-14 21:06:46 - TicTacToeProject-Refactored] Attempting to connect debugger to 'com.wiley.fordummies.androidsdk.tictactoe
v

Bt B-r3-70

Yair

] o® | taunching TicTacToePr...estructured

OEBPS/images/9781118008256-fg0504_fmt.jpeg
Ml @ 6:43am

Name:

Enter Name ...

Address:

State

Zip Code

OEBPS/images/9781118008256-fg1213_fmt.jpeg
I-Haelal8Fd]s-0- A [@s & | sP 40850~

B Gy D [35Debug &'lava >

35 Debug 52

PN P EN

il

v ' Threid [<1> main] (Suspended (breakpoint at line 19 in SplashScreen))

(=)
L]

= Inslrumema(lon.LallActlelyOnCream(A(tMly, Bundle) line: 1047 Ju
= Y performL , Intent) line: 1586 =]
= Activity handleLaunc| T Intent) line: 1638 ile
= ActivityThread.access$1500(ActivityThread, ActivityThreadSActivityClientRecord, Intent) line: 117 v |l o=

[m SplashScreenjava 52 N3 =g

0] java fm i java f@ ion java fm Accountjava
/** Called when the activity is first created. */
© @0verride

public void onCreate(Bundle savedInstanceState) {

setContentView(R. layout. splash);

®h

L4 thrand £or_dicnlavina. the SnlachScraan

e

<t

I olCICIEN- 2l R

ta
L Systemout
435 system.out
435 system.out
35 system.out

Time

V3TN ZITUeTNYIIIT
03-14 21:06:49.705
03-14 21:06:49.915
03-14 21:06:50.118

R
&

03-14 21:06:50.320 system.out
03-14 21:06:50.523 435 system.out
03-14 21:06:50.725 435 system.out
03-14 21:06:50.928 435 System.out debugger has settled

O -)

| taunching TicTacToePr...estructured

OEBPS/images/9781118008256-fg0901_fmt.jpeg
Angry Birds

Rovio Mobile

Allow this application to access:

System tools
Prevent phone from sleeping

Network communication
Full Internet access

More

OEBPS/images/9781118008256-pp0101_fmt.jpeg
APPLICATIONS

Home Contacts Phone Browser e
APPLICATION FRAMEWORK
Activity Manager me Providers Sysvm
Tel Resource Location Notification
Package Manager il Manager Manager
LIBRARIES ANDROID RUNTIME
Media i

Surface Manager i SQLite Core Libraries
OpenGL | ES FreeType WebKit

SGL SSL libe

LINUX KERNEL

OEBPS/images/9781118008256-fg0510_fmt.jpeg
Jumbled Table

No TableRow
Dao
KN BN =N

n _pAapno

100000

EditText - no TableRow

Column 3 (4th)

OEBPS/images/9781118008256-fg1404_fmt.jpeg
| Gearch)

g. "adwords” or "open source”

Mobile Homepage Google Interactive Media Ads (Labs)
E Bring the power of Google technology to your user's pocket: Google Google Interactive Media Ads enable publishers to
mobile developer technologies for geo, social, monetization, and more. ads into video, audio and game content.
Documentation - & Labs

le Account
Get access into desktop or mohls applications.
Group

Google Earth AP|
@ Embed Google Earth into your web page.
Documentation - Blog - Group

APl

Ganerm rvvonue for you and your users ads on your Google Plugin for Eclipse

o ¥ ey » 0 Simplifies development of GWT and App Engine prd

Mmmm Blog - Group IDE.
Documentation

e = Feedbu APIs (Labs)

The next generation in Google mobile advertising, featuring refined ad rner APls

formats and streamlined APls. Interact with FeedBurner's feed management and a

Documentation - Blog - Group - & Labs generating capabilities.
Documentation - Blog - Group - & Labs

AdSense for Mobile Applications (Labs)

Generate revenue by placing AdSense and DoubleClick ads directly into [le Finance Data API (Labs)

your native Android- and iOS-based applications. View and updals Finance content in the form of Gog

Documentation - Group - & Labs ilabs

AdMob .' Google Friend Connect APIs (Labs)
Monetize your mobile ing into AdMob's networkof <» 3 JS and REST/RPC API's to Google Friend Connect
4 EnEs R e Documentation - Biog - Group - & Labs

OEBPS/images/9781118008256-fg0202_fmt.jpeg
I Hel8lB8d]% 0-Q 6

| SP S9]E

|+ %0 G D 5| [Resource

(7 Project Explorer 23 = gl|m

jaa [0 java 22\

Bg|s~

» 12 HelloAndroid

» 1= My First Java Project

» 3 spinner

» 52 TicTacToeProject-Refactored

» 32 TicTacToeProject-Refactored-Test

» 32 TicTacToeProject-Restructured-Zoya

public void testPreconditions() {
assertNotNul I(gameSessionActivity);
assertNotNull(board);

public void testUI() { '
System.out.println(’Thread 1D in testUL:" + Thread. currentThread().getld());
getActivity().runOnUiThread(new Runnable() {
public void run() {
System. out.println("Thread 1D in TestUL.ru

+ Thread. currentThr

board. requestFocus();

obtain((long)1,

Task List| = 0)

chRW e w

comwiley.fordummies.androidsdk.ti
» “= import declarations
v © GameSessionTest
o gameSessionActivity : GameSession
o board : Board
4 gameSessionActivitylnstrumentatio
aF x:float)

aFy:floatl)

a jint

© © GameSessionTest()
© a setUp0

© testPreconditions()

Message

WOTE: attach of thread 'Binder Thread #3' fail

adbd disconnected

Start proc 11

GC_EXTERNAL_ALLOC freed 50K, 53% free 2558K/53

Displayed 11 i i

starting: Intent { act=com.wiley.fordummies.ar

Displayed i1 : 1

purging 137K from font cache [16 entries]

GC_EXPLICIT freed 679K, 46% free 4256K/7815K, 4

GC_EXPLICIT freed B1K, 52% free 2916K/5959K, €V
Y<T»

21:00:11.525
21:00:11.535
21:00:11.564
21:00:12.915
21:00:13.415

dalvikvm

Activityranager

21:00:24.495
21:00:29

OEBPS/images/9781118008256-fg1309_fmt.jpeg
oD OO http://market.android.com/publish/Home w7 v) (*§:(android market Q

ramnath.rajiv@gmail.com | Home | Help | Android.com | Sign out

D F#amrket

Your Google Checkout merchant account is approved!
‘You can now sell applications in the Android Market.

Rajiv Ramnath

Edit profile »

All Android Market listings

