

[image: image]

ADVANCED EXCEL 365

Including ChatGPT Tips

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book and companion files (the “Work”), you agree that this license grants permission to use the contents contained herein, including the disc, but does not give you the right of ownership to any of the textual content in the book / disc or ownership to any of the information or products contained in it. This license does not permit uploading of the Work onto the Internet or on a network (of any kind) without the written consent of the Publisher. Duplication or dissemination of any text, code, simulations, images, etc. contained herein is limited to and subject to licensing terms for the respective products, and permission must be obtained from the Publisher or the owner of the content, etc., in order to reproduce or network any portion of the textual material (in any media) that is contained in the Work.

MERCURY LEARNING AND INFORMATION (“MLI” or “the Publisher”) and anyone involved in the creation, writing, or production of the companion disc, accompanying algorithms, code, or computer programs (“the software”), and any accompanying Web site or software of the Work, cannot and do not warrant the performance or results that might be obtained by using the contents of the Work. The author, developers, and the Publisher have used their best efforts to ensure the accuracy and functionality of the textual material and/or programs contained in this package; we, however, make no warranty of any kind, express or implied, regarding the performance of these contents or programs. The Work is sold “as is” without warranty (except for defective materials used in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone involved in the composition, production, and manufacturing of this work will not be liable for damages of any kind arising out of the use of (or the inability to use) the algorithms, source code, computer programs, or textual material contained in this publication. This includes, but is not limited to, loss of revenue or profit, or other incidental, physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement of the book and/or files, and only at the discretion of the Publisher. The use of “implied warranty” and certain “exclusions” varies from state to state and might not apply to the purchaser of this product.

Companion files (color figures) are available for downloading by writing to the publisher (with proof of purchase) at info@merclearning.com.

ADVANCED EXCEL 365

Including ChatGPT Tips

RITU ARORA

[image: image]

MERCURY LEARNING AND INFORMATION

Boston, Massachusetts

Copyright © 2024 by MERCURY LEARNING AND INFORMATION.

An Imprint of DeGruyter Inc. All rights reserved. Reprinted and revised with permission.

Original title and copyright: Mastering Advanced Excel: With ChatGPT Integration.

Copyright © 2023 by BPB Publications. All rights reserved. ISBN : 978-93-5551-865-1.

This publication, portions of it, or any accompanying software may not be reproduced in any way, stored in a retrieval system of any type, or transmitted by any means, media, electronic display, or mechanical display, including, but not limited to, photocopy, recording, Internet postings, or scanning, without prior permission in writing from the publisher.

Publisher: David Pallai

MERCURY LEARNING AND INFORMATION

121 High Street, 3rd Floor

Boston, MA 02110

info@merclearning.com

www.merclearning.com

800-232-0223

R. Arora. Advanced Excel 365:Including ChatGPT Tips.

ISBN: 978-1-50152-251-2

The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a means to distinguish their products. All brand names and product names mentioned in this book are trademarks or service marks of their respective companies. Any omission or misuse (of any kind) of service marks or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2024939128

242526321 This book is printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc. For additional information, please contact the Customer Service Dept. at 800-232-0223 (toll free).

All of our titles are available in digital format at academiccourseware.com and other digital vendors. Companion files (color figures) are available for downloading (with proof of purchase) by writing to the publisher at info@merclearning.com. The sole obligation of MERCURY LEARNING AND INFORMATION to the purchaser is to replace the files, based on defective materials or faulty workmanship, but not based on the operation or functionality of the product.

To my beloved father, Ramesh Dhingra,
 a guiding light in my Excel journey

Contents

Preface

Acknowledgments

About the Author

Chapter 1: Overview of Excel 2021

Introduction

Structure

Objectives

Components of the Excel Window

Backstage View

Saving and Sharing Files Online

Interacting with Excel

Working with Default Settings

Formatting of Tables

Paste Special Preview

Flash Fill

Quick Data Analysis

Data Mining

TAT Saving Techniques

Conclusion

Exercises

Chapter 2: Cell References and Range

Introduction

Structure

Objectives

Using Different Types of References

Types of Cell Reference

Relative Cell Reference

Absolute Cell References

Mixed Cell Reference

Named Range

Creating a Named Range

Editing Named Ranges

Deleting Named Ranges

Conclusion

Exercises

Chapter 3: Working with Formulas and Functions

Introduction

Structure

Objectives

Using Formulas in a Worksheet

Array Formula

Using Functions

Example

IF Function

Example

Nested IF

Example

IF With AND

Syntax

IF With OR

IF With NOT

Lookup Functions

VLOOKUP

HLOOKUP

Making VLOOKUP Dynamic

Using the Column Function in VLOOKUP

Using the Match Function in VLOOKUP

Index

Index-Match

Conclusion

Exercise

Chapter 4: Data Validation

Introduction

Structure

Objectives

Trace Precedents

Trace Dependents

How to Use Trace Dependents

Setting Data Validation Rules

Methods of Data Validation

Creating a List

Conclusion

Exercises

Chapter 5: Protection

Introduction

Structure

Objectives

Employee Information System

Protecting a Worksheet by Using Passwords

Protecting a Workbook

Protecting a Part of a Worksheet

Password Protecting a File

Conclusion

Exercises

Chapter 6: Sorting a Database

Introduction

Structure

Objectives

Definition of Sorting

Simple Sort

Multilevel Sort

Customized Sort

Conclusion

Exercises

Chapter 7: Filtering a Database

Introduction

Structure

Objectives

Filters

AutoFilter

Number, Text, or Date Filters

Filtering a List Using Advanced Filter

Filtering Unique Records

Conclusion

Exercise

Chapter 8: Subtotals and Data Consolidation

Introduction

Structure

Objectives

Subtotals

Display Subtotal at a Single Level

Displaying Nested Subtotal

Consolidate Data

Example of Consolidated Data

Conclusion

Exercises

Region: East

Region: West

Region: South

Chapter 9: Pivot Tables

Introduction

Structure

Objectives

Examining Pivot Tables

Recommended Pivot Table

Creating a Pivot Table

Percent of Grand Total

Group Items in a Pivot Table

Grouping of Dates

Monthly Report

Create a Graph Using Pivot Data

Weekly Report

Grouping of Numbers (Creating Slabs)

Slicer

Timeline

Power View

Power Pivot

Benefits of Data Model

Creating a Pivot Table Using Power Pivot

Conclusion

Exercises

Chapter 10: Conditional Formatting

Introduction

Structure

Objectives

Conditional Formatting

Conditional Formatting Using Cell Values (Column-based Conditional Formatting)

Conditional Formatting Using Formula (Record-based Conditional Formatting)

Icon Set

Formulas with Multiple Conditions

Apply a Conditional Formula Based on a Different Sheet’s Cell Reference

Conclusion

Exercises

Chapter 11: What-if Analysis

Introduction

Structure

Objectives

Goal Seek

Using the Goal Seek Command

Projecting Figures Using a Data Table

One-Variable Data Tables

Two-Variable Data Tables

What-if Scenarios

Creating Scenarios

Create a Scenario Summary Report

Delete a Scenario

Display a Scenario

Merge Scenarios from Another Worksheet

Protecting Scenarios

Conclusion

Exercises

Task 1: Goal Seek

Task 2: Data Table

Task 3: Scenario Manager

Chapter 12: Working with Multiple Worksheets, Workbooks, and Applications

Introduction

Structure

Objectives

Links Between Different Worksheets

Sheetname!Reference

Creating Links Between Different Software

Auditing Features

Dependent and Precedent Cells

Workgroup Collaboration

Sharing Workbooks

Merging Workbooks

Tracking Changes

Creating Hyperlinks

Creating Links to a Different File

Conclusion

Exercises

Chapter 13: Working with Charts

Introduction

Structure

Objectives

Creating Charts Using Chart Tools

Chart Designs

Adding Titles and Values in Charts Using Chart Tools

Formatting Charts

Charts for Data

Chart Templates

Chart Filter Option

Waterfall Chart

Recommendations

Sparklines

Create a Sparkline

Customize Sparklines

Change the Style of Sparklines

Conclusion

Exercises

Chapter 14: Creating and Recording Macros in VBA

Introduction

Structure

Objectives

Introduction to VBA

Uses of VBA

Introduction to Macros

Creating a Macro

Adding a Developer Tab on the Ribbon

Recording a Macro

Defining a Macro

Macro Storage

Macro Shortcut

Macro Description

Stop Recording

Relative Reference Macro

Scenario 1

Running Your Macro

Running the Macro by Name

Scenario 2

Scenario 3

Conclusion

Exercises

Chapter 15: Assigning Buttons to Macros

Introduction

Structure

Objectives

Creating Buttons on the Quick Access Toolbar

Modifying Menus or Buttons

Scenario 4

Creating a Button in the Excel Worksheet

Scenario 5

Editing the Recorded Macros

Scenario 6

Scenario 7

Scenario 8

Practice 1

Practice 2

Conclusion

Exercises

Chapter 16: Functions and Subroutines in VBA

Introduction

Structure

Objectives

Writing Procedures

Visual Basic Editor

Project Explorer Keyboard Shortcuts

Inserting Modules

Writing Code Inside Modules

Sub Procedure

Macro

Function Procedure

Scenario 9

Branching a Procedure

Use If…Then...Endif

Use If...Then...Else…Endif

Use If...Then...Elseif…Then…Else…Endif OR Select Case… End

Scenario 10

Scenario 11

Scenario 12

Scenario 13

Scenario 14

Conclusion

Exercises

Chapter 17: Conditional Statements in VBA

Introduction

Structure

Objectives

If…End If

Example

Select Case

Example

Select Case vs. If … End If

Conclusion

Exercises

Chapter 18: Variables and Data Types in VBA

Introduction

Structure

Objectives

Variables and Constants

Variables

Constant

Declaring Variables and Constants

Data Types of Variables and Constants

Using the Option Explicit Statement

Message Box and Input Box

Selecting and Activating Cells

Selecting and Activating Rows and Columns

Working with Sheets

Working with a Workbook

Working with the Application Object

Scenario 15

Scenario 16

Conclusion

Exercise

Chapter 19: Looping Structures in VBA

Introduction

Structure

Objectives

Using Loops (Repeating Action)

Choosing a Loop to Use

Using Do…Loop Statements

Repeating Statements While a Condition is True

Checking Condition Before You Enter the Loop

Checking Condition After the Loop Has Run at Least Once

Scenario 17

Using For…Next Statements

Syntax

Scenario 18

Using For Each… Next Statements

Syntax

Scenario 19

Scenario 20

Scenario 21

Scenario 22

Scenario 23

Scenario 24

Auto-Executed Macros

Practice 3

Practice 4

Scenario 25

Scenario 26

Scenario 27

Conclusion

Exercises

Chapter 20: Arrays and Collections in VBA

Introduction

Structure

Objectives

Arrays

Declaring the Arrays

Syntax

Example

Using Arrays

Array Indexing

Declaring a Dynamic Array

Syntax

Resizing a Dynamic Array

Array Example

Conclusion

Exercises

Chapter 21: Debugging and Error Handling in VBA

Introduction

Structure

Objectives

Errors

Error Handling

Scenario 28

Error Number

Scenario 29

Debugging the Macro

Conclusion

Exercises

Chapter 22: User Forms and User Input in VBS

Introduction

Structure

Objectives

User Forms

Creating User Forms

Adding Other Controls

Handling Events for the Control

Scenario 30

Conclusion

Exercises

Chapter 23: Advanced VBA Techniques and Best Practices

Introduction

Structure

Objectives

Code to Set Initial Values for the Control

Code for Option Buttons

Code for Insert Button

Double-click Insert Button

Code to Show User Form

Add-Ins

Scenario 31

Code for the Change Case Form

Creating Menu with Code

Conclusion

Exercises

Chapter 24: Building Custom Add-ins with VBA

Introduction

Structure

Objectives

Protecting Your Add-Ins with a Password

Using Add-Ins

Conclusion

Exercises

Chapter 25: ChatGPT with Excel

Introduction

Structure

Objectives

Using ChatGPT With Excel

Conclusion

Exercises

Index

Preface

This book will explore the powerful trio of ExcelTM, Visual Basic for Applications (VBA)TM, and ChatGPT. These tools combine the strength of data analysis, automation, and conversational AI to empower you in the realm of information processing and decision-making.

Throughout these pages, you will be provided with practical knowledge, hands-on examples, and step-by-step instructions to master Excel’s data manipulation capabilities, unlock the potential of VBA for automation and customization, and study ChatGPT for natural language interactions.

Whether you are a beginner seeking to understand the basics, or an experienced user looking to enhance your skills, this book will serve as your roadmap to excel in these domains. It will guide you through the fundamentals of Excel, introduce you to the world of VBA programming, and show you how to integrate ChatGPT into your applications for dynamic and intelligent conversations.

This book will explore the endless possibilities of Excel, VBA, and ChatGPT. Here is a brief look at the various chapters:

Chapter 1: Overview of Excel 2021

Discover the new interface, components, and features of Excel 2021, including online file sharing, customizing the ribbon, and leveraging flash fills and instant data analysis for efficient data entry.

Chapter 2: Cell References and Range

Learn about several types of cell references and named ranges for easier referencing. Practice these concepts with hands-on exercises.

Chapter 3: Working with Formulas and Functions

Master Excel’s formulas and functions, including IF variations, lookup functions, and dynamic VLOOKUP. Reinforce your understanding through practical exercises.

Chapter 4: Data Validation

Set data validation rules to ensure data accuracy. Explore custom validation techniques through practical exercises.

Chapter 5: Protection

Secure your Excel files by protecting worksheets, workbooks, and specific parts with passwords.

Chapter 6: Sorting a Database

Organize data efficiently using simple, multilevel, and customized sorting methods.

Chapter 7: Filtering a Database

Filter data with Auto Filter and advanced filtering techniques to extract relevant information.

Chapter 8: Subtotals and Data Consolidation

Summarize and analyze data using the Subtotal feature and consolidate data from multiple sources.

Chapter 9: Pivot Tables

Create and format PivotTables for versatile data analysis, including advanced features like grouping items and generating graphs.

Chapter 10: Conditional Formatting

Apply cell value-based and formula-based formatting, including advanced techniques with multiple conditions.

Chapter 11: What-if-Analysis

Use What-if-Analysis tools, like Goal Seek and data tables, to project figures and create scenarios.

Chapter 12: Working with Multiple Worksheets, Workbooks, and Applications

Link different worksheets and software, merge workbooks, and track changes for collaborative work.

Chapter 13: Working with Charts

Create and customize charts using Chart Tools, templates, and sparklines to enhance data visualization.

Chapter 14: Creating and Recording Macros in VBA

Automate tasks by creating and recording macros, including relative reference macros.

Chapter 15: Assigning Buttons to Macros

Enhance user interaction by creating and customizing menus and buttons for macros.

Chapter 16: Functions and Subroutines in VBA

Understand and write functions and subroutines in VBA, including branching techniques.

Chapter 17: Conditional Statements in VBA

Use Select Case and If...End If statements to control program flow efficiently.

Chapter 18: Variables and Data Types in VBA

Declare variables and constants, understand data types, and use message boxes and input boxes.

Chapter 19: Looping Structures in VBA

Implement loops, like Do...Loop and For...Next, to repeat actions in VBA code.

Chapter 20: Arrays and Collections in VBA

Work with arrays and collections to store and manage multiple values effectively.

Chapter 21: Debugging and Error Handling in VBA

Manage errors and debug VBA code to resolve issues efficiently.

Chapter 22: User Forms and User Input in VBA

Design interactive user forms with controls like buttons and text boxes for enhanced user input.

Chapter 23: Advanced VBA Techniques and Best Practices

Explore advanced programming techniques and follow best practices for efficient VBA coding.

Chapter 24: Building Custom Add-ins with VBA

Create custom Add-ins to extend Excel’s functionality and protect them with passwords.

Chapter 25: ChatGPT with Excel

Integrate ChatGPT with Excel for enhanced tasks, content generation, and data analysis while maintaining data privacy and security.

Color images are available for downloading by writing to the publisher at info@merclearning.com.

By the end of this book, you will have the knowledge and confidence to leverage the combined power of Excel, VBA, and ChatGPT to streamline your workflows, automate repetitive tasks, and engage in intelligent, data-driven conversations.

Acknowledgments

I would like to extend my heartfelt gratitude and acknowledgements to the following individuals, whose unwavering support and love have been a constant source of inspiration and encouragement throughout the creation of this book:

To my supportive husband, Mr. Harsh Arora, whose unwavering belief in my abilities and unconditional love have been my anchor. Your encouragement and understanding during the writing process have been invaluable, and I am truly blessed to have you by my side.

To my dear mother, Mrs. Asha Dhingra, and my in-laws, Mrs. Shakun Arora and Mr. K. K. Arora, for their endless encouragement, love, and sacrifices. Their unwavering belief in my dreams and their constant presence in my life was a driving force behind the completion of this book.

To my cherished children, Vansh Arora and Mannat Arora, whose patience and understanding during this time have been remarkable. Your unwavering support and bright smiles have been a constant source of motivation, reminding me of the importance of balance and family throughout this endeavor.

To my sisters, Mrs. Sudha Khurana and Mrs. Namrata Lal, extended family, and friends, for their continual support, words of encouragement, and belief in my abilities. Your unwavering faith in me has given me the strength to overcome challenges and pursue my passion.

To the readers of this book, who have entrusted me with their time and curiosity. It is my sincere hope that the knowledge and insights shared within these pages will inspire and empower you on your own Excel journey.

I am immensely grateful for the contributions and support of each and every one of you. Thank you for being an integral part of this journey.

About the Author

Ritu Arora is a highly skilled and experienced Microsoft Certified Trainer, specializing in Power BI, Excel, PowerPoint, G Suite, and ChatGPT. With over 20 years of corporate training experience, including international assignments, Ritu has successfully trained over 70,000 individuals at companies like DDFS, EY, RateGain, LG, IIMs, SMBC, Ericsson, HCL, Tata Advanced Systems, BPCL, Nestle, Citibank, Adidas, and Hero Honda. Her expertise, excellent communication skills, and ability to tailor training programs to specific needs have made her a sought-after corporate trainer.

CHAPTER    1

Overview of Excel 2021

Introduction

Excel 2021 is a subscription-based version of Microsoft Excel that is part of the Microsoft 365 suite of productivity tools. It is a cloud-based version of Excel that provides users with access to the latest features and updates. Here is an overview of some of the key features of Excel 2021:

■Collaborative Editing: Excel 2021 allows multiple users to edit a spreadsheet simultaneously, making it easier for teams to work together on projects.

■Cloud Storage: Excel 2021 files are stored in the cloud, which means they can be accessed from anywhere with an internet connection.

■Power Query: Excel 2021 includes Power Query, a tool that allows users to connect to and import data from a variety of sources.

■Dynamic Arrays: With dynamic arrays, users can perform calculations on a range of values and return multiple results in a single cell.

■Artificial Intelligence: Excel 2021 includes AI-powered features that can analyze data and provide insights. This includes tools such as the Ideas feature, which suggests charts, graphs, and other visualizations.

■New Chart Types: Excel 2021 includes new chart types, such as the funnel chart and the map chart, which allow users to display data in new and interesting ways.

■Improved Data Analysis: Excel 2021 includes new data analysis tools, such as the Data Types feature, which allow users to convert raw data into structured data that can be used in calculations and analysis.

MS Excel is a spreadsheet software, which is a tool used to record data, support plotting, and analyze the entered data. This is a powerful tool with numerous features that can be used to track a budget, create a record of sales or invoices or maintain a training log. You can store the details of your products or service inquiries, or explore its other business applications.

As in the previous version, this version has a set of menus at the top of the window known as the Ribbon. All the Excel commands are present on the menu. An Excel document is known as a Workbook, and each Workbook is divided into a set of rows and columns. An intersection of this tabular structure is known as a Cell. Data is entered into cells. In fact, all operations performed in the spreadsheet are applied to the cells. MS Excel has a set of tools by which users can format data, perform analysis, and create charts.

Structure

This chapter will cover the following topics:

■Components of the Excel window

■Backstage view

■Saving and sharing files online

■Interacting with Excel

■Working with default settings

■Formatting a table

• Paste Special preview

• Flash fills

■Quick Data analysis

■Data Mining

■TAT saving technique

Objectives

After studying this chapter, the reader should be able to understand the new layout of MS Excel, figure out how to change the default settings, understand the tool in general, and identify the different types of references, as well as the Named Ranges.

Components of the Excel Window

[image: image]

Figure 1.1 Excel Welcome Window

When you open Excel by clicking its shortcut, a unique landing page known as the Welcome page appears. This welcome page offers various sample spreadsheets, such as movie lists, personal budgeting, trend, analysis, and more. Most importantly, it offers the Blank worksheet option, with which users can open a blank spreadsheet and enter the data according to their requirements. The Welcome Window of Excel is shown in Figure 1.1.

This window also has a text field that allows the user to search for online templates. This can be used to synchronize the user’s Excel interface with the online MS office templates library.

When you double-click the Blank window option, a blank spreadsheet opens, as shown in Figure 1.2.

[image: image]

Figure 1.2 Various Components of an Excel 2016 Window

Backstage View

[image: image]

Figure 1.3 Options Available in the Backstage View

From the Backstage view, you can manage your documents and the data related to them. Here, you can create, save, send, and inspect documents for hidden metadata or personal information. The File tab replaces the MS Office button and the File menu used in the earlier releases of MS Office. Figure 1.3 features the various options available in the Backstage view:

Below are the various options available in the Backstage view:

■Quick Access Toolbar: This toolbar is present at the top left corner of the window. It contains commands for saving the current workbook and undoing and redoing actions. This toolbar can be customized by adding buttons for frequently used commands. It is movable and can be moved underneath the Ribbon.

■Ribbon: The Ribbon is organized into various tabs, with each ribbon tab activating a ribbon. Each tab is divided into a set of commands known as groups, which contain commands and options that relate to the group name.

■Gallery: A Gallery may be displayed within a Ribbon, but more often, it is a drop-down group of commands or functions. The Gallery uses icons or other graphics to show the result of commands rather than the commands themselves. Figure 1.4 shows the gallery options.

[image: image]

Figure 1.4 Gallery Options

Saving and Sharing Files Online

Even if you do not have MS Office 365 or any of its versions, you can still access and view the essentials for free online. Refer to Figure 1.5.

[image: image]

Figure 1.5 Share Option in the Backstage View

Interacting with Excel

There are various ways by which any user can interact with the Excel worksheet. These are typing or using the mouse to choose a command, make selections, click buttons, and other do other actions.

■Using the Ribbon: The Ribbon is a main container for menus and tools. When you choose a Ribbon tab, it displays Ribbon groups, which contains tools (buttons and lists). Some of these tools expand to display simple lists and the gallery, as shown in Figure 1.3.

■Using Galleries: The Gallery is an interactive list of options which display the option under the click command. For example, the font gallery shows a list of fonts available. Some galleries use live preview, so that when you move the pointer over the options on a gallery, each option is previewed. For example, if you select text in the worksheet and display the font gallery, moving the pointer over each font in the gallery causes the selected text on the screen to display in that font. Refer to Figure 1.4.

■Using Tools: When you keep your mouse pointer over any tool, a small description about the tool appears, which is called a super tooltip. It provides a small description about the tool so you can understand what exactly the tool can do.

Tip  Press Alt+F4 to see the shortcuts related to the option inside the ribbon.

Working with Default Settings

Excel allows you to customize various aspects, behaviors, and methods by which you can interact with it. You can change the default settings of Excel, including font, number of iterations, file locations, and the file which opens on starting Excel. To select the dialog box of options, you need to click the File Tab button and then select Options, as shown in Figure 1.6:

[image: image]

Figure 1.6 Option Window of MS Excel

The various options are as follows:

■Personalize Options: You can change the workbook settings by using the Personalize Options tool to change the type and size of the font, the number of worksheets in the workbook, and to activate the Developer tab, which is used for Macros.

■Save Option: This option allows you to change the default file location, file format, and Auto Recover settings of the file.

■Customize the Ribbon: In Excel, you can create custom tabs and groups, and rename or change the order of the built-in tabs and groups. In the Customize the Ribbon list, the custom tabs and groups have “custom” after the name, but the word “custom” does not appear in the ribbon.

■Adding a Custom Tab and a Custom Group: Here we have a set of steps by which we can add a custom tab and custom group in the ribbon. Command can be added only in the custom groups.

To add a custom tab, follow these steps:

1. Click the File tab.

2. Click the Options button under Help.

3. Click Customize Ribbon.

4. Click New Tab.

5. To see and save your customizations, click OK. Refer to Figure 1.7.

[image: image]

Figure 1.7 Steps to Customize a Custom Tab and a Custom Group

Formatting of Tables

Excel provides various predefined table styles that we can use to format a table quickly. It is a format which is provided by Excel, so we do not have to change the style of or font used in the table.

You can format the table by using the following steps:

1. Select the range.

2. Select Home on Ribbon.

3. Select the Style Group.

4. Select the Format Table. This option opens the various format styles in the form of a drop-down list. By clicking on any style, you can apply it to your data.

Paste Special Preview

Excel offers you the Paste with Live Preview feature, which enables you to save time when reusing content. This option helps you see the preview of various available paste options, such as keeping source column widths, use of borders, and whether or not to keep source formatting. The live preview enables you to see how your pasted content will look before you paste it into the worksheet. When you move your pointer over Paste Options to preview results, you will see a menu containing items that change contextually to best fit the content you are reusing. ScreenTips provide additional information to help you to make the right decision.

Flash Fill

This is an exciting new feature which promises to save time. Consider an example: if you write first name in Column A and last name in Column B, and want to concatenate both names in column C, Excel uses the Flash Fill feature to auto-fill the entire column, as shown in Figure 1.8 (a). As another example, suppose we have email addresses with full names in Column A. You can start entering the first names in a new column, and Excel will auto-fill the entire column, as shown in Figure 1.8 (b).

[image: image]

Figure 1.8 Flash Fill

Quick Data Analysis

Quick analysis is a new tool added to Excel which enables single click access to data analysis features such as formulas, conditional formatting, spark lines, tables, charts, and Pivot Tables. You just need to select some data and right click and see various Quick Analysis options.

In this example, there is data arranged in department-wise salary, but it needs to be presented in a proper format. You need to do a quick analysis. Refer to Figure 1.9:

[image: image]

Figure 1.9 The Quick Data Analysis Tool

Data Mining

Advanced Excel has several features that can be used for data mining, which is the process of discovering patterns and insights from large datasets. Here are some of the key data mining features in Excel:

■PivotTables: PivotTables allow you to summarize and analyze large datasets quickly and easily. You can use PivotTables to create interactive reports, identify trends, and discover patterns in your data. Figure 1.10 shows the PivotTables icon:

[image: image]

Figure 1.10 PivotTables

■Conditional Formatting: Conditional Formatting allows you to highlight specific data based on certain criteria. This can be useful for identifying outliers, spotting trends, and identifying patterns in your data. Figure 1.11 shows the Conditional Formatting icon:

[image: image]

Figure 1.11 Conditional Formatting

■Data Validation: Data Validation allows you to set rules for data entry in your spreadsheets. This can help ensure data integrity and accuracy, which is important for effective data mining. Figure 1.12 shows the icon for data validation:

[image: image]

Figure 1.12 Data Validation

■What-if Analysis: What-if Analysis allows you to explore different scenarios and their potential outcomes. This can be useful for forecasting, risk analysis, and decision-making. Figure 1.13 shows the icon for What-if Analysis:

[image: image]

Figure 1.13 What-if Analysis

■Solver: Solver is an add-in for Excel that allows you to optimize complex models and solve problems. It can be used for optimization problems, linear programming, and more. Refer to Figure 1.14:

[image: image]

Figure 1.14 Solver

■Power Query: Power Query is a data transformation and cleaning tool that can be used to extract, transform, and load data from multiple sources. It can automate data cleaning tasks and prepare data for analysis. Refer to Figure 1.15:

[image: image]

Figure 1.15 Power Query

■Text-to-Columns: The Text-to-Columns feature allows you to split data in a column into multiple columns based on a delimiter or pattern. This can be useful for cleaning and restructuring your data. Figure 1.16 shows the icon for Text-to-Column.

[image: image]

Figure 1.16 Text-to-Columns

By using these data mining features in Excel, you can quickly and easily discover patterns and insights in your data, which can help you make better decisions and achieve your business goals.

TAT Saving Techniques

Turnaround time (TAT) reduction techniques in Excel can refer to different methods that aim to speed up the process of working with spreadsheets and reduce the time it takes to perform certain tasks. Here are some techniques that can help improve TAT in Excel:

■Use Keyboard Shortcuts: Keyboard shortcuts can significantly improve your speed in Excel. For example, you can press Ctrl+C to copy and Ctrl+V to paste or use the F2 key to edit a cell.

■Use Formulas and Functions: Excel offers a wide range of built-in formulas and functions that can automate many tasks and save time. For example, some commonly used functions include SUM, AVERAGE, COUNT, IF, and VLOOKUP. The Formulas bar can be seen in Figure 1.17:

[image: image]

Figure 1.17 Formulas in Excel

■Use Data Validation: Data validation is a powerful feature in Excel that allows you to control the type of data that can be entered into a cell. This can help prevent errors and save time by reducing the need to correct mistakes. This option can be seen in the following Figure 1.18:

[image: image]

Figure 1.18 Data Validation

■Use Conditional Formatting: Conditional formatting allows you to highlight cells that meet certain criteria, making it easier to analyze data and identify trends. This can help save time by reducing the need to manually search for specific values or patterns. This option can be seen in Figure 1.19:

[image: image]

Figure 1.19 Conditional Formatting

■Use Pivot Tables: Pivot tables are a powerful tool for summarizing and analyzing large datasets. They can help you quickly identify trends and patterns in your data and make it easier to create reports and charts. Refer to Figure 1.20:

[image: image]

Figure 1.20 PivotTable Icon

■Use Excel Templates: Excel templates can save time by providing pre-designed spreadsheets with built-in formulas, formatting, and layouts. This can save time by eliminating the need to create spreadsheets from scratch. Refer to Figure 1.21:

[image: image]

Figure 1.21 Excel Templates

■Use the Autofill Feature: The Autofill feature in Excel can save time by automatically filling in a series of values or formulas in a selected range of cells. To use Autofill, select the cell(s) with the desired value or formula, and then drag the fill handle over the range of cells where you want the values or formulas to appear. Refer to Figure 1.22:

[image: image]

Figure 1.22 Autofill Feature

■Use Excel’s Sorting and Filtering Features: Excel’s sorting and filtering features can save time by quickly organizing and analyzing data. To sort data, select the column you want to sort by and click the Sort A-Z or Sort Z-A button. To filter data, click the Filter button and select the criteria you want to use to filter the data, as shown in Figure 1.23:

[image: image]

Figure 1.23 Sorting and Filtering in Excel

By using these techniques, you can save time and increase your productivity when working with Excel spreadsheets.

Conclusion

In summary, Excel 2021 is a powerful tool that offers an array of features for data management, analysis, and collaboration. With its user-friendly interface, customization options, and data analysis capabilities, Excel 2021 empowers users to work efficiently, gain insights, and make informed decisions. It is a versatile tool that enhances productivity and is essential for individuals and businesses dealing with data.

Exercises

1. What is the purpose of Excel’s conditional formatting feature?

a. To perform complex calculations

b. To analyze data trends

c. To format cells based on specific criteria

d. To import and export data from other software

2. Which function in Excel allows you to find the highest value in a range of cells?

a. MAX

b. SUM

c. AVERAGE

d. COUNT

CHAPTER    2

Cell References and Range

Introduction

In this chapter, we will explore the essential concepts of cell references and ranges in spreadsheet applications, enabling us to effectively manipulate and analyze data. By understanding how cell references and ranges work, we can streamline our tasks, perform calculations, and maintain consistency in our spreadsheet work.

Structure

In this chapter, we will go over the following topics:

■Using different types of references

■Types of cell reference

■Named range

Objectives

After studying this chapter, the reader will understand the meaning and usage of cell references, as well as the usage of range names. The reader will also be able to identify the various types of cell references.

Using Different Types of References

When we copy a reference from one cell to another, it gets updated automatically. For example, we have a reference in cell C1 as A1, and we copy the same to D1. This will automatically update itself to B1. Sometimes, we need to keep a part of the used cell references constant. This can be done by using different types of cell references.

Types of Cell Reference

There are three types of cell references:

■Relative Cell Reference

■Absolute Cell Reference

■Mixed Cell Reference

Refer to Figure 2.1:

[image: image]

Figure 2.1 Types of Cell References

Relative Cell Reference

This is the default cell reference in Excel. In this kind of reference, when you copy and paste a relative cell reference into a cell, the cell is updated automatically according to the change made in the cell from which it has been copied. For example, suppose you want to calculate HRA, which is 50% of the base salary. To do this, you need to type the formula =H2*50% in the first cell of the HRA column, as shown in Figure 2.2:

[image: image]

Figure 2.2 Typing Formula =H2*50% in the First Cell of the HRA Column

To find the HRA for all employees, press the left button of the mouse over the lower right corner of the border of the first cell in the HRA column and drag it down to the last record, as shown in Figure 2.3:

[image: image]

Figure 2.3 Dragging the Formula

Tip! Select the cells to fill and press Ctrl + D to fill the range, or double click on the fill handle.

Absolute Cell References

If you want to freeze a cell reference, but you do not want a cell reference to change when you copy a formula, you have to use absolute cell reference. To make a cell reference absolute, a dollar sign ($) is placed before the column name and with the row number of the reference.

Suppose you want to find 10% of 1000, 2000, 3000, and 4000, as shown in Figure 2.4:

[image: image]

Figure 2.4 Finding 10% of 1000, 2000, 3000, and 4000

If you write the formula as shown in the previous figure, the formula when copied to the right would change itself to C1*B2, D1*C2, and so on. This is not the right calculation, however. We would need to freeze the cell reference A2, such that it remains the same each time we copy the formula. A2 needs to be changed to A2 to achieve the required output, as shown in Figure 2.5:

[image: image]

Figure 2.5 Write A2 as A2

The required result can be seen in Figure 2.6:

[image: image]

Figure 2.6 Result of the Formula Made with Absolute Cell References

Tip! First, select the cells from B2 to F2, then press Ctrl + R. This will copy the formula from B2 in C2, D2, E2, and F2.

Mixed Cell Reference

Sometimes you may want to freeze only the row or column in a cell reference. In Figure 2.7, we need to calculate 10%, 20%, 30%, 40%, and 50% of 1000, 2000, 3000, 4000, and so on.

[image: image]

Figure 2.7 Calculate 10%, 20%, 30%, 40%, and 50% of 1000, 2000, 3000, 4000, and 5000

If you drag the formula toward the right, it changes to C2*B3, D2*C3, and so on. Once dragged down, it would change to B3*A4, B4*A5, and so on. These are not the right formulae, however. Refer to Figure 2.8.

[image: image]

Figure 2.8 Wrong Formulae in the Referenced Cells

If we observe Figure 2.8 closely, we can see that we need to freeze the row number of B2 (as it is common for all the formulae toward the right and down) and the column name for A3 (as it is common for all the formulae toward the right and down). When copied, the resultant formulae would be as shown in Figure 2.9.

[image: image]

Figure 2.9 Resultant Formulae

The answer would be as shown in Figure 2.10. References where either the row or the column number is frozen are called Mixed Cell References.

[image: image]

Figure 2.10 Resultant Values

Tip! Keep the cursor near the cell reference and press F4 to toggle between the different cell references.

Named Range

When you write formulas (also called functions), you need to select a range of cells. It could be time-consuming when the range is large. Excel provides us a way to give a name to the range. For example, we can write Sum (Basic) in place of Sum (H2:H101). To do this, we first need to name the range H2:H10 as Basic. Below are instructions on how to give a name to the range.

Creating a Named Range

To name a range, we may use one of the following procedures:

1. Select the range (for example, H2:H101) and type the name (for example, Sal) in the name box, as shown in Figure 2.11:

[image: image]

Figure 2.11 Creating a named range

2. If you want to name the cells with the value in one of the cells, you may select the range along with the name. Click on Create from Selection in the Formulas tab and select one of the options.

3. Click on OK.

4. You may also want to create a named range by clicking on Define name in the Formulas tab.

5. Write the name for the range in the name box. Then click on the Refers to box and select the range you wish to name.

6. Click on OK.

7. Now you can use the given name instead of the range anywhere in the workbook. Refer to Figure 2.12:

[image: image]

Figure 2.12 Use of Named Range Instead of Cell Reference

Editing Named Ranges

Sometimes, it becomes essential to rename or edit the named range. This can be done by taking the following steps:

1. In the Formulas tab, click on Name Manager.

2. A Name Manager dialog box opens, as shown in Figure 2.13:

[image: image]

Figure 2.13 Name Manager Dialog Box

3. Select the Named Range that you want to edit and click on the Edit button to edit a named range.

4. An Edit Name dialog box appears, as shown in Figure 2.14:

[image: image]

Figure 2.14 Edit Name Dialog Box

5. Type a new name or redefine the range name.

Deleting Named Ranges

To delete a range, do the following steps:

1. Select the range from the Name Manager list.

2. Click Delete.

3. The named range will be deleted.

Tip! Press Ctrl + F3 to open the Name Manager dialog box.

Conclusion

In conclusion, mastering cell references and ranges empowers users to effectively manipulate data and streamline operations in spreadsheet applications, leading to improved efficiency and accuracy in handling large datasets.

Exercises

1. Match the correct Relative, Absolute, and Mixed references in Table 2.1:

TABLE 2.1 Match the right options

	
A$1

	
Relative Reference

	
A1

	
Absolute Reference

	
$A1

	
Mixed Reference

2. In the Excel Training folder, open a file named Advanced Excel Assignment.xlsx. Open “Mixed-Cell sheet” and calculate the percentage sales of each product in different regions in such a way that when you copy the cell formula of east sales and paste in each of the region columns, it automatically calculates sales for the region.

CHAPTER    3

Working with Formulas and Functions

Introduction

In this chapter, we will explore the usage of formulas and functions in Microsoft Excel. Formulas are equations that perform calculations on values, while functions are predefined formulas that simplify complex tasks. We will cover topics such as using formulas in a worksheet, array formulas, using functions, the IF function and its variations, and lookup functions.

Structure

In this chapter, we will go over the following topics:

■Using formulas in a worksheet

■Using functions

■Lookup functions

■Making V-lookup dynamic

■Index

Objectives

After studying this chapter, the reader will understand the use of formulas and functions, will be able to identify the different types of functions, and will know how IF and other logical functions work.

Using Formulas in a Worksheet

Formulas are the equations that perform calculations on values. A formula starts with an equal sign (=). It contains at least two operands and one operation. For example, the following formula multiplies two by three and adds five to the result.

=5+2*3

The operand in a formula can be a function, reference, or constant. Operators may be any arithmetic or logical operator.

Note In Excel, the BODMAS rule is followed to solve a formula when multiple operators are involved. BODMAS stands for Brackets, Order of powers or roots, Division, Multiplication, Addition, and Subtraction. According to this rule, mathematical expressions with multiple operations should be solved from left to right.

Array Formula

In Figure 3.1, there are five products for which we know the quantity and price. We need to find the Total Sales, which is the result of adding together the quantity and price for all products. In a normal scenario, we would individually calculate the amount for each product and add them to get the answer. To make things simpler, we may also use the Array Formula. Select B8, write =sum (A2:A6*B2:B6) and press Ctrl + Shift + Enter to fill the formula {=sum (A1:A3*B1:B3)} in the selected cell, as shown in Figure 3.2. This calculates quantity*price for all the products in cell B8.

Note Curly brackets ({}) around the formula indicate that it is applied to an array.

Figure 3.1 features the quantity and price of five products.

[image: image]

Figure 3.1 Quantity and Price of Five Products

Figure 3.2 features the Quantity*Price for all products:

[image: image]

Figure 3.2 Quantity*Price for All Products

Using Functions

Performing calculations on each value in a range of cells can be complicated and time-consuming. For example, if you have a range consisting of 20 cells, a formula that adds each of these values will be very long. Excel functions simplify complex tasks.

A function is a predefined formula that performs a specific calculation or other action on a number or a text string and returns a value. You may specify the values on which the function performs calculations. The syntax of a function begins with the function name, followed by an opening parenthesis, the arguments for the function separated by commas, and a closing parenthesis.

If the function starts a formula, type an equal sign (=) before the function name. As you create a formula that contains a function, the Formula Palette will assist you, as shown in Figure 3.3.

[image: image]

Figure 3.3 Inserting a Function

Note From an empty cell, you may click on the fx symbol near the formula bar to see all the available functions in Excel.

The syntax of a function is:

=Function name (argument1, argument2, ….)

Example:

=SUM (A10, B5: B10, 50, 37)

There is no need to memorize all the functions available and the arguments necessary for each function. You can use sigma sign (d) for sum or click on the drop-down for more functions, like Max, Min, and so on. Excel prompts you for required and optional arguments.

Note You can use the Alt + = key combination to get the sum function on your worksheet.

IF Function

In Chapter 2, Cell References and Range, we have studied the calculation of income heads such as HRA and DA. The formula we saw was the same for the entire database. According to certain conditions, we need to decide the formula to apply. For example, incentives may be calculated according to the department. This is where conditional functions like “IF” come into the picture.

The IF function can be used for evaluating a condition. Depending on whether the conditions are true or false, the IF function will return the values. The syntax for the IF function is:

If(logical_test, [Value_if_true], [Value_if_false])

The first argument is the condition that you need the function to evaluate. The second argument is the value to be returned if the condition is true, and the third argument is the value to be returned if the condition is false. The second and third parameters are optional.

Example:

Suppose you want to calculate HRA based on the designation of the employees. If the designation is Manager, the HRA is either 1000 or 500. In this case, the function code will be as follows:

=if (C2="Manager", 1000, 500)

Refer to Figure 3.4.

[image: image]

Figure 3.4 IF Function

As shown in Figure 3.4, the above function calculates HRA as 1000 for Managers and 500 for others.

Nested IF

A nested IF function is used when a second IF function is placed inside the first order function in order to test additional conditions.

The syntax for the Nested IF function is:

If (logical_test, [Value_if_true], If (logical_test, [Value_if_true], [Value_if_false]))

Example:

You can use nested IF functions to evaluate complex conditions. For example, if the salary is < 5000, the tax is 5%. If the salary is between 5000 and 1000, then it is 10% or it is 15%. Since we have already given the name sal to the salary column, we can also use sal instead of h2 =if (sal<5000, salary*.05, if (sal<10000, salary*.10, sal*.15)). Refer to Figure 3.5:

[image: image]

Figure 3.5 Using Nested IF Function

Suppose you want to assign letter grades to numbers referenced by the name Average Score, as shown in Table 3.1:

TABLE 3.1: Assigning Letter Grades

	
If Average Score is

	
Return

	
Greater than 89

	
A

	
From 80 to 89

	
B

	
From 70 to 79

	
C

	
From 60 to 69

	
D

	
Less than 60

	
F

You can use the following nested IF function:

IF (AverageScore>89,"A", IF (AverageScore>79,"B", IF (AverageScore>69,"C", IF (AverageScore>59,"D","F"))))

Note You can nest up to sixty-four levels of IF functions in a single formula.

IF With AND

In Excel, OR is a logical function which returns false if any one of the arguments returns false.

Syntax:

AND (logical1, logical2...)

If there is a scenario where we have two conditions whose combined truth value would decide the output of an IF function, we can use AND with IF.

Syntax:

If (and (Condition1, condition2….), True, False)

Example:

If we need to give 10% of a basic salary as incentive to everyone working in the Sales department in the North region, we would use the following formula:

=IF (AND (Department=”sales”, Region=”north”), 10%*Basic Salary, 0)

IF With OR

OR is a logical function in Excel, which returns False if any one of the arguments returns false.

Syntax:

OR (logical1, logical2...)

If there is a scenario where we have two conditions of which any one of the conditions is false, and the IF should return the value in the false argument, we may use OR with IF.

Syntax Using OR With IF

If (OR (Condition1, condition2….), True, False)

Example:

If the employee is in Sales, Mktg or Hrd, then HRA is 50% of the Basic salary. Otherwise, it is 30% of the Basic salary.

If (or (Department=”Mktg”, Department =”Sales”, Department=”Hrd”), Basic salary*.5, Basic salary*.3)

IF With NOT

This is a logical function which is used to negate an argument.

Syntax:

NOT (logical)

If we have a condition which, when not satisfied, requires us to apply a formula, we may use NOT with IF.

Syntax Using NOT With If

If (NOT (Condition), True, False)

Example:

If we need to give an incentive to everyone except people working in the Marketing department, we may use the following formula:

IF (NOT (Department=”MT”), 10%*salary, 0)

Note There can be maximum of 255 conditions which can be passed to the AND/OR function, and we can pass only one condition to NOT.

We may also use multiple NOT statements inside the IF statement.

Example:

If you need to give an incentive to everyone except people from the sales and admin departments, you may use the following function:

If (and (not (department=”Sales”), not (department=”admin”)), 10%* salary, 0)

Lookup Functions

Sometimes we need to search for a value in a database using a lookup value. For example, given the Employee ID, how can we look up the incentive value from some other sheet or some other file? In such scenarios, depending on the source database, we may use one of the following lookup functions:

■VLOOKUP (if the database is vertical). Refer to Figure 3.6:

■HLOOKUP (if the database is horizontal). Refer to Figure 3.7:

[image: image]

Figure 3.6 VLOOKUP

[image: image]

Figure 3.7 HLOOKUP

VLOOKUP

If we need to get the value of a column from some other file or sheet based on a common field, you may use VLOOKUP. VLOOKUP is a function that searches for a value (lookup value) in the leftmost column of a given database (table array) and returns a value in the same row from a column you specify.

Syntax:

VLOOKUP (lookup_value, table_array, col_index_num, range_lookup)

You can write this function by using the built-in-function Arguments dialog-box. Click on the Formulas tab and search in the lookup & reference category for VLOOKUP. You will get a function Arguments dialog box, as shown in Figure 3.8:

[image: image]

Figure 3.8 VLOOKUP Function Argument

The different values to be selected here are as follows:

■Lookup_value: The value to be found in the first column of the table. It is the value that you are looking for. Lookup_value can be a value, a reference, or a text string.

■Table_array: The table of information in which data is looked up. It is the source database. Use a reference to a range or a range name.

■Col_index_num: The column number in table_array from which the matching value must be returned.

■Range_lookup: The logical value that specifies whether you want VLOOKUP to find an exact match or an approximate match. If Range Lookup is set as FALSE or 0, VLOOKUP will find an exact match. If the exact match is not found, the error value #N/A is returned. If it is set to TRUE or non-zero, it finds the nearest value that is less than the lookup value.

HLOOKUP

The HLOOKUP function searches for a value in the top row of a table, and then returns a value in the same column from a row you specify.

Syntax:

HLOOKUP (lookup_value, table_array, row_index_num, range_lookup)

HLOOKUP works the same way as VLOOKUP. In this case, however, we need to specify the row index number, instead of the column index number.

Note You may also get the function argument box by the following type. Type =VLOOKUP (or =HLOOKUP (as the case may be) and press Ctrl + A.

Example of VLOOKUP With Range 0 (False):

Suppose you want to add an incentive in the Salary Sheet according to the incentive table, the range of which is A1:B12 in the Incentive worksheet. Follow these steps:

1. Select the cell where you want the result.

2. Click the Insert function. Select the VLOOKUP() function from the Lookup and Reference category.

3. Lookup Value: Select A2 (The Employee code).

4. Table Array: Select the Incentive Sheet and select the Range from A1:B12 (the Employee code and incentive Column).

5. Column Index: Type 2 (Column 2 is the Incentive column in Incentive table).

6. Range Lookup: Type False. (This means we are searching for the exact match from the table for the lookup value).

To remove the #NA (Not Available) error, you can use the function iferror. The Syntax of iferror is as follows:

= iferror (vlookup….,"")

Example of VLOOKUP with Range Non-Zero (True)

Suppose you want to add an incentive based on salary slab rates. In this case, instead of using the IF condition, you can use VLOOKUP with a True range. In this scenario, we would create a table, such as Table 3.2. In the table array, select this table, and in the field for range lookup, type “True” instead of “False.”

TABLE 3.2 Sample Example Table

	
0

	
2%

	
5000

	
5%

	
10000

	
10%

	
15000

	
15%

Note The table in this case would be sorted in ascending order of first column.

Example:

In the Advanced Excel Assignment file titled “emp_inf sheet”, we need to retrieve employee information based on employee id. To do this, we may use VLOOKUP, as shown in Figure 3.9.

[image: image]

Figure 3.9 Example of VLOOKUP with Range Non-Zero

To find other details, you may use the same formula and change the column index number accordingly.

Making VLOOKUP Dynamic

When we have a dynamic database, with new columns frequently being added to the database, the position of the current columns may also change. The column index number of VLOOKUP does not update automatically with the growing database, however. This is why we would need to make VLOOKUP dynamic: in order to pick up the column index number. To do this, we may use one of the following functions to retrieve the column index number dynamically:

■Column

■Match

Using the Column Function in VLOOKUP

To make VLOOKUP dynamic, we can use the column header as an indicator that will dynamically pick up the index number of the particular column in which the required value exists. The syntax for using the column functions in VLOOKUP is:

= vlookup (lookup_value, table_array, COLUMN (reference), Range_lookup)

The Reference parameter of the column function will contain the cell reference of the column header from the original database.

Example:

In the preceding example of VLOOKUP, if we need to find the column index number dynamically, we may use the column function, as shown in Figure 3.10.

[image: image]

Figure 3.10 Using the Column Function in VLOOKUP

B1 is the reference to the column header of the First Name column in the “Salary” worksheet.

Using the Match Function in VLOOKUP

As we saw in the preceding case, we require access to the original database, or at least an idea as to the current position of the column. This information will not always be there for us, however. In that case, we need to use a function that can retrieve the position of the column header by name.

A Match function does the same action. The match function returns the position of a string in a range.

The syntax of the match function is as follows:

MATCH (lookup_value, lookup_array, [match_type])

The various options to be chosen are:

■Lookup_Value: This is the string that we are looking for. It may be a string (for example, “Salary”) or a cell reference where the string is stored.

■Lookup_Array: This is the range from which we need to know the position of the Lookup_value.

■Match_Type: This is an optional parameter that is used to specify the type of match we require. We use 0 for Exact match, 1 for Less than, and -1 for Greater Than.

Example:

If we need to find out the position of the string “salary” in the first row of the salary sheet, we would write:

=match ("salary", salary! $1:$1, 0)

We may use the match function instead of the column index number to get the column index number dynamically.

The syntax of using the match function in VLOOKUP is:

Example:

=vlookup (lookup_value, table_array, match (label, firstrow of source-database, 0), Range_lookup)

In the emp_inf example, if we need to make the VLOOKUP more dynamic using the column headers, we may use match with VLOOKUP, as shown in Figure 3.11. Here, the match looks for the labels on each field in the header of the salary database and returns the position of the column dynamically.

[image: image]

Figure 3.11 Match Function in Vlookup

Index

Sometimes, we need to lookup data based on its row number and column number. The Index function helps us do this.

INDEX (array, row_number, [column_number])

The syntax of index function is as follows:

As you can see, there are two ways in which you can use the index function. The first syntax is used to look for data in a single database, and the second syntax is used when more than one database is involved.

Example:

Suppose we need to find the data at the intersection of row number 3 and column number 4 of a database. In that case, we may use the following function:

=index (database, 3, 4)

Index-Match

As we studied before, VLOOKUP looks for data on the basis of values in the first column of the database. If we have a database where our lookup value is in the middle and we need to search towards the left, however, we have to move the column to the left-most corner before we use VLOOKUP. The index function, when used along with match, helps us search for the data even if the lookup value is not present in the left-most column.

INDEX (array, [MATCH (lookup_value, lookup_array, [match_type])], [Match (lookup_value, lookup_array, [match_type])])

The syntax for index-match is as follows:

Here, you may use the match function for row number, column number, or both.

Example:

Suppose that from the data given in Figure 3.12, we need to find the total sales, given year and quarter. We may then use the function:

=INDEX (database, MATCH (qtr 3, column header, 0), MATCH (year, years column, 0))

[image: image]

Figure 3.12 Index-match Function

In Figure 3.13, empcode is the third column. If we need to find out the DA or Salary based on the empcode, we normally copy and paste the column towards the left and use VLOOKUP. Instead, we may use index match as given in Figure 3.13:

[image: image]

Figure 3.13 Find the DA or Salary Based on the empcode by Using Index Match

Conclusion

In conclusion, the use of formulas and functions in Microsoft Excel is essential for performing calculations, data analysis, and automating tasks. Formulas allow users to combine values, cell references, and operators to perform mathematical calculations, while functions provide predefined formulas for common tasks. By utilizing formulas and functions effectively, users can save time, minimize errors, and perform complex data analysis in Excel. Understanding and mastering these tools is crucial for anyone working with data and spreadsheets in Excel.

Exercise

1. Make a copy of the Salary worksheet from the advanced Excel assignment workbook. Calculate the following incentive schemes:

a. Incentive 1: Everyone working in the Sales department gets 10% of their salary as an incentive; all others get 0%.

b. Incentive 2: Everyone working in the Sales or Marketing departments gets 5% of their salary as incentive; all others get 2%.

2. Calculate the incentive scheme in Q.1 using VLOOKUP column.

3. Make a column titled “Reporting Manager” after the Salary column and apply the employee code of the managers to the employees, according to their employee numbers as follows, using VLOOKUP.

CHAPTER    4

Data Validation

Introduction

Sometimes we want to prevent the user from entering a non-text value in a cell. In other words, you can say that you want to restrict the user from entering a certain type of value in the cell. Data Validation does this work for you.

Data Validation is a process which prevents the users from entering invalid data for individual cells or for a cell range. With the help of data validation, you can limit data entry to a specific data type, like integer numbers, fractional (decimal) numbers, or text. You can also set a limit on valid entries.

Structure

In this chapter, we will go over the following topics:

■Trace Precedents

■Trace Dependents

■Setting Data Validation Rules

■Methods of Data Validation

Objectives

After studying this chapter, students will be able to describe how to restrict data entry in any cell or in any worksheet, as well as identify various Data Validation techniques.

Trace Precedents

Trace Precedents and Trace Dependents are two features in Excel that allow you to visualize and understand the relationships between cells in a spreadsheet. Here is a brief overview of each:

Trace Precedents allow you to see which cells are referenced by a selected cell. This is useful for understanding how data flows through your spreadsheet and identifying any potential errors or issues. To use Trace Precedents, select the cell you want to trace, and then click the Trace Precedents button in the Formula Auditing section of the ribbon. Excel will draw arrows pointing to the cells that are referenced by the selected cell.

For example, imagine you have a spreadsheet that calculates the total revenue for a company based on the number of units sold and the price per unit. The formula for the total revenue is simply the product of the number of units sold and the price per unit. In this example, cell C2 contains the formula for the total revenue, which is “=A2*B2”. Cell A2 contains the number of units sold, and cell B2 contains the price per unit.

Refer to Figure 4.1:

[image: image]

Figure 4.1 Example of Trace Precedent

To use Trace Precedents to see which cells are referenced by cell C2, follow these steps:

1. Select cell C2, as shown:

[image: image]

Figure 4.2 Apply a Formula for Total Revenue

2. Click on the Trace Precedents button in the Formula Auditing section of the ribbon, as shown:

[image: image]

Figure 4.3 Formulas Tab

Excel will draw arrows pointing to cells A2 and B2, indicating that they are the cells referenced by the formula in cell C2, as shown:

[image: image]

Figure 4.4 Trace Precedent

This shows you that the formula in cell C2 is dependent on the values in cells A2 and B2. If you change the values in either of these cells, the value in cell C2 will change accordingly.

Using Trace Precedents helps you understand how data flows through your spreadsheet and is useful for identifying potential errors or issues in your formulas.

Trace Dependents

Trace Dependents allows you to see which cells depend on a selected cell. This is useful for understanding the impact that changing a particular cell will have on other parts of your spreadsheet. To use Trace Dependents, select the cell you want to trace, and then click the Trace Dependents button in the Formula Auditing section of the ribbon. Excel will draw arrows pointing to the cells that depend on the selected cell.

Both Trace Precedents and Trace Dependents can help you understand the structure of your spreadsheet and troubleshoot any errors or issues that may arise. By using these features, you can more easily navigate and analyze complex spreadsheets, and make more informed decisions based on your data.

How to Use Trace Dependents

In this example, you have a spreadsheet that calculates the monthly payment on a loan based on the principal, interest rate, and term. The formula for the monthly payment is based on the principle, interest rate, and term, which are stored in cells A1, A2, and A3, respectively. Cell A4 contains the formula for the monthly payment, which is calculated using the PMT function.

To use Trace Dependents to see which cells depend on cell A4:

1. Select cell A4.

2. Click on the Trace Dependents button in the Formula Auditing section of the ribbon.

3. Excel will draw arrows pointing to any cells that depend on cell A4.

4. In this example, cells B4, C4, and D4 depend on cell A4, because they contain the breakdown of the monthly payment, including the portion that goes towards principal, interest, and any additional fees or charges.

Refer to Figure 4.5:

[image: image]

Figure 4.5 Trace Dependents

By using Trace Dependents, you can see which cells are affected by changing the value in cell A4. If you were to increase the interest rate or change the loan term, for example, you could use Trace Dependents to see how this would affect the monthly payment and its breakdown.

Using Trace Dependents can help you understand the structure of your spreadsheet and make more informed decisions based on your data.

Setting Data Validation Rules

Follow the steps below to create a set of rules for data validation:

1. Select the cells for which you want to create a validation rule.

2. On the Data tab, in the Data Tools group, click Data Validation to open the Data Validation dialog box (shown in Figure 4.1).

3. Activate the Settings tab.

4. From the Allow list, select a data validation option.

5. From the Data list, select the operator you want.

6. Complete the remaining entries.

7. If required, enter the Input Message in the Input Message tab.

8. If required, enter the error message in the Error Alert tab.

9. Click OK to set the validation rule.

10. Close the dialog box.

Refer to Figure 4.6:

[image: image]

Figure 4.6 Data Validation

Methods of Data Validation

Let us now look at a method of data validation: creating a list.

Creating a List

A list is an effective form of data validation where the user is allowed to select an option from a drop-down list which is built into the cell (Figure 4.7). The data source may be written manually by the user or selected from the same sheet.

The following are the steps to create a list:

1. Select a blank cell.

2. Select Data tab.

3. Select Data Validation from Data Tool group.

4. Select List.

5. In Source, select the cell with values, or type the data with commas.

Refer to Figure 4.7:

[image: image]

Figure 4.7 Creating a List

Note If the source is from a different sheet, create a named range for all the values and use the name in the Source field for Data Validation.

Allow Numbers Within Limits:

1. In the Allow box, click Whole Number or Decimal.

2. In the Data box, select the type of restriction you want. For example, to set upper and lower limits, select Between.

3. Enter the minimum, maximum, or specific value to allow.

Allow Dates or Times Within a Timeframe:

1. In the Allow box, select Date or Time.

2. In the Data box, select the type of restriction you want. For example, to allow dates after a certain day, select Greater Than.

3. Enter the start, end, or specific date or time to allow.

Allow Text of a Specified Length:

1. In the Allow box, click Text Length.

2. In the Data box, click the type of restriction you want. For example, to allow up to a certain number of characters, click less than or equal to.

3. Enter the minimum, maximum, or specific length for the text.

Calculate What is Allowed Based on the Content of Another Cell:

1. In the Allow box, select the type of data you want.

2. In the Data box, select the operator you want.

3. In the box or boxes below the Data box, click the cell that you want to use to specify what is allowed.

For example, to allow entries for an account only if the result will not go over the budget, click Decimal for Allow, select less than or equal to for Data, and in the Maximum box, click the cell that contains the budget amount.

Use a Formula to Calculate What is Allowed:

1. In the Allow box, click Custom.

2. In the Formula box, enter a formula that calculates a logical value (TRUE for valid entries or FALSE for invalid). For example, to give an incentive only if the department is sales and the region is west, you may use the following custom formula: =and(d2=”sales”,e2=”west”).

To display an optional input message when the cell is clicked, click the Input Message tab. Ensure the Show Input Message When Cell is Selected checkbox is selected and fill in the title and text for the message.

Specify How You Want Excel to Respond When Invalid Data is Entered:

1. Click the Error Alert tab, and make sure the Show Error Alert After Invalid Data is Entered checkbox is selected.

2. Select one of the following options for the Style box:

•To display an information message that does not prevent entry of invalid data, select Information.

•To display a warning message that does not prevent entry of invalid data, select Warning.

•To prevent entry of invalid data, select Stop.

3. Fill in the title and text for the message (up to 225 characters).

If you do not enter a title or text, the title defaults to MS Excel and the message defaults to “The value you entered is not valid. A user has restricted values that can be entered into this cell.”

Conclusion

In this chapter, we learned about data validation in Microsoft Excel. Data validation allows us to restrict the type of data that can be entered into cells, ensuring data accuracy and consistency. We explored two methods of data validation: Trace Precedents and Trace Dependents. These features help us understand the relationships between cells and identify potential errors in our formulas.

We also discussed how to set data validation rules using the Data Validation dialog box. This allows us to define specific criteria for the allowed data, such as whole numbers, decimals, dates, times, or text of a specified length. We can even create custom formulas to calculate what data is allowed based on the content of other cells.

Furthermore, we examined the method of creating a list for data validation, which allows users to select an option from a drop-down list. This helps maintain data consistency and simplifies data entry.

Exercises

1. Open the Advance Excel Assignment workbook. In the sheet named Validation, do the following data validations.

	a. No duplicates should be allowed in emp_code.

	b. Only text should be allowed in the emp name.

	c. Age should only include numeric data.

	d. Salary should be between 5000 and 50000.

	e. Joining Date should be less than current Date.

2. In the emp_inf sheet create a drop-down list of all the employee codes in cell B3.

CHAPTER    5

Protection

Introduction

In today’s digital age, it is paramount to protect sensitive information and ensure data integrity. Microsoft Excel provides a range of features to safeguard your worksheets and workbooks, preventing unauthorized changes and maintaining the confidentiality of your data. In this chapter, we will explore various methods of protection in Excel, allowing you to control access and preserve the integrity of your valuable information.

Structure

In this chapter, we will go over the following topics:

■Employee information system

■Protecting a worksheet by using passwords

■Protecting a workbook

■Protecting a part of a worksheet

■Protecting a file with a password

■Case study

Objectives

After studying this chapter, you will understand how to prevent unauthorized changes to your worksheets and how to protect workbooks with passwords.

Employee Information System

In the emp_inf example, as shown in Figure 5.1, if we wish to use the worksheet as a public template, we will need to prevent unauthorized access to the VLOOKUP formulas. We need to restrict data entry to cell B3. To accomplish these goals, we may use Protection.

[image: image]

Figure 5.1 Employee Information System

In Excel, there are three levels of Protection, as shown in Figure 5.2.

[image: image]

Figure 5.2 Levels of Protection

Protecting a Worksheet by Using Passwords

Take the following steps to password protect a worksheet:

1. Activate the Review ribbon tab.

2. In the Changes ribbon group, click Protect Sheet to open the Protect Sheet dialog box.

3. Check the options you want.

4. Type a password.

5. Click OK.

6. The Confirm Password dialog box appears.

7. In the Re-enter Password to Proceed box, type the same password to confirm.

8. Click OK to close the password confirmation box and the dialog box.

Protecting a Workbook

Workbook level protection can be done in two ways, as shown in Figure 5.3.

■Protect the workbook structure, preventing changes like worksheets being moved, deleted, inserted, hidden, unhidden, or renamed.

■Protect the workbook window and ensure that the window is the same size and position each time it is opened.

[image: image]

Figure 5.3 Protect the Workbook

Perform the following steps to protect a workbook:

1. Activate the Review ribbon tab.

2. In the Changes ribbon group, click Protect Workbook.

3. In the Protect Workbook dialog box which appears, select either or both options (Structure or Windows) as required.

4. To prevent others from removing workbook protection, you can set a password.

5. After specifying options in the Protect Workbook dialog box, click OK. Refer to Figure 5.4:

[image: image]

Figure 5.4 Protect Structure and Windows

Protecting a Part of a Worksheet

When you protect an entire worksheet, all the cells in the worksheet are locked by default. This means that users cannot make changes to any cell in the worksheet. To allow the users to make changes to particular cells, you must unlock the cells manually before protecting the worksheet. This will allow the users to change data only in the unlocked cells. You can hide the formula before protecting the sheet, so that it is not visible to the user after sheet-level protection is activated.

To password protect only part of a worksheet, perform the following steps:

1. Select the range of cells that you want users to be able to modify.

2. Right-click and choose Format Cells to open the Format Cells dialog box.

3. Activate the Protection tab.

4. Clear the Locked check box.

5. Click OK.

Follow steps six to ten if you wish to hide your formulae, or proceed to step eleven directly:

6. Select the range of cells with formulae that you want to hide from users.

7. Right-click and choose Format Cells to open the Format Cells dialog box.

8. Activate the Protection tab.

9. Check the hidden check box along with the locked check box.

10. Click OK.

Continue with step eleven to password protect the worksheet:

11. Activate the Review ribbon tab.

12. In the Changes ribbon group, click Protect Sheet to open the Protect Sheet dialog box.

13. Type a password.

14. Click OK.

15. The Confirm Password dialog box will appear.

16. In the Re-enter password to proceed box, type the same password.

17. Click OK to close both the password confirmation box and the dialog box.

Password Protecting a File

You may wish to save your file with a password so that any user will be asked for a password before they can view or modify your file. To do this, follow the steps below:

1. Click on File button.

2. Select Save As.

3. In the Save As dialog box, click on Tools.

4. Then click on General Options, as shown in Figure 5.5.

[image: image]

Figure 5.5 Protecting a File with a Password

5. Set the password to open or modify, as needed.

6. Save the file.

Note To use an Excel sheet as a template, save the file with the .xlt extension.

Conclusion

In conclusion, data protection is essential in Microsoft Excel to ensure the security and integrity of your worksheets and workbooks. By utilizing features such as password protection for worksheets, workbooks, and files, you can restrict unauthorized access and prevent unauthorized changes to your data. Additionally, protecting specific parts of a worksheet allows you to control which cells users can modify and will make it easier to maintain data consistency.

Exercises

Open the practice folder in the file named “Practice Assignment Product-Invoice”. Prepare the invoice template by performing the following steps:

1. In M/s, create a dropdown list of all customer names.

2. The address should be looked up based on the customer name from the “customers” worksheet.

3. The Product column should contain a list of all the products listed in the “product” worksheet.

4. The Rate should be looked up based on the product selected in the adjoining product list.

5. The first “Sr. No” should be entered by the vendor, and the rest should appear only if a product is selected from the product list. See Figure 5.6.

[image: image]

Figure 5.6 Product Invoice

6. The Amount should be calculated as qty*rate.

7. The Gross Amount is the sum of all amounts. The Vat is 14% of the gross amount.

8. The Discount should be calculated as 10% of the Gross Amount, if the Gross Amount is greater than 15000.

9. The Net Amount should be calculated as Gross Amount + Vat-Discount.

10. Save the file as a template.

Note There should be no visible errors in the template.

CHAPTER    6

Sorting a Database

Introduction

Sorting data in a database is the process of arranging items in a specific order based on criteria, such as alphabetical or numerical values. It enables easy organization, comparison, and analysis of data, leading to efficient data management and informed decision-making. This chapter explores different sorting techniques, including simple sort, multilevel sort, and customized sort, providing you with the knowledge to effectively arrange and analyze data in your database.

Structure

In this chapter, we will go over the following topics:

■Definition of sorting

•Simple sort

•Multilevel sort

•Customized sort

Objectives

After studying this chapter, the readers should be able to define sorting and identify various types of sorting techniques.

Definition of Sorting

Sorting is any process of arranging items systematically, i.e., arranging items in a sequence ordered by some criterion. For example, sorting data in either increasing or decreasing order.

Simple Sort

To perform a simple sort on a column, follow the following steps:

1. Select any cell in the column which you want to sort.

2. Activate the Data ribbon tab.

3. In the Sort & Filter group, click the Sort Ascending or Sort Descending button. As shown in Figure 6.1, this will sort the entire database.

[image: image]

Figure 6.1 Simple Sort

Multilevel Sort

Sometimes, you may want to sort your data in multiple columns. For example, you want to sort employee information by region and department. This can be done by multilevel sorting.

To sort a list based on two or more columns:

1. Select any cell in the list.

2. Activate the Data ribbon tab.

3. In the Sort & Filter ribbon group, click Sort to open the Sort dialog box.

4. From the Sort by list, select the column heading of the column by which you want to sort the list, and select a sorting order.

5. All records will be sorted based on the column and the sorting order you selected.

6. From the Then by list, select the next column by which you want to sort.

7. If necessary, add more Then by fields by clicking Add Level.

8. When all Then by fields are complete, click OK, as shown in Figure 6.2.

[image: image]

Figure 6.2 Multilevel Sort

Note Make sure at least one “Then By” field is selected before clicking on OK button.

Customized Sort

In custom sorting, the list will sort the data in the sequence specified by you. If we sort the data by region, it sorts either in ascending or descending order, but imagine we want to sort our data in a customized order.

For example, we want to sort North, South, East, and West. To do so, we would need to perform a custom sort, as described in the following steps:

1. Select any cell in the list.

2. Activate the Data tab.

3. In the Sort & Filter group, click Sort to open the Sort dialog box.

4. From the Sort By list, select the column heading of the column by which you want to sort the list.

5. From Sorting Order, select Custom List.

6. It will open the Custom List dialog box.

7. Type the sequence by which you wish to sort.

8. Click the Add button to add the list in custom sort.

9. Click OK.

Conclusion

In conclusion, sorting data in a database is essential for organizing information and facilitating efficient analysis. By applying various sorting techniques, such as simple sort, multilevel sort, and customized sort, we can arrange data based on specific criteria and improve the usability and functionality of our database. Sorting enables us to navigate and compare data more effectively, leading to better insights and informed decision-making.

Exercises

Refer to Table 6.1 and answer the questions below.

TABLE 6.1 Database Table

[image: image]

1. Sort a sales database in descending order based on sales revenue column.

2. Perform a multilevel sort on a sales database by sorting first by product category in alphabetical order, then by quantity sold in descending order.

3. Customize the sort of a sales database by creating a custom list for product names and sorting based on that list.

4. Sort an inventory database in ascending order based on quantity in stock column.

5. Perform a multilevel sort on an inventory database by sorting first by product category in alphabetical order, then by reorder level in ascending order.

CHAPTER    7

Filtering a Database

Introduction

In this chapter, we will explore the topic of filtering a database in Excel. Filtering allows us to display only the rows of information that meet specific criteria, making it easier to analyze and work with large datasets. We will learn about different types of filters, including the AutoFilter feature, number, text, and date filters, as well as the advanced filtering capabilities of Excel. Additionally, we will discover how to filter for unique records in a list. By the end of this chapter, readers will have a clear understanding of how to effectively use filters in Excel to extract and manipulate data based on specific criteria.

Structure

In this chapter, we will go over the following topics:

■Filters

•AutoFilter

•Number, text, or date filters

•Filtering a list using advanced filter

■Filtering unique records

Objectives

After studying this chapter, the readers will be able to understand the various types of filters and know how to use them in their worksheet.

Filters

At times, you need to display only those rows of information that meet specific criteria. To help you do this, you may use a Filter. Let us discuss more about filters.

AutoFilter

For commonly used criteria, Excel provides the AutoFilter feature. Here is how it works:

1. Select any cell in the list.

2. Activate the Data tab.

3. In the Sort & Filter group, click Filter to display the AutoFilter arrows next to each column heading.

4. From the list, select the column by which you want to filter.

5. Select the criteria.

6. Click OK, as shown in Figure 7.1.

[image: image]

Figure 7.1 Filter

To clear the filter and show the entire list, click on Filter again. You can filter a list based on more complex criteria by using the Advanced Filtering features. For example, you can display the records of all employees whose salary is between 7000 and 12000.

Excel provides two tools for specifying complex filter criteria:

■Number, text, or date filters

■Advanced filter

Number, Text, or Date Filters

Once you add a filter to data, you also get a Number, Text, or Date Filter option in each field, depending on the type of data in that column. These can be used for field specific filtering like “Begins With” and “Contains” for text fields, “Greater Than,”, “Less Than,”, and “Between” for number fields, or “Before,” and “After” for date fields. Every filter field has a Custom Filter option where you may specify formulas or options other than the ones that are already provided. Refer to Figure 7.2.

[image: image]

Figure 7.2 Number Filter

Refer to Figure 7.3:

[image: image]

Figure 7.3 Text Filter

Refer to Figure 7.4:

[image: image]

Figure 7.4 Date Filter

From the dropdown list of the column for which you want to create criteria, choose Text Filters, Date Filters, or Number Filters, then click on Custom to display the Custom AutoFilter dialog box.

1. Enter a comparison criterion below the cell that contains the criteria label. You may use same row for “AND” criteria and different rows for “OR” criteria. For example, the criteria given in Figure 7.5 can be used to display only records of people in north or south regions.

[image: image]

Figure 7.5 Criteria Range

2. Activate the Data tab.

3. In the Sort & Filter group, click Advanced to open the Advanced Filter dialog box (as shown in Figure 7.6).

[image: image]

Figure 7.6 Advanced Filter

4. In the List Range box, select the cell range you want to filter. The cell range must include the associated column headings.

Filtering a List Using Advanced Filter

If you wish to filter your data so that it displays only the records of employees of Sales and Admin departments from the north and south regions, who earn between 7000-12000 or 15000-20000, AutoFilter will not serve the purpose. This is because one number filter cannot be applied over another in AutoFilter. The above query requires us to do the same operation on the Salary field. To solve this query, we may have to use Advanced Filter.

While using Advanced Filter, we need to have a criteria range and a list range. The list range is your database.

1. To create a criteria range, we need to make a copy of the column header of the database.

2. In the Criteria Range box, select the cell range that contains your criteria and then click OK.

Note While designing the criteria range, it is better to copy and paste the column header of the entire database as the heading of the criteria range.

For better visibility, keep the criteria range and list range on different rows. The Advanced Filter command filters your list in place, like AutoFilter, but it does not display drop-down lists for columns. Instead, you have to select the List Range (your data), type criteria in a criteria range on your worksheet, and select the Criteria Range. In the output range, type the cell address where you want to display the output. This is optional.

Filtering Unique Records

Advanced Filter can also be used to filter out unique values in a list at a separate location. Although the remove duplicates functionality of Excel can help with creating a list of unique values in a list, you would need to copy and paste the unique values if you need them in a different location. To avoid this, use the Advanced Filter option as follows:

1. Select the column or click a cell in the range or list you want to filter.

2. On the Data tab, click Filter.

3. Click Advanced Filter.

4. Do one of the following:

•To filter the range or list in place, click Filter the list, in-place.

•To copy the results of the filter to another location, click Copy to another location. Then, in the Copy to box field, enter a cell reference.

•To select a cell, click Collapse Dialog to temporarily hide the dialog box. Select the cell on the worksheet, then press Expand Dialog.

•Select the Unique records only check box.

Note The Advanced filter, copy to option copies to the same worksheet. If you want to copy the filtered data into a different worksheet, select the Advanced Filter command while you are in the worksheet where you want the data to be placed.

Conclusion

Filtering a database in Excel allows us to extract specific information based on criteria we define. In this chapter, we learned about AutoFilter, number, text, and date filters, and advanced filtering. We also explored filtering for unique records. By mastering these techniques, we can efficiently analyze data and make informed decisions. In the next chapter, we will delve into the powerful capabilities of sorting data in Excel.

Exercise

1. Open the sheet named Filter. Use AutoFilter to find the records according to following criteria:

	a. People from North or South

	b. People working in Sales or Admin

	c. People working in Sales or Admin, North or South, whose salary is between 7000 and 12000

	d. People working in Sales or Admin, North or South whose salary is between 7000 and 12000 or between 15000 and 20000

CHAPTER    8

Subtotals and Data Consolidation

Introduction

Sometimes we need to calculate subtotals followed by a grand total at the end of the report. We generally do this by adding a row at the end of each group by using the SUM function. Although this is not an incorrect way to do subtotals, the amount of manual intervention maximizes the possibility of errors.

Excel provides an effective way to do this work with the use of the Subtotal feature. The chapter will wrap up with the consolidation of data.

Structure

In this chapter, we will go over the following topics:

■Subtotals

■Consolidation of data

Objectives

After studying this chapter, the reader will be able to define a subtotal, create single and multi-level summaries of data using Subtotal, and identify various types of functions.

Subtotals

The Subtotal functionality of Excel can help us to calculate subtotal and grand total values in a list automatically.

Depending on the type of reporting needed, we have two kinds of work to perform:

■Single Level Subtotal

■Multi-Level Subtotal

Display Subtotal at a Single Level

Before calculating Subtotal on data, we first need sort the list according to the field on which the subtotal needs to be based. Suppose we want to calculate a regional subtotal in the list where we also need to sort data on the basis of the region column. To find the Subtotal, follow the steps below:

1. Click on the Subtotals command from the Data Tab | Outline Group.

2. A Subtotal dialog box will appear, as shown in Figure 8.1.

[image: image]

Figure 8.1 Subtotal

3. Select the desired column from the At Each Change In list box.

4. Select the function which you want to perform on data from the Use function list box.

5. Select the column on which you want to perform subtotals from the Add Subtotal To: field.

When you click the OK button, Excel inserts a subtotal row for each group of identical items in the selected column. There are a few more options in the Subtotal dialog box, as shown in Figure 8.1. These are explained as follows:

■Choosing a Summary function: The first time you use the Subtotals command for a list, Excel suggests a summary function based on the type of data in the column you select in the Add Subtotal To box. Choose a different calculation, such as Average, by selecting a different summary function in the Use Function box in the Subtotal dialog box.

■Choosing the values to summarize: The first time you use the Subtotals command, the Add Subtotal To box displays the label of the rightmost column. You can leave that label as selected, or you can select the label of any other column in the list. The next time you use the Subtotals command, Excel displays the label of the last column you selected.

■Displaying subtotal rows above the detailed data: If you want your subtotal rows to appear above their associated detailed data and the Grand Total row to appear at the top of the list, clear the Summary below the Data check box.

Displaying Nested Subtotal

Sometimes you need to obtain multiple levels of subtotals from data. For example, you may need to group data on Region and then on Dept. In this case, follow the steps below.

1. First, as discussed earlier, you need to sort the data by Region and then by Dept.

2. Click the Subtotals command from the Data Tab | Outline Group.

3. Select the Region column from At Each Change In list box.

4. Select the function which you want to perform on data from the Use function list box.

5. Select the column on which you want to perform subtotals from the Add Subtotal to field.

6. Click the OK button to perform the first level of subtotals.

7. Select the Subtotal command and select the Dept column from At Each Change In list box.

8. Select the function which you want to perform on data from the Use function list box.

9. Select the column on which you want to perform subtotals from the Add Subtotal to field.

10. Clear the Replace the current subtotal check box before you click on the OK button, as shown in Figure 8.2.

[image: image]

Figure 8.2 Subtotal Dialog Box for Nested Subtotal

Note If you want to copy only the summary details, select the outline where the summary is present. Select the columns required, press Alt (to select only visible cells), then copy and paste it.

Consolidate Data

Consolidating data in Excel allows you to combine data from multiple ranges or worksheets into a single summary report. Below is a step-by-step guide to consolidate data in Excel.

1. Open a new worksheet where you want to consolidate the data, as shown in Figure 8.3.

[image: image]

Figure 8.3 Open a New Worksheet

2. Select the cell where you want to place the consolidated data, as shown in

Figure 8.4.

[image: image]

Figure 8.4 Select Cell

3. Click on the Data tab in the top menu bar, then click on the Consolidate button in the Data Tools group, as shown in Figure 8.5.

[image: image]

Figure 8.5 Consolidate Option

4. In the Consolidate dialog box, choose the function you want to use for the consolidation, such as SUM, AVERAGE, COUNT, and so on, as shown in Figure 8.6.

[image: image]

Figure 8.6 Consolidate Dialog Box

5. Select the range of cells that you want to consolidate by clicking the Collapse Dialog button next to the Reference field, then selecting the cells you want to consolidate. Refer to Figure 8.7.

[image: image]

Figure 8.7 Selecting the Cells to Consolidate

6. If you want to consolidate data from multiple worksheets, click the Add button in the All References field, and then select the additional worksheet and range of cells you want to consolidate. Refer to Figure 8.8.

[image: image]

Figure 8.8 Consolidating Data From Multiple Worksheets

7. Repeat the previous step for any additional worksheets you want to include in the consolidation.

8. Make sure that the Top row and Left column checkboxes are unchecked if you do not want to include these items in your consolidation, as shown in Figure 8.9.

[image: image]

Figure 8.9 Checkboxes for Use of Labels

9. Click OK to consolidate the data, as shown in Figure 8.10.

[image: image]

Figure 8.10 Click OK

After you consolidate the data, the results will be displayed in the cell you selected in the second step. You can also use the Consolidate feature to create pivot tables, which can provide a more detailed summary of your data.

Example of Consolidated Data

Let us say you have three worksheets, each containing sales data for a different region (East, West, and South). Each worksheet has the same format, with columns for Product, Sales Rep, and Sales Amount, as shown in Figure 8.11.

[image: image]

Figure 8.11 Sample Worksheets

To consolidate the data from these worksheets into a single summary report, follow the steps below.

1. Open a new worksheet where you want to consolidate the data, as we did in Figure 8.3.

2. Select the cell where you want to place the consolidated data, for example, cell A1 as shown in Figure 8.12.

[image: image]

Figure 8.12 Select a Cell

3. Click on the Data tab in the top menu bar, and then click on the Consolidate button in the Data Tools group, as was depicted in Figure 8.5.

4. In the Consolidate dialog box, choose the function you want to use for the consolidation (e.g., SUM, AVERAGE, COUNT, and so on), as you did in Figure 8.6.

5. Select the range of cells that you want to consolidate by clicking the Collapse Dialog button next to the Reference field, and then select the cells you want to consolidate on the East worksheet, for example, A1:C10, as shown in Figure 8.13.

[image: image]

Figure 8.13 Selecting the Cells to Consolidate

6. If you want to consolidate data from multiple worksheets, click the Add button in the All References field, then select the additional worksheet and range of cells you want to consolidate (for example, select the range on the West worksheet, then select the range on the South worksheet), as shown in Figure 8.14.

[image: image]

Figure 8.14 Consolidating Data From Multiple Worksheets

7. Make sure that the Top row and Left column checkboxes are unchecked if you do not want to include these items in your consolidation, as was shown in Figure 8.9.

8. Click OK to consolidate the data, as was shown in Figure 8.10.

The final consolidated data can be seen in Figure 8.15.

[image: image]

Figure 8.15 Final Consolidated Data

Conclusion

In conclusion, this chapter introduced the concepts of subtotals and data consolidation in Excel. Subtotals allow for automatic calculation of subtotal and grand total values in a list, making data analysis more efficient. The Subtotal feature can be used to create single-level and multi-level summaries of data based on selected columns and functions.

Data consolidation enables the combination of data from multiple ranges or worksheets into a single summary report. The Consolidate feature provides various consolidation functions and allows for the selection of specific cells or ranges to consolidate. This feature can be especially useful when dealing with data from different sources or worksheets.

By mastering subtotals and data consolidation, users can streamline their data analysis process and generate accurate and comprehensive reports with minimal manual intervention.

Exercises

Task 1: Open a new worksheet for consolidation.

Task 2: Calculate subtotals for each region and display them using the Subtotal feature.

Region: East

	
Product

	
Sales Rep

	
Sales Amount

	
A

	
John

	
$500

	
B

	
Amy

	
$700

	
C

	
John

	
$400

TABLE 8.1 Details for East Region

Region: West

	
Product

	
Sales Rep

	
Sales Amount

	
A

	
Sarah

	
$600

	
B

	
Sarah

	
$900

	
C

	
Jack

	
$350

TABLE 8.2 Details for West Region

Region: South

	
Product

	
Sales Rep

	
Sales Amount

	
A

	
Emma

	
$800

	
B

	
Emma

	
$600

	
C

	
David

	
$450

TABLE 8.3 Details for South Region

Task 3: Consolidate the data from all three regions into a single summary report using the Consolidate feature.

Task 4: Answer the following questions:

a. What is the total sales amount for each region?

b. What is the overall sales amount from all three regions?

CHAPTER    9

Pivot Tables

Introduction

A pivot table is an interactive, worksheet-based table that quickly summarizes large amounts of data using the format and calculation methods you choose. It is called a pivot table because you can rotate its row and column headings around the core data area to give you different views of the source data. As source data changes, you can update a pivot table. It resides on a worksheet, so you can integrate a pivot table into a larger worksheet model using standard formulas. You can use a pivot table to analyze data in an Excel workbook or from an external database such as MS Access or SQL Server.

Structure

In this chapter, we will go over the following topics:

■Examining Pivot Tables

■Recommended Pivot Table

■Creating a Pivot Table

■Percent of Grand Total

■Create a Graph Using Pivot Data

■Slicer

■Timeline

■Power View

■Power Pivot

■Benefits of Data Model

■Creating Pivot Tables Using Power Pivot

Objectives

After studying this chapter, the reader will be able to create pivot tables, make different reports using pivot tables, and use advanced features of pivot tables.

Examining Pivot Tables

The data on which a pivot table is based is called the Source Data. Each column represents a field or category of information, which you can assign to different parts of the pivot table to determine how the data is arranged. You can add four types of fields, which are further explained in Table 9.1.

TABLE 9.1 Types of Field in Pivot Tables

	
Field

	
Description

	
Report Filter

	
Filter summarized data in PivotTable. If you select an item in the report filter, the view of PivotTable varies only to display summarized data related to that item. For example, if the area is a report filter, you can display short data for North, West, or all areas.

	
Row Labels

	
Row shows items in the field as labels. For example, the row label quarters field contains values, which means that the table shows a line for each quarter.

	
Column Labels

	
Column labels are the value of the product field, which means that the table shows a column for each product, in the field that displays the item as a column label.

	
∑ Values

	
Summary data are included. These fields usually contain numeric data, such as sales and inventory. The area where the data appears is called the data area.

Refer to Figure 9.1:

[image: image]

Figure 9.1 Fields of Pivot Tables

Select any cell in a data range that includes a heading for each column in the top row. In the Tables group, click the PivotTable button, or click the PivotTable list and select PivotTable. In the Table/Range box, select the range that contains the data to be used in the pivot table. Select the location for the pivot table. You can place the pivot table in a new or existing worksheet. Click OK to create the pivot table.

You can add fields to a pivot table to specify the data you want to display. The fields of the source data appear in the “PivotTable Field List” task pane. To add fields, drag the relevant field from the top of the PivotTable Field List to one of the four areas at the bottom. You can add more than one field to an area, and you do not need to add all fields to the table.

To display data, use data in Row Labels list and numeric in Values:

1. Activate the Insert tab, to open the Create PivotTable dialog box.

2. Add fields to headings. You need to place at least one field in the S Values area.

After the field is in place, you can filter the information that appears in the table by selecting from the report in the Filter column, the filter rows, or the filter list. For example, you can show all the data values or restrict PivotTable to summarize just a few of them.

Recommended Pivot Table

Check the recommendations for pivot. To see the recommendations, select the database and click the Insert tab. Click on the recommended pivot table options, as shown in Figure 9.2.

[image: image]

Figure 9.2 Recommended Pivot Table

Alternatively, simply select the data to make the pivot table. Click on the button in the lower right corner and select the table option to create the pivot report.

Creating a Pivot Table

To begin our analysis, we will create a pivot table using the provided sales data. Follow the steps mentioned earlier to set up a pivot table with the necessary fields, including REP, CUSTNAME, PRODUCT, DATE, QTY, CP, S.P., and NET. We will use these fields to analyze the sales data from various perspectives.

Follow the steps below.

1. Select the entire range of data, including headers. You can do this by clicking and dragging your cursor across the data or by using keyboard shortcuts (for example, Ctrl+A). Refer to Figure 9.3.

[image: image]

Figure 9.3 Sales Data

2. In Excel, go to the Insert tab on the ribbon menu, and then click on the PivotTable button, as shown in Figure 9.4.

[image: image]

Figure 9.4 Insert PivotTable

3. A Create PivotTable dialog box will appear. Ensure that the range of data you selected is correct, then choose where you want to place the pivot table (for example, a new worksheet or an existing worksheet). Refer to Figure 9.5.

4. Click OK to create the pivot table.

[image: image]

Figure 9.5 Table/Range

5. The pivot table field list will appear on the right side of the screen. This list contains the column headers from your sales data. Refer to Figure 9.6.

[image: image]

Figure 9.6 Customer Quantity

6. Drag and drop the desired fields from the field list into the different areas of the pivot table.

7. Drag the CUSTNAME field to the Rows area to group the data by customer names.

8. Drag the QTY field to the Values area to calculate the total quantity sold.

Refer to Figure 9.7.

[image: image]

Figure 9.7 Value Field Settings

9. You can change the summary function by clicking on the drop-down arrow next to the field name in the “Values” area and selecting a different calculation (for example, average, count). Refer to Figure 9.8.

[image: image]

Figure 9.8 Sum and Average

Percent of Grand Total

To find the percent of grand total, follow these steps:

1. Right-click on any value in the Qty column of the pivot table.

2. Select Value Field Settings or Value Settings from the context menu.

3. In the dialog box that appears, choose the option for % of Grand Total or Percentage of the total (exact wording may vary depending on your spreadsheet software).

4. Click OK to apply the calculation.

5. The pivot table will now display the percentage of the grand total for each customer or grouping in the Qty column.

Refer to Figure 9.9:

[image: image]

Figure 9.9 Percent of Grand Total

Group Items in a Pivot Table

If you want to prepare a report based on the current data for the year or the yearly quarter, then you can use the group option in the pivot table. Follow the steps below.

1. Select any cell in a data range.

2. Activate the Option tab.

3. Click on Group Field.

4. In the By box, click one or more time periods for the groups.

Grouping of Dates

To group dates, follow these steps:

1. Assuming you already have a pivot table created with the Date field in the Rows or Columns area, proceed to the next step.

2. Right-click on any date value in the Date column of the pivot table.

3. In the context menu that appears, select Group or Group Field (the specific wording may vary depending on your spreadsheet software).

4. In the Grouping dialog box, choose the Months option.

5. Click OK to apply the grouping.

6. The pivot table will now display the Date column grouped by month, with each month appearing as a separate item in the pivot table.

Refer to Figure 9.10.

[image: image]

Figure 9.10 Grouping of Dates

Monthly Report

The monthly report can be seen in the following Figure 9.11.

[image: image]

Figure 9.11 Monthly Report

Create a Graph Using Pivot Data

You can use a PivotChart to graphically display data from a PivotTable. A single PivotChart provides different views of the same data. When you create a PivotChart, the row fields of the PivotTable become the categories, and the column fields become the series.

To create a PivotChart, select any cell within a PivotTable, and click Chart in the Tools group on the Options tab. Select Options for the chart as you would for a standard chart, then click OK. You can also create a new PivotChart and PivotTable at the same time by selecting a cell in the source data and selecting PivotChart from the PivotTable list in the Tables group on the Insert tab. Refer to Figure 9.12.

[image: image]

Figure 9.12 Monthly Chart

To group the Date column in your pivot table by both month and year:

1. Right-click on any date value in the Date column of the pivot table and select Group.

2. In the Grouping dialog box, choose the Months option and the Years option. Finally, click OK to apply the grouping.

Refer to Figure 9.13.

[image: image]

Figure 9.13 Grouping by Year and Month

To group the Date column in your pivot table by both year and Qtr, follow these steps:

1. Right-click on any date value in the Date column of the pivot table and select Group.

2. In the Grouping dialog box, choose the Qtr option and the Years option. Finally, click OK to apply the grouping. (Qtr1 refers here to January, February, and March.)

Refer to Figure 9.14.

[image: image]

Figure 9.14 Grouping by Year and Quarter

Weekly Report

If you have grouping on the date field, you can group items by weeks. Click Days in the By box, and make sure that Days is the only time period selected. Then click on seven in the Number of days box.

Refer to Figure 9.15.

[image: image]

Figure 9.15 Grouping by Day

The pivot table will now display the data grouped by days, allowing you to see the weekly report with data summarized on a daily basis, as shown in Figure 9.16.

[image: image]

Figure 9.16 Weekly Report

Grouping of Numbers (Creating Slabs)

For grouping of numbers, follow these steps:

1. Right-click on any value in the Net column of the pivot table.

2. From the context menu, select Group or Group Field option. Refer to Figure 9.17.

[image: image]

Figure 9.17 Grouping by Numbers

3. In the Grouping dialog box, specify the starting value for your grouping slabs. For example, if you want to start with 0, enter 0 in the Starting at field.

4. In the By field, enter the slab size you want to use. In this case, enter 1000.

5. Click OK to apply the grouping.

The pivot table will now display the Net column with values grouped into slabs of 1000. This grouping allows you to analyze the Qty values based on the defined slabs.

Slicer

Slicers are easy-to-use filtering components. They contain a set of buttons that enable you to quickly filter the data in a PivotTable report, without the need to open dropdown lists to find the items that you want to filter. When you use a regular PivotTable report filter to filter multiple items, the filter indicates that multiple items are filtered, but you have to open a dropdown list to find the filtering details. A slicer clearly labels the filter that is applied and provides details so that you can easily understand the data that is displayed in the filtered PivotTable report. Refer to Figure 9.18.

[image: image]

Figure 9.18 Grouping by Day

Follow these steps:

1. Select any cell within your pivot table.

2. Go to the PivotTable Analyze or Analyze tab in the Excel ribbon.

3. Locate the Filter group and click on the Insert Slicer button.

4. In the Insert Slicers dialog box, check the box next to Custname to select it. Refer to Figure 9.19.

[image: image]

Figure 9.19 Slicer

5. Click on the OK button to insert the slicer. Refer to Figure 9.20.

[image: image]

Figure 9.20 Customer Slicer

6. A slicer will be added to your worksheet. You can resize and reposition it as needed.

7. Use the slicer to filter the data in your pivot table by selecting the specific

Custname values you want to include or exclude.

Timeline

Instead of playing around with filters to show dates, you can now use a PivotTable timeline. It is a box you can add to your pivot table that lets you filter by time and zoom in on the period you want. Click Analyze | Insert Timeline to call it up. Refer to Figure 9.21.

[image: image]

Figure 9.21 Timeline

Figure 9.22 shows the date timeline.

[image: image]

Figure 9.22 Date Timeline

Power View

The Power View add-in allows you to define visually attractive summaries of your worksheet with special emphasis on the variables that you require. With a separate tab, you have the option to view data in the way that best suits you. After defining the relevant power fields, Power View extracts the information from the selected worksheet to give you a complete overview with respect to the viewing filters specified.

Moreover, you can choose a new theme, background, transparency, pictures, and other content with the freedom to insert, modify, arrange, and analyze relationships effectively. Follow the steps below.

1. Select the data.

2. Click on Insert tab.

3. Click on Power View option.

4. You can see the images power view look with Field list with data.

Make use of the filter button, which is on the right side of this data. It will allow you to filter the data as desired with the help of all the column fields.

You can make use of the field list to see various calculations such as sum, min, max, average, and more. Moreover, by using a salary parameter, you can check and see the data according to your selected range. This is the overview of the Power View option.

Power Pivot

Power Pivot is an add-in, which we can use to perform powerful data analysis in Excel. The add-in is built into Excel, but it is not enabled. To enable Power Pivot, follow these steps:

1. Go to the File tab.

2. Click on Option | Add-Ins.

3. In the Manage box, click on Com Add-ins.

4. Check the MS Office Power Pivot in COM Add-ins box.

This is a user-friendly way to perform data analysis using familiar Excel features that you already know, such as the Office Fluent user interface, PivotTable and PivotChart views, and slicers. With Power Pivot, we can mash up large volumes of data from various sources, perform information analysis rapidly, and share insights easily.

Benefits of Data Model

In both Excel and PowerPoint, you can create a data model, which is a collection of tables with relationships. The data model, which is seen in a workbook in Excel, is a similar data model that you see in the power pivot window. Any data you import into Excel is available in PowerPoint, and vice versa.

Data Model is a collection of tables and their relationships that reflect real-world relations between business operations and processes; for example, how the product relates to inventory and sales.

Follow the steps below.

1. Convert the data into a table.

2. Import the Excel table into Power Pivot.

	a. The table field list can have more than one table in the pivot table.

	b. We can build the relationships between tables based on one common field so that you do not have to use lookup.

	c. Power view is enabled by Data Model.

Creating a Pivot Table Using Power Pivot

We have four data sets in four different sheets: city, customer, order, and order details. We need to create a city report regarding the total quantity sold. We need to follow these steps:

1. Select the data

	a. Go to the Home tab.

	b. Select the Styles group.

	c. Format as table.

	d. Click on the Design tab.

	e. In the Properties group, give a name to the table.

2. Select the Power Pivot tab.

a. Go to the Tables group.

b. Add to Data Model. The table will be added to the data model.

3. Define the relationship

a. Go to the Home tab in Power Pivot view.

b. Select the Diagram view from the View tab.

c. Drag and drop common fields to create the link between two tables.

4. Select Data view in the View tab.

5. Click on Pivot table on the Home tab.

6. Create the pivot table.

7. Choose the field from the table (Active and all). A black border around the table means it is linked with some other table.

8. Select city name from city detail, and quantity from order details.

Conclusion

In conclusion, the chapter on pivot tables has provided a comprehensive understanding of this powerful tool in Excel, which can be used for data analysis and reporting. Pivot tables allow users to summarize and analyze large amounts of data quickly and efficiently, providing different perspectives and insights into the data.

The chapter covered various topics, including examining pivot tables, recommended pivot table options, formatting pivot table reports, creating graphs using pivot data, utilizing slicers and timelines for filtering data, and exploring advanced features, such as Power View and Power Pivot.

By following the step-by-step instructions and examples provided in the chapter, readers can learn how to create pivot tables, customize them according to their analysis requirements, and utilize advanced features to enhance their data analysis and reporting capabilities.

Overall, pivot tables offer a flexible and dynamic way to explore and present data, enabling users to gain valuable insights and make informed decisions based on the summarized information. By mastering pivot tables, users can efficiently analyze data, uncover trends, and communicate their findings effectively.

Exercises

1. Open the provided Excel spreadsheet containing sales data.

2. Create a pivot table to calculate the total sales revenue for each product category.

3. Format the pivot table to make it visually appealing and easy to read.

4. Create a pivot chart to represent the sales revenue by product category.

5. Create another pivot table to determine the region with the highest sales revenue.

6. Create a pivot chart to visualize the sales revenue by region.

7. Create a pivot table to analyze the monthly sales revenue.

8. Use conditional formatting to highlight any significant changes or trends.

9. Create a pivot table to calculate the average sales revenue per product category.

CHAPTER  10

Conditional Formatting

Introduction

Conditional formatting in Excel allows us to apply formatting rules to cells or ranges based on specific conditions. It helps us highlight important information, visualize data trends, and make our worksheets more visually appealing. In this chapter, we will explore the different types of conditional formatting, such as formatting based on cell values or formulas, working with icon sets, and applying conditional formatting to real-world scenarios using a database case study. By the end of this chapter, you will have a solid understanding of how to use conditional formatting effectively to enhance your data analysis in Excel.

Structure

In this chapter, we will go over the following topics:

■Conditional formatting

•Conditional formatting using cell values (column-based conditional formatting)

•Conditional formatting using formulas (record-based conditional formatting)

■Icon Set

■Formulas with multiple conditions

Objectives

After studying this chapter, the reader will be able to define conditional formatting and identify the ways to apply conditional formatting. They will also learn how to apply formulas with multiple conditions.

Conditional Formatting

When data needs to be formatted based on certain conditions, we may use conditional formatting. It is easy to highlight cells or a range of cells, emphasize unusual values, and visualize data by using data bars, color scales, or icon sets. Conditional Formatting changes the appearance of a cell range, based on a condition (or criterion). If the condition is true, the cell range is formatted based on that condition. If the conditional is false, the cell range is not formatted. Refer to Figure 10.1.

[image: image]

Figure 10.1 Conditional Formatting

You can select any of the following types of formatting, as required:

■Format all cells by using a two-color scale.

■Format all cells by using a three-color scale.

■Format all cells by using data bars.

■Format all cells by using an icon set.

■Format only cells that contain text, number, or date or time values.

■Format only top- or bottom-ranked values.

■Format only values that are above or below average.

■Format only unique or duplicate values.

■Compare table columns to determine which cells to format.

■Use a formula to determine which cells to format.

■Clear conditional formats.

For example, you can highlight in green all sales figures that exceed 75,000. Conditional Formatting can be applied based on a cell value or a formula.

Note The area that you select before applying Conditional Formatting determines the area in the worksheet to which the format will be applied.

Conditional Formatting Using Cell Values (Column-based Conditional Formatting)

To use conditional formatting to apply shading based on cell values, follow the steps below.

1. Select the cells to which you want to apply the Conditional Shading.

2. Activate the Sheet ribbon tab.

3. In the Style group, click Conditional Formatting.

4. From the gallery that appears, select Highlight Cell Rules.

5. From the menu, select a condition for the value in the cell or select More Rules.

6. Specify a condition and cell shading.

7. Click OK to apply the format.

Conditional Formatting Using Formula (Record-based Conditional Formatting)

To apply conditional formatting based on formulas, follow the steps below.

1. Select the cells to which you want to apply the formatting.

2. In the Style ribbon group, click Conditional Formatting.

3. From the menu, select Conditional Formatting Rules Legend to open the Formatting Rules Legend dialog box.

4. Click New Rule to open the Add Formatting Rule dialog box.

5. In the Select a Rule Type box, select Use a formula to determine which cells to format.

6. In the Format Values Where This Formula is True box, enter a formula that evaluates a value to be True or False.

7. Click Format to open the Format Cells dialog box, as shown in Figure 10.2.

8. In the Format Cells dialog box, specify the format in which the cells satisfying the condition should appear, and click OK.

9. Click OK to close the Add Formatting Rule dialog box.

10. Click OK to close the Formatting Rules Legend dialog box and apply the format.

Note If the format needs to be applied to the entire database, select the database with or without the header before applying conditional formatting. The formula should be applied to the first row in the selection, however.

Example:

Figure 10.2 depicts the formula to highlight the records of everyone in the sales department if the selection is made along with the column headers.

If we have selected the database without the header, and want to highlight the records of the person who earns the highest salary, we need to use the following formula:

=$h2=max($H$2:$H$101)

Refer to Figure 10.2.

[image: image]

Figure 10.2 New Formatting Rules

Icon Set

In Excel, you have access to more icon sets, including triangles, stars, and boxes. You can also mix and match icons from different sets and more easily hide icons from view. For example, you might choose to show icons only for high profit values and omit them for middle and lower values.

Formulas with Multiple Conditions

If we want to highlight only the Sales Department from the East region, we can change the formula by following these steps:

1. Select the range without the heading.

2. Click on the Home tab.

3. Select Conditional Formatting.

4. Click on New Rule.

5. Type the formula =AND($D2=”Sales”,$E2=”East”)

6. Choose the desired format.

7. Click OK to apply and close.

Apply a Conditional Formula Based on a Different Sheet’s Cell Reference

Suppose we want to highlight the records by using the cell reference of another sheet. In that case, follow these steps:

1. Select the entire data without the heading.

2. Click on Home Tab | Conditional Formatting | Manage Rule.

3. Click on New Rule.

4. Select the Rule types as Use a formula to determine which cell to format.

5. In the Edit Rule description, type the formula as: =$D2=’cross sheet’!$B$

6. Choose the desired format.

7. Click OK to apply and close the dialog box.

Conclusion

In summary, conditional formatting in Excel is a valuable feature that allows us to apply formatting based on specific conditions. It helps us highlight important data, visualize trends, and enhance the presentation of our worksheets. By mastering conditional formatting techniques, we can make our data more visually appealing and gain valuable insights.

Exercises

Open the worksheet of Invoice from Excel_Basic from the practice folder and get the result according to the following steps:

1. Get the Type of the customer and Rate using VLOOKUP.

2. Create six copies of the Invoice worksheet and solve the other question.

3. Sort the Record: Retailer or Direct Wholesaler.

4. Filter the Records for June based on sales prices between 3000-5000.

5. Filter the Records for retailer and wholesaler qty between 100-150 and 250-500.

6. Subtotal Records according to Type and customer by Total Qty and Total Amt.

7. Create a summary Report by Month and customer that covers Total Qty/Total Amt and % of Amt.

8. Highlight the row for Type of customer with the name Direct.

CHAPTER  11

What-if Analysis

Introduction

In many situations, you may have to use several different sets of values in one or more formulas in order to explore all the various results. In this case, manual interference may increase, leading to errors. The What-if Analysis tools can come to your rescue in such situations. There are three What-if Analysis tools in Excel, namely:

■Goal Seek

■Data Tables

■Scenario Manager

Structure

In this chapter, we will go over the following topics:

■Goal Seek

■Projecting figures using a data table

■One-variable data tables

■Two-variable data tables

■What-if Scenarios

■Creating scenarios

■Merging scenarios from another worksheet

Objectives

After studying this chapter, the reader will be able to understand goal seek, define data tables, and use scenario manager.

Goal Seek

Let us assume you have created a formula to calculate PMT. You want to know the number of months you need in order to complete the installment, provided you pay x amount per month. For this kind of reverse analysis, you may use the Goal Seek utility. This type of analysis involves changing the values in a worksheet and observing how these changes affect the results of the formulas. You use Goal Seek to solve problems that have one variable.

The Goal Seek feature in Excel helps us compute a value for the spreadsheet input that makes the value for the given formula match the goal you specify. Goal Seek saves you from performing time-consuming trial-and-error analysis.

Using the Goal Seek Command

To find a specific value that solves a formula, follow the steps below.

1. Select the cell containing the formula.

2. Activate the Data tab.

3. In the Data Tools group, click What-if Analysis and choose Goal Seek to open the Goal Seek dialog box.

4. In the Set cell box, specify the cell that contains the formula you want to solve.

5. In the To Value field, enter the result you want.

6. In the By Changing Cell field, specify the cell that contains the value you want to adjust.

7. Click OK.

For example, a person takes a loan of 100,000 for 36 months, and the EMI [PMT] is 3250. If he pays $5000 per month, in how many months would he complete his payment?

Refer to Table 11.1.

TABLE 11.1 Data for Problem

	
	
A

	
B

	
1

	
Loan Amount

	
100000

	
2

	
Rate of Interest

	
10.50%

	
3

	
Payment /month

	
36

	
4

	
PMT [EMI]

	
($3,250.24)

	
	
	
PMT(B5/12,B6,B4)

Refer to Figure 11.1.

[image: image]

Figure 11.1 Goal Seek

Projecting Figures Using a Data Table

A data table is a range that displays the results when certain values are changed in one or more formulas. The different values you want to enter in a formula are also included in the Data Table. Either a single variable or two variables can be used in the data table.

One-Variable Data Tables

This method is used to observe the effects of changing a single variable in one or more formulas.

Example:

You can see that when we change the interest rate of monthly payments in the function, PMT (b5/12, 36, 100000) is affected. In this function, A5 is called the input cell, where various input values are substituted from the Data Table. Refer to Figure 11.2.

[image: image]

Figure 11.2 One-Variable Data Tables Example

To create a one-variable Data Table, follow these steps:

1. Enter input values in a row or a column.

2. If you list the input values in a column, enter the formula in the cell located at the intersection of the row above the first input value and the column to the right of the input values, as shown in Figure 11.2. If you list the input values in a row, enter the formula in the cell located at the intersection of the column to the left of the first value and the row, just below the row of input values.

3. Select the range containing the input values and the formula.

4. On the Data tab, in the Data Tools group, click What-if Analysis and choose Data Table to open the Table dialog box.

5. If the input values are in a column, specify the input cell in the Column input cell box. If the input values are in a row, use the Row input cell box.

6. Click OK.

Two-Variable Data Tables

You can use a two-variable Data Table to see the effect of changing two variables in one or more formulas, as shown in Figure 11.3. For example, you can see how changing the Loan Amount and the number of payments affects the monthly payment.

To create a two-variable data table, follow the steps below.

1. Enter a formula that contains two input cells.

2. In the same column, below the formula, enter the first list of input values. In the same row, to the right of the formula, enter the second list of input values.

3. Select the range containing both the input values and the formula.

4. In the Data Tools group, click What-if Analysis and choose Data Table to open the Table dialog box.

5. In the Row input cell box, specify the row input cell.

6. In the Column input cell box, specify the column input cell.

7. Click OK.

What-if Scenarios

Scenarios are part of a suite of commands sometimes called What-if Analysis tools. A scenario is a set of values which Excel saves and can substitute automatically in your worksheet. To forecast the outcome of a worksheet model, you can use scenarios. You can create and save different groups of values on a worksheet and switch to any of these new scenarios to view different results. You can define up to 32 changing cells per scenario.

You can use the Scenario Manager for the tasks listed below.

■Create multiple scenarios with multiple sets of changing cells.

■View the results of each scenario on your worksheet.

■Create a summary report of all input values and results.

■Merge scenarios from a group into a single scenario model.

■Protect scenarios from modification and hide scenarios.

■Keep track of modifications with an automatic scenario history.

Creating Scenarios

Let us assume that you have to analyze the net income of a business side-by-side under best, worst, and current circumstances in the following illustration. You may use scenario manager to achieve the required result in a summary format.

You can use the Scenario Manager Dialog box to create scenarios. Follow the steps below.

1. Activate the Data tab.

2. From the What-if Analysis list in the Data Tools group, select Scenario Manager to open the Scenario Manager Dialog box.

3. Click the Add button to open the Add Scenario dialog box.

4. In the Scenario name box, specify the name of the scenario.

5. In the Changing cells box, specify the cells that contain the values you want to change. (for example, select the range of current scenario range).

6. Click OK to open the Scenario Values dialog box.

7. In the Scenario Values dialog box, specify values for the changing cells.

8. Click OK to create the scenario.

If you want to create additional scenarios, click Add again, and then repeat the procedure. When you finish creating scenarios, click OK.

Example:

In the following example, if we need to know the PMT for a range of loan amounts, rates of interest, and number of payments, we may use scenarios, as shown in Figure 11.3.

In First Change, the loan amount is 1,50,000, the rate of interest is 10.6%, and the number of terms is 24. In Second Change, the loan amount is 2,00,000, the rate of interest is 11%, and number of payments is 48.

Refer to the following Figure 11.3.

[image: image]

Figure 11.3 Scenario Manager

Create a Scenario Summary Report

To create a scenario summary report, follow these steps:

1. Click on the Summary Scenario Manager dialog box.

2. In the Result cells box, enter the references for the cells that refer to cells whose values are changed by the scenarios (Net Income in the above example). Separate the multiple references with commas, as shown in Figure 11.4.

Delete a Scenario

To delete a scenario, follow these steps:

1. Activate the Data tab.

2. From the What-if Analysis list in the Data Tools group, select Scenario Manager to open the Scenario Manager dialog box.

3. Click the name of the scenario you want to delete.

4. Click Delete.

Refer to Figure 11.4.

[image: image]

Figure 11.4 Scenario Summary

Display a Scenario

When you display a scenario, you change the values of the cells saved as part of that scenario. Follow the steps below to display a scenario.

1. Activate the Data tab.

2. From the What-if Analysis list in the Data Tools group, select Scenario Manager to open the Scenario Manager dialog box.

3. Click the name of the scenario you want to display.

4. Click Show.

Note Double-clicking the name of the scenario displayed in the Scenarios box is the same as selecting the name and choosing Show values.

Merge Scenarios from Another Worksheet

It is easy to merge scenarios when all What-if models on the worksheets are identical. All changing cells on the source worksheet must refer to the corresponding changing cells on the active worksheet. Excel copies all scenarios on the source sheet to the active worksheet. To merge scenarios from another worksheet, follow these steps:

1. Open all the workbooks that contain the scenarios you want to merge.

2. Switch to the worksheet where you want to merge the scenarios.

3. Activate the Data tab.

4. From the What-if Analysis list in the Data Tools group, select Scenario Manager to open the Scenario Manager dialog box.

5. Click Merge.

6. In the Book box, click a workbook name.

7. In the Sheet box, click the name of a worksheet that contains the scenarios you want to merge.

8. Click OK.

9. Repeat this process if you want to merge scenarios from more worksheets.

Protecting Scenarios

The Add Scenario and Edit Scenario dialog boxes contain two protection options:

■Prevent Changes

■Hide

If you select Prevent Changes and then activate sheet protection, the scenarios you define cannot be edited. This does not prevent you from seeing the values of the changing cells directly on the sheet (unless the cells themselves are locked). Rather, the scenarios themselves are protected from modification when the Prevent Changes checkbox is selected.

In addition, selecting the Hide checkbox removes a scenario name from the list of defined scenarios, preventing its display. Once you select protection options in the Add Scenario or Edit Scenario dialog box, you must activate sheet protection. To do this, use the protection command on the Tools menu, and then choose Protect Sheet.

Note When sheet protection is activated, you can still add scenarios. You cannot edit or delete them unless the Prevent Changes checkbox is cleared.

Conclusion

In conclusion, the What-if Analysis tools in Excel, including Goal Seek, Data Tables, and Scenario Manager, provide valuable insights and support you in making informed decisions. The tools let you explore different scenarios and analyze the impact of variables on formulas. These tools are essential for financial planning, budgeting, and forecasting, allowing users to save time, reduce errors, and gain valuable insights for better decision-making.

Exercises

You work for a financial planning company and are analyzing the impact of different loan options on monthly payments. You have the following information:

Loan Amount: $100,000

Interest Rate: 5.5%

Loan Term: 20 years

Using What-if Analysis, perform the following tasks:

Task 1: Goal Seek

Calculate the monthly payment (EMI) for the given loan amount, interest rate, and loan term.

Use Goal Seek to find the number of months required to pay off the loan if the monthly payment is increased to $800.

Task 2: Data Table

Create a one-variable data table to analyze the impact of changing interest rates (4%, 5%, and 6%) on the monthly payment for the given loan amount and term.

Create a two-variable data table to analyze the impact of changing both the loan amount ($80,000, $100,000, and $120,000) and the loan term (15 years, 20 years, and 25 years) on the monthly payment.

Task 3: Scenario Manager

Create a scenario named “Best Case” with a loan amount of $80,000, an interest rate of 4%, and a loan term of 15 years.

Create a scenario named “Worst Case” with a loan amount of $120,000, an interest rate of 6%, and a loan term of 25 years.

Generate a scenario summary report showing the monthly payment for each scenario.

CHAPTER  12

Working with Multiple Worksheets, Workbooks, and Applications

Introduction

Working with multiple worksheets, workbooks, and applications is essential for managing and analyzing data effectively. This chapter explores various techniques to establish links between different worksheets, create links between different software, utilize auditing features to trace errors, collaborate in a workgroup, and create hyperlinks for seamless navigation. By mastering these skills, you will be able to enhance your productivity and efficiency in handling complex data scenarios.

Structure

In this chapter, we will go over the following topics:

■Links between different worksheets

■Creating links between different software

■Auditing features

■Workgroup collaboration

■Creating hyperlinks

Objectives

After studying this chapter, the reader will be able to identify the various ways to work with multiple worksheets and identify the various ways to work with multiple workbooks and applications.

Links Between Different Worksheets

If there is monthly data in different worksheets and we need to have yearly data on a different worksheet, as shown in Figure 12.1, we may use intersheet reference.

[image: image]

Figure 12.1 Monthly Data

To use a cell reference from a different sheet, you can use the following syntax:

Sheetname!Reference

Figure 12.2 shows an example of finding the sum of cells from a different worksheet:

[image: image]

Figure 12.2 Finding the Sum

If the product names are not the same, or are not in the same order, in all the other sheets, this method will not prove useful. In these scenarios, you may use the consolidation feature of Excel, as shown in Figure 12.3.

[image: image]

Figure 12.3 Consolidation Feature

To consolidate data from different worksheets, follow the steps below.

1. Go to the Data Tab.

2. Select Consolidate. The Consolidate dialog box will open, as shown in Figure 12.4.

[image: image]

Figure 12.4 The Consolidate Dialog Box

3. Select the function you want to apply on the data from the Function dropdown box.

4. Click on Browse and select the first group of data.

5. Click on Add.

6. Repeat the second and third steps for all the data.

7. Click on Top Row and Left Column checkboxes if you want the row and column Title to be picked up.

8. Select Create links to source data, if you wish to have the updated data for every change in the source data.

Refer to Figure 12.5.

[image: image]

Figure 12.5 Resultant Data

Creating Links Between Different Software

Let us assume that we have to copy specific data from an Excel sheet to a Word document. If you do a normal copy and paste, the contents pasted in the Word document are static; they will not be updated even if there is a change of data in the Excel worksheet. Now let us see how to create a link so that the data is updated even in the Word document. Follow these steps:

1. Copy the contents from the Excel worksheet.

2. While pasting in the Word document, click on the Home tab from the clipboard group.

3. Select Edit-Paste special.

4. In the Paste Special dialog box, select the option Paste Link and then select MS Office Word Object Document.

5. Click on OK.

6. Now whenever the data in the Excel worksheet is changed, the change will be automatically reflected in the Word document.

Auditing Features

You can use the auditing features in Excel to trace errors in a worksheet. You can also trace the relationships between cells and formulas on your worksheets. You might want to identify the cells on which the value of a formula is based. Excel provides the Trace Precedents and Trace Dependents commands to point out such cells.

Dependent and Precedent Cells

A precedent cell provides data to a specific cell. A dependent cell relies on the value of another cell. When you click the Trace Precedents and Trace Dependents buttons in the Formula Auditing ribbon group on the Formulas ribbon tab, Excel draws arrows showing precedent and dependent cells.

Workgroup Collaboration

Sharing a workbook makes it possible for several members of a workgroup to collaborate on the same set of data. For example, several sales managers could enter their respective regional sales figures in the same workbook, making it unnecessary to collect and consolidate the data manually.

Sharing Workbooks

To share a workbook, follow the steps below.

1. Open the workbook that you want to share.

2. Activate the Review ribbon tab.

3. In the Changes ribbon group, click Share Workbook to open the Share Workbook dialog box.

4. Activate the Editing tab.

5. Check Allow changes by more than one user at the same time, and then click OK.

6. Save the workbook in a location where other users can access it.

You can control how a workbook is shared by using the Advanced tab of the Share Workbook dialog box. For example, under Update changes, you can choose to see other users’ changes each time you save the workbook. You can also set the interval at which changes will be shown automatically.

Merging Workbooks

You may need to share a workbook among users who cannot access the same file simultaneously. In such a situation, you can distribute copies of the shared workbook, allow users to make changes to their copies, and then merge those copies into a single workbook. To share a workbook that you intend to merge later, follow these steps:

1. Open the Share Workbook dialog box, activate the Editing tab, and check Allow changes by more than one user at the same time.

2. On the Advanced tab, under Track changes, select Keep change history for. In the box, enter the number of days you want to allow users to make changes in the workbook.

3. Click OK.

4. Make copies of the workbook and distribute one to each user.

After the users have made changes to their copies of the workbook, you can merge the copies into a single workbook, using the following steps:

1. Choose File, Excel Options to open the Excel Options dialog box.

2. Select Customization and add Compare and Merge Workbooks to the Quick Access Toolbar.

3. On the Quick Access Toolbar, choose Compare and Merge Workbooks to open the Select Files to Merge into Current Workbook dialog box.

4. Select the copies of the workbook that contain changes you want to merge.

5. Click OK.

Tracking Changes

You can analyze changes which users have made to a workbook by using the Track Changes feature. This will tell you who made the changes, when they were made, and the original and changed values without having to manually compare the two workbooks. If your workbook is not shared, Excel makes the workbook shared automatically when you turn on the Track Changes feature. To highlight changes, follow these steps:

1. Activate the Review ribbon tab.

2. In the Changes ribbon group, click Track Changes and choose Highlight Changes to open the Highlight Changes dialog box.

3. If the workbook is not shared, check Track changes while editing. If the workbook is shared, this option will be checked by default.

4. Specify how you want the changes to be tracked:

a. If you want to view changes based on when they were made (for example, after a specific date), check When, then select the necessary setting from the list.

b. If you want to view the changes made by a specific user, check Who, then select Everyone or Everyone but Me from the list.

c. If you want to view the changes made to a specific range of cells, check. Where, then enter the range.

5. Click OK.

To review workbook changes and accept or reject them, follow these steps:

1. Open the workbook that contains the tracked changes.

2. Activate the Review ribbon tab.

3. In the Changes ribbon group, click Track Changes and choose Accept or Reject Changes.

4. You will be prompted to save the workbook. Click OK to save the workbook.

5. The Select Changes to Accept or Reject dialog box appears.

6. If you want to view changes based on when they were made, check When and select a time period.

7. Click OK to open the Accept or Reject Changes dialog box.

8. A cell that contains a changed value will be highlighted. This dialog box displays information about each change, including the name of the person who made the change, the date and time it was made, and other changes that will occur if you accept or reject the suggested change. You can scroll down to view the rest of the contents.

9. Click Accept to accept the change or click Reject to restore the original value.

10. The next cell with a changed value will be highlighted.

Creating Hyperlinks

To create hyperlinks within the same workbook, follow these steps:

1. To link a particular cell, first name the cell.

2. Select the cell, and click the Formula Tab.

3. Select Define Name.

4. The define name dialogue box will appear.

5. In the Define dialogue box, type a name for the cell and click on Add.

6. Click on Close.

7. Now click on the cell where the hyper link is to be created.

8. Click on Insert Hyperlink or press Ctrl+K.

9. The Insert Hyperlink box will appear.

10. Click on the Place in this document option.

11. Click on the Defined name option. The defined names for the workbook will appear.

12. Select the defined name, which we created in the previous step.

13. Click on OK.

14. The link will be created.

Creating Links to a Different File

To create links to a different file, follow these steps:

1. To link a particular cell, first define a name for the cell.

2. Select the cell, then click on the Formula Tab.

3. Select Define Name. The define name dialogue box will appear.

4. In the Define dialogue box, type a name for the cell.

5. Click on Add, then on Close.

6. Now click on the cell where the hyperlink is to be created, and click on Insert Hyperlink or press Ctrl+K.

7. The Insert Hyperlink box will appear.

8. Click on Existing file or webpage option.

9. Browse to the folder where you have saved the file you want to link to.

10. Click on the file in the list that appears.

11. The path of the file will appear in the address box under it.

12. Click OK.

You may use this method to link to a webpage, as well. To do this, type the URL of the webpage into the address box. To link to a particular cell in an Excel workbook, do all the steps up to step six in the above process. Add the sheet name and cell reference at the end of the file path in the address box in this format:

File Path#sheetname!Named Range

For example, use c:\test.xlsx#salary!A1 to refer to cell A1 of Salary sheet in the file test.xlsx located in the c drive.

You may also create a new document while creating a hyperlink, or hyperlink to an email address using the options in the hyperlink dialog box.

Conclusion

Working with multiple worksheets, workbooks, and applications requires a solid understanding of the available features and techniques. This chapter has provided you with valuable insights into establishing links between worksheets, creating links between different software, utilizing auditing features, collaborating in a workgroup, and creating hyperlinks. By applying these concepts in your day-to- day work, you can streamline your data management processes and improve collaboration with others. With practice, you will become proficient in working with multiple data sources and maximize the potential of your worksheets, workbooks, and applications.

Exercises

1. Open an Excel workbook and create three worksheets named “Sales,” “Expenses,” and “Summary.”

2. In the Sales worksheet, enter monthly sales data for different products.

3. In the Expenses worksheet, enter monthly expense data for various categories.

4. Use intersheet referencing to calculate the total sales and total expenses in the Summary worksheet.

5. Consolidate the data from the Sales and Expenses worksheets into a separate worksheet using the consolidation feature.

6. Create a link between an Excel worksheet and a Word document. Copy the consolidated data from the Excel worksheet and paste it into the Word document as a linked object.

7. Use the auditing features offered by Excel to trace precedents and dependents for a specific formula in one of the worksheets.

8. Share the workbook with a colleague and allow simultaneous editing.

9. Merge changes from multiple copies of the workbook back into a single workbook.

10. Track changes made by different users in the workbook and review and accept or reject the changes.

CHAPTER  13

Working with Charts

Introduction

In this chapter, we will explore the topic of working with charts in Excel. Charts are a powerful tool for visualizing data and presenting it in a meaningful way. By creating charts, you can quickly analyze trends, compare data, and communicate information effectively. This chapter will guide you through the process of creating charts using chart tools, understanding different chart designs, formatting charts, and utilizing recommendations provided by Excel. We will also introduce sparklines, which are compact charts that can be embedded within cells to provide a snapshot of data trends.

Structure

In this chapter, we will go over the following topics:

■Creating charts using chart tools

■Chart designs

■Formatting charts

■Recommendations

■Sparklines

Objectives

After studying this chapter, the reader will be able to create a chart using chart tools, identify different types of charts, and format charts.

Creating Charts Using Chart Tools

Charts may be used to present data more effectively. For example, it takes time to analyze trends in data, but if it is graphically represented, it will be easier to understand. There are many types of charts, such as column, line, pie, bar, area, and scatter. To create a chart, follow the steps below:

1. Select the data.

2. Go to the Insert tab.

3. From the Charts group, select the chart that you want to create, as shown in Figure 13.1.

4. We can select any type of Column chart or click on All Chart Types | Insert Chart. The dialog box will appear.

5. Select the desired chart.

6. Click OK.

7. The chart will be created in the same worksheet. Excel will recommend charts in the dialog box.

Refer to Figure 13.1.

[image: image]

Figure 13.1 Charts

Chart Designs

Excel provides different chart designs with every chart type, which we can select from the Design Tab. An example of the Design Gallery can be seen in Figure 13.2.

[image: image]

Figure 13.2 Chart Designs

Adding Titles and Values in Charts Using Chart Tools

Excel provides some built-in layouts. These can be selected from the Design tab in Chart Tools. The user can also create some custom layouts, and set the Axis Title, Chart Title, Legend, Data Label, and Data Table positions according to their needs.

To do this, follow the steps below.

1. Use the Design Tab. Click on the Add Chart Element option in the Charts Layout Group.

2. Add a Chart Element.

3. Under the Add Chart Element option, there are many options given to the user for formatting the chart, such as adding a secondary axis, adding a name to the axis or to charts, adding a data label, and so on.

Refer to Figure 13.3.

[image: image]

Figure 13.3 Associated Options of a Chart

Formatting Charts

Excel provides a way to change the default color of the various parts of the default design templates.

To do so, use the contextual tab Format under the Chart Tools tab group. It will provide various options to change the outline color, shape alignment, and positioning of the chart.

Charts for Data

According to your needs, you may select different types of charts to represent the data.

Table 13.1 shows various types of data and the charts that can be used to represent them effectively:

TABLE 13.1 Types of Chart

	
Type of Chart

	
Data Represented

	
Column Chart

	
Represents change in data over a period of time.

	
Bar Chart

	
Represents Numerical Comparisons.

	
Line Chart

	
Represents evenly spaced values.

	
Scatter Chart

	
Displays and compares numeric values, like statistical, scientific, and engineering data.

	
Pie Chart

	
Represents associations of different values in a given value.

	
Doughnut Chart

	
Represents the relationship of parts to a whole.

	
Bubble Chart

	
Represents financial data.

	
Area Chart

	
Represents optimum combinations between two sets of data.

	
Radar Chart

	
Used when you want to look at several different factors related to one item.

Chart Templates

Sometimes, after creating a chart, we decide to use the same design in the future, as well. This may be difficult to do manually every time. Excel provides a way in which you can save your charts as templates. Perform the following steps to save a chart as a template:

1. After creating the chart, right click on Charts and select the Save as Templates option.

2. The Save as dialog box will appear. Save your chart.

In the future, if you wish to use this template, perform the following steps:

1. Right-click on the newly created chart.

2. A context menu appears. Click on Change Chart Type.

3. In the Insert Chart dialog box, click on Templates. Here, you can see all your saved templates here.

4. Select the required template you want to apply to the current chart.

Chart Filter Option

Another impressive feature is the chart filters option, which lays out all variables (series) and categories for an interactive view when you insert the chart. It can be difficult to filter the chart information. If you want to see only the information you require, make use of the Chart Filter button.

Waterfall Chart

To create a Waterfall Chart in Excel, you can follow these steps:

1. Select the table that includes the category and value data.

2. Go to the Insert tab in the Excel ribbon.

3. In the Charts section, click on the Waterfall chart type.

4. Select the desired Waterfall Chart subtype (for example, “Waterfall” or “Stacked Waterfall”).

5. Excel will generate the Waterfall Chart based on the selected data provided in Figure 13.4.

[image: image]

Figure 13.4 Data Provided for Chart

The Chart can be seen in Figure 13.5.

[image: image]

Figure 13.5 Waterfall Graph

The resulting Waterfall Chart will display each category as a bar, with positive values represented by bars rising above the starting point and negative values shown as bars going below the starting point. The cumulative total is represented by the length and position of each bar.

Recommendations

The Insert tab is rich with new features, from recommended pivot tables to recommended charts. Excel provides recommendations for achieving the most in the least amount of time. For the best results, use the recommendations offered by Excel.

To use the recommendation, perform the following steps:

1. Select the data to create a chart.

2. Click on the Insert tab.

3. Select Recommended chart options. You will get a view offering various chart types.

4. Select any of the options.

Sparklines

Sparklines are tiny charts that fit in a cell. Sparklines helps users to view summary trends alongside data. It takes up a small amount of space. It is especially useful for dashboards or other places where you need to show a snapshot of your business in an easy-to understand visual format without adding much detail. For example, Figure 13.6 and Figure 13.7 show how a Sparkline lets you see at a glance how each department performed in May.

[image: image]

Figure 13.6 Sparklines Example 1

Refer to Figure 13.7.

[image: image]

Figure 13.7 Sparklines Example 2

Create a Sparkline

To create Sparklines, follow the steps below.

1. Select an empty cell or a group of empty cells in which you want to insert one or more sparklines.

2. On the Insert tab, in the Sparklines group, click the type of Sparkline that you want to create: Line, Column, or Win/Loss.

3. In the Data box, type the range of the cells that contain the data on which you want to base the earlier scenario.

4. After selecting one or more sparklines, the Sparkline Tools appear and display the Design tab.

5. On the Design tab, you can select one or more of several commands from among the Sparkline, Type, Show/Hide, and Style groups.

6. Use these commands to create a new Sparkline, change its type, format it, show or hide data points on a line Sparkline, or format the vertical axis in a Sparkline group.

Customize Sparklines

After you create sparklines, Excel provides you with options to customize sparklines, such as adjusting the high, low, first, last, or any negative values. You can also change the type of the sparkline into other types, such as Line, Column, or Win/Loss. You can also style from a gallery or set individual formatting options, set options on the vertical axis, and control how empty or zero values are displayed.

Change the Style of Sparklines

Use the Style gallery on the Design tab, which becomes available when you select a cell that contains data. Perform the following steps to change the style of Sparklines:

1. Select a single sparkline or a sparkline group.

2. To apply a predefined style, on the Design tab.

3. In the Style group, click a style, or click the arrow at the lower right corner of the box to see additional styles.

4. Choose a specific formatting for a sparkline.

Conclusion

Charts are an essential tool in Excel for presenting data in a visual and easily understandable format. By mastering the techniques discussed in this chapter, you will be able to create, customize, and format charts effectively. Whether you need to analyze trends, compare data, or communicate information to others, charts can greatly enhance the clarity and impact of your data presentations.

Exercises

1. Select a set of data from your own spreadsheet or create a sample dataset.

2. Create a column chart using the selected data.

3. Customize the chart by adding titles, legends, and data labels.

4. Apply different chart designs to the created chart and observe the changes.

5. Format the chart by changing colors, outlines, and other formatting options.

6. Save the chart as a template for future use.

7. Use the recommendation feature in Excel to explore different chart options for your dataset.

8. Create a sparkline in a cell to represent a trend within a subset of your data.

9. Customize the sparkline by changing its type, style, and formatting options.

10. Share your chart and sparkline with others to showcase your data analysis and visualization skills.

CHAPTER  14

Creating and Recording Macros in VBA

Introduction

In this chapter, we will explore the world of VBA macros and their role in automating repetitive tasks in Microsoft Excel. VBA, which stands for Visual Basic for Applications, is a powerful programming language embedded within Excel. Macros, which are sequences of commands, allow us to automate actions and streamline our workflows. Whether you are new to VBA or have some experience, this chapter provides a comprehensive guide to creating and recording macros. You will learn the fundamentals of VBA, the benefits of macros, and how to create macros through writing code or recording actions. Get ready to boost your productivity and efficiency in Excel with the power of VBA macros.

Structure

In this chapter, we will go over the following topics:

■Introduction to VBA

■Introduction to Macros

■Creating a Macro

■Recording a Macro

■Defining a Macro

■Stop Recording

■Relative Reference Macro

■Running Your Macro

■Running the Macro by Name

Objectives

This chapter will introduce VBA and macros, explain the process of creating and recording macros, define macros and their properties, demonstrate how to run macros, and provide practical examples for creating macros to automate tasks in Excel.

Introduction to VBA

VBA stands for Visual Basic for Applications. It is a programming language that is included with all the Microsoft Office applications, such as Excel, Word, PowerPoint, and so on. It is also the language that Excel macros are written in. VBA is a subset of Microsoft Visual Basic.

Uses of VBA

Some of the uses of VBA are as follows:

■To drive an entire application.

■To combine multiple actions in one action, that is, a macro.

■To write your own functions.

Introduction to Macros

A macro is a series of commands written in logical order, meant to automate any repeated task. It is stored in the Microsoft Visual Basic Module. It can be assigned to the Add-ins tab or to a button on the Quick Access Toolbar.

Below are some examples of how macros are used:

■To automatically add a standard company header to any spreadsheet at the press of a button.

■To format a text file from a general ledger system into a more usable format.

■To print out certain sheets from within a workbook, rather than going through each sheet and printing individually.

Creating a Macro

There are two methods used to create macros:

■Writing: Write code for the actions in the sequence using VBA language for the macros.

■Recording: Record your actions in Excel using Macro Recorder. Excel has a Macro Recorder which records the action and writes the code for the macro.

The best approach when it comes to creating a macro is to follow the steps below:

1. Identify the exact problem and the end result that the user wants from the macro.

2. Plan the steps of your macro to obtain the end result successfully.

3. Create your macro either by recording, writing, or combining both.

Note Record the actions which you have taken in Excel, or write them.

Adding a Developer Tab on the Ribbon

To add a developer tab on Ribbon, follow these steps:

1. Click on the File Button.

2. Click on the Options… button.

3. On the Customize Ribbon Tab, then select Show Developer Tab in the Ribbon, as shown in Figure 14.1.

[image: image]

Figure 14.1 Adding Developer Tab on the Ribbon

Recording a Macro

To record a macro, follow these steps:

1. Click on the Developer Tab.

2. In group Code, click on the Record Macro button, as shown in Figure 14.2.

[image: image]

Figure 14.2 Recording a Macro

Defining a Macro

To define a macro, follow these steps:

[image: image]

Figure 14.3 Defining a Macro

When it comes to assigning names to macros, follow these rules:

■The macro name can consist of letters and numbers.

■It should not start with digits.

■It should not have any special symbol, except underscore (_).

■It can have a maximum of 255 characters.

■Do not use a macro name that is also a cell reference.

Macro Storage

The different macro storage options are as follows:

■Personal Macro Workbook: The recording will be performed on the current workbook, and the macro will be stored in a file named Personal.xls. This is a hidden file (located inside the XLSTART folder) which is opened whenever the Excel application is open.

■This Workbook: Recording will be performed on the current workbook and the macro will be stored in the current file.

■New Workbook: Recording will be performed on the current workbook and the macro will be stored in a new file.

Note Macros can be used if the file in which they are stored is open. If you want a macro to be available whenever you use Excel, select the Personal Macro Workbook option.

Macro Shortcut

You can use Ctrl+ Letter (for lowercase letters) or Ctrl + Shift+ letter (for uppercase letters), where letter is any letter key on the keyboard. The shortcut key letter you use cannot be a number or a special character, such as @ or #. The shortcut key will override any equivalent default Microsoft Excel shortcut keys while the workbook that contains the macro is open.

Macro Description

The description is used to write details about the macro, such as the purpose of this macro. This helps with post-maintenance.

Stop Recording

To stop recording a macro, follow these steps:

1. Perform the actions required to be executed by a macro.

2. Stop recording by either clicking on the Stop Recording button on the Developer tab in the Group Code, or on the status bar at the bottom.

Refer to Figure 14.4.

[image: image]

Figure 14.4 Stop Recording a Macro

Relative Reference Macro

If you want the macro to run relative to the position of the active cell, record it using relative cell references. On the Developer tab, click on Use Relative Reference so that it is selected. Excel will continue to record macros with relative references until you quit Excel or until you click Use Relative Reference again, so that it is not selected.

Refer to Figure 14.5.

[image: image]

Figure 14.5 Stop Recording a Macro

Note The Use Relative Reference button is a toggle button. Be careful with it, and before you start recording, check whether or not it is selected.

Scenario 1

Create a macro to automatically add the company’s name in a specific format to the first row of any spreadsheet.

For this, refer to Training File1.xls and follow the steps below.

1. Start recording.

2. Add the name “Company_name”.

3. Set the shortcut as Ctrl + Shift + C.

4. Carry out the following steps:

	a. Select the first cell (since the name should be on the first row).

	b. Type your company’s name.

	c. Apply the format: font size 20, bold, blue font, and white background.

	d. Select A1 to H1 cells.

	e. Click on the Merge tool.

5. Stop the recording:

	a. Go to the Tools menu, then click Macro | Stop

Recording. Refer to the following Figure 14.6.

[image: image]

Figure 14.6 Scenario 1

Running Your Macro

Macros can be run several ways.

■The shortcut (which you assign while defining the macro)

■The name

■The button on the Quick Access Toolbar

■The button on the worksheet

Running the Macro by Name

To run your macro by name, follow these steps:

1. Go to the Developer tab.

2. Select Macros (Snapshot 1).

3. Select the macro which you want to run (Snapshot 2).

4. Click on the Run button.

Refer to Figure 14.7.

[image: image]

Figure 14.7 Running a Macro by Name

Scenario 2

Create a macro to display a product table with the table headers, Product Name, Quantity, Price, Total, and Net. The table must always appear from the second row and first column. Excel should not accept any negative values for price and quantity. This macro will always result from the second row, first column (A1 reference).

Steps to be performed are below. (Refer to Training File1.xls.)

1. Start recording (use name Product_Table and shortcut Ctrl + Shift + P).

2. Select cell A2 (the table must always appear from the second row and first column).

3. Create a table as per Figure 14.8.

4. Write the formula for total and Net Total.

5. Format it.

6. Do validation for quantity and price cells (negative values are restricted).

7. Stop the recording.

Refer to Figure 14.8.

[image: image]

Figure 14.8 Scenario 2

Scenario 3

Create a macro to display the same product table (Scenario 2), but this time it should appear anywhere, wherever the user wants (using relative reference). This macro depends on the user’s selection.

The steps to be performed are below:

1. Start recording (use the name Product_Table_Relative and shortcut).

2. Switch on the Relative Reference button on the Stop Recording toolbar.

3. Create a table from the current cell as per Figure 14.9.

Note Start typing from wherever you are in the sheet; there is no need to click in the sheet while creating a relative reference macro.

4. Write the formula for total and Net Total.

5. Format it.

6. Do validation for quantity and price cells (negative values are restricted).

7. Switch off the Relative Reference button.

8. Stop the recording.

Refer to Figure 14.9.

[image: image]

Figure 14.9 Scenario 3

Conclusion

To summarize, this chapter has introduced the fundamentals of VBA macros and their significance in automating tasks in Excel. By creating and recording macros, users can streamline repetitive actions and enhance productivity. Whether through manual coding or the recording feature, macros offer a powerful tool for customizing and optimizing Excel functionality. By leveraging macros, users can save time, reduce errors, and improve efficiency.

Exercises

1. Create a macro named “CalculateAverage” that calculates the average of a range of numbers in Excel.

2. Create a macro named “FormatData” that applies specific formatting to a range of cells in Excel.

3. Create a macro named “GenerateReport” that automates the process of generating a report in Excel.

CHAPTER  15

Assigning Buttons to Macros

Introduction

In this chapter, we will explore the process of assigning buttons to macros in Excel. By creating buttons on the Quick Access Toolbar and Excel worksheets, we can automate tasks, improve efficiency, and simplify complex operations. Join us as we delve into the world of Excel automation and discover the power of button macro integration.

Structure

In this chapter, we will go over the following topics:

■Creating buttons on the Quick Access Toolbar

■Modifying menus or buttons

■Creating a button on an Excel worksheet

■Editing the recorded macros

Objectives

By the end of this chapter, the reader will understand how to create buttons on the Quick Access Toolbar for quick access to macros, and how to modify menus or buttons to customize their appearance and functionality. The reader will also be able to explore the process of creating buttons directly in Excel worksheets for specific tasks, as well as gain proficiency in editing recorded macros to enhance automation and tailor them to specific requirements.

Creating Buttons on the Quick Access Toolbar

To create buttons on the Quick Access Toolbar, follow the steps below.

1. Click on the Office button.

2. Click on Excel Options.

3. Go to the Customize Tab.

4. Under the Choose Commands From drop-down box, select Macros.

5. Add your macro to Customize Quick Access Toolbar.

Refer to Figure 15.1.

[image: image]

Figure 15.1 Creating Buttons on the Quick Access Toolbar

Modifying Menus or Buttons

Whenever you want to create a new button, edit the existing button, or remove any button from the Quick Access Toolbar, follow the steps below.

1. Click on the Modify… button.

2. Select an icon of your choice.

3. Enter the Display Name.

4. Click OK.

Refer to Figure 15.2.

[image: image]

Figure 15.2 Modifying Menus or Buttons

Scenario 4

Create a macro which will extract a region-based sum of the salary (use “Salary worksheet”). On clicking the Subtotal button, a region-based subtotal should be added on a new worksheet, as shown in Figure 15.3.

[image: image]

Figure 15.3 Scenario 4

For solve this scenario, follow these steps:

1. Start recording (use the name “Subtotal_Macro”).

2. Select the Salary sheet (source data).

3. Select cell A1 (the database starts from A1).

4. Perform Sort on Region, as shown in Figure 15.4.

[image: image]

Figure 15.4 Scenario 4 Solution

Note Sorting must be done per the requirement of Subtotal. Incorrect sorting will result in an incorrect subtotal.

5. Perform Subtotal on Region, as shown in Figure 15.5, and follow the steps below.

	a. On Data Tab, go to the Outline Group.

	b. Click on the Subtotal button.

	c. Also select Region in.

	d. Select the Sum function (you can choose any other function per the requirement of your project.)

	e. Select Salary Field.

	f. Click OK.

Refer to Figure 15.5.

[image: image]

Figure 15.5 Scenario 4 Solution

6. Click on Second level of Outline (only the subtotal must be shown).

7. Select the data.

8. Press Alt + ; key combination to select visible cells from the selection.

9. Copy the selection (Ctrl + C).

10. Insert the new worksheet (Shift + F11).

11. Paste the copied data (Ctrl + V).

12. Go to the Salary sheet (source data).

13. Remove Subtotal using the following steps:

	a. Go to Data Tab.

	b. Click Subtotal.

	c. Click on the RemoveAll button.

14. Activate the previous sheet (Ctrl + PageUp).

15. Stop recording.

Refer to Figure 15.6.

[image: image]

Figure 15.6 Scenario 4 Solution

Creating a Button in the Excel Worksheet

To create a button in the Excel worksheet, follow the steps below.

1. Activate the salary sheet.

2. Go to the Controls Group.

3. Select Button (Form Control), as shown in Figure 15.7 (b).

4. Assign the subtotal_macro, as shown in Figure 15.7 (c).

5. Change the caption (right-click and Edit Text), as shown in Figure 15.7 (d).

Refer to Figure 15.7.

[image: image]

Figure 15.7 Creating a Button in the Excel Worksheet

Scenario 5

Create a macro which will extract records from different departments and regions. The user will type the required department and region and click on the filter button, as shown in Figure 15.8.

[image: image]

Figure 15.8 Scenario 5

Note The above macro will automate the job of Advanced Filter.

Follow the steps below.

1. Activate the Salary sheet.

2. Create a criteria range for Advanced Filter.

3. Start recording.

4. Use the name “Filter_Macro”.

5. Store in this workbook.

6. Click on the heading of the database (cell A5).

7. Do an Advanced Filter.

	a. Click the Data tab.

	b. Click Advanced.

Refer to Figure 15.9:

[image: image]

Figure 15.9 Scenario 5 Solution

8. Provide List range (database range), as shown in Figure 15.10.

9. Provide the Criteria Range.

10. Click OK.

11. Stop Recording.

12. Create a button from Developer Tab | Controls Group.

13. Assign the Filter macro to this button.

Refer to Figure 15.10.

[image: image]

Figure 15.10 Scenario 5 Solution

Editing the Recorded Macros

Sometimes recorded macros may not give you full automation. In these cases, you will have to edit your recorded macros. Alternatively, you might want to add some actions to your recorded macro and then edit your macro.

For example, in Scenario 5, instead of changing criteria in Excel, your macro should ask which region and department to use. The user will type their response, then click OK. The macro will perform the filter.

To edit your recorded macro, follow the steps below.

1. Go to Tools.

2. Click on Macro.

3. Open Visual Basic Editor.

4. Open the code window of your macro.

Scenario 6

Open Scenario 5 and modify the code to do the following. The user should get an InputBox where they can type the required department and region, then be prompted to click the filter button.

Refer to Figure 15.11.

[image: image]

Figure 15.11 Scenario 6

To edit your recorded macro, do the following steps:

1. Go to Tools.

2. Select Macro.

3. Select Filter_Macro.

4. Click Edit, as shown in Figure 15.12.

5. Open the code window of your macro.

Refer to Figure 15.12.

[image: image]

Figure 15.12 Scenario 6 Solution

Refer to Training File3.xls.

6. The Macro definition starts with the keyword Sub and ends with the line End Sub.

7. Inputbox is a function used to take input from the end user.

8. Range is a class.

Note We will discuss writing procedures later in detail.

Refer to Figure 15.13.

[image: image]

Figure 15.13 Scenario 6 Solution

Scenario 7

Create a macro to import data from a txt file (sales.txt) and design a pivot table which shows the sum of sales based on product and month. This macro will automate the import of data from the text file and create a pivot table report (refer to Training File4. xls).

TABLE 15.1 Sample Data

	
Sum of Sales in Figures

	

	
Product

	
Month

	
Total

	
cd

	
Jan Feb

	
100000

	
	
Mar

	
75000

12000

	
cd Total

	
187000

	
Monitor Jan Feb

	
	
15000

20000

	
Monitor Total

	
35000

	
Pen Drive

	
Jan

	
75000

	
	
Mar

	
73000

	
Pen Drive Total

	
148000

	
Grand Total

	
370000

To solve this scenario, follow these steps:

1. Start recording (name the file “import_txt”).

2. Click on the Data menu.

3. Select Import External data | Import data.

4. Select sales.txt.

5. Select data type as Delimited, as shown in Figure 15.14 (1).

6. Click Next.

7. Select delimiter (comma), as shown in Figure 15.14 (2).

8. Click Next.

[image: image]

Figure 15.14 Scenario 7 Solution

9. Select the type of data, as shown in Figure 15.15.

10. Click Finish.

11. Select the existing sheet option, as shown in Figure 15.15.

12. Click OK.

13. Create a pivot using imported data and place it in a new worksheet.

14. Stop recording.

[image: image]

Figure 15.15 Scenario 7 Solution

Scenario 8

Refer to Training File4.xls.

	
Purpose

	
Original Code

	
Modified Code

	
For file selection

	
ActiveSheet.QueryTables.Ad d(Connection:=”TEXT;c:\vb a\sales.txt”,Destination:=Ran ge(“A1”))

	
ActiveSheet.QueryTables. Add(Connection:=”TEXT;” & Application.GetOpenFilename, Destination:=Range(“A1”))

	
For variable length data

	
ActiveWorkbook.PivotCache s.Add(SourceType:=xlDatab ase, SourceData:= “Sheet31!R1C1:R7C3”).CreatePivotTable

	
ActiveWorkbook.PivotCaches.A dd(SourceType:=xlDatabase, SourceData:=

Range(“a1”).CurrentRegion.A ddress).CreatePivotTable

Practice 1

Create a macro (Report_title) which will add a new worksheet with the following details in the existing Workbook cell address cell content.

A2: Your company name A3: Title “Daily report” A4: The date

A6: Sr.No.

B6: Product

C6: Quantity Sold

Follow these steps for the solution:

1. Click on Tools | Macro.

2. Select Record New Macro.

3. Type name of the macro as Report_title.

4. Assign a shortcut key.

5. Select the storage location.

6. Add details in the Description box.

7. Click on OK.

8. Add a blank worksheet (Shift+F11 or Insert menu | worksheet).

9. Click on A2 and type your company name.

10. Click on A3 and enter “Daily report” for the title.

11. Click on A4 and type “=today()”.

12. From A6 to C6, type “Sr. No.”, “Product”, and “Quantity Sold”.

13. Stop recording.

Practice 2

Create a macro to add a signature (your name and designation at the end of the data).

Note Check that the worksheet is formatted like Practice 1.

This macro always adds a worksheet before the current worksheet. Modify that macro so that it will add the new worksheet after the current worksheet.

Follow these steps for the solution:

1. Click on Tools | Macro.

2. Select Record New Macro.

3. Enter “summary” as the name of the macro.

4. Assign a shortcut key.

5. Select the location where you want to store the macro.

6. Add details in the Description box.

7. Click on OK.

8. Click on cell A6.

9. Us the Ctrl + Down Arrow to reach the end of the data.

10. Click on Relative Reference.

11. Now move three rows down and type your name and designation.

12. Switch off Relative Reference.

13. Stop recording.

14. Modify the statement “Sheets.add” to “sheets.add after:=activesheet”.

Conclusion

In this chapter, we covered the topic of assigning buttons to macros in Excel. We learned how to create buttons on the Quick Access Toolbar and customize them by modifying menus or buttons. Additionally, we explored the process of creating buttons directly in an Excel worksheet. We also discussed editing recorded macros to enhance their functionality.

Exercises

1. Create a macro to extract a region-based sum of salary values and add it to a new worksheet.

2. Create a macro to filter records based on department and region.

3. Import data from a text file and create a pivot table report.

4. Modify the code for file selection and variable length data in existing macros.

5. Practice creating a macro to add a daily report title in a worksheet.

6. Practice creating a macro to add a signature at the end of the data.

CHAPTER  16

Functions and Subroutines in VBA

Introduction

The chapter will introduce the concepts of functions and subroutines in Excel VBA programming. It explains the differences between the two and will delve into writing code inside modules using the Visual Basic Editor. The chapter also covers branching techniques to control the flow of code execution within procedures.

Structure

In this chapter, we will go over the following topics:

■Writing Procedures

■The Visual Basic Editor

■Inserting Modules

■Writing Code Inside a Module

■Sub Procedure

■Function Procedure

■Branching a Procedure

Objectives

After studying this chapter, the reader will be able to write procedures and understand Visual Basic Editor, which will be used in order to insert modules, write code, and so on. The reader will also learn about sub procedure, function procedure, and branching a procedure.

Writing Procedures

You can write code for each action that you record. All the procedures are written inside a module.

To write the code, you need to open Visual Basic Editor. The shortcut to open Visual Basic Editor is Alt + F11.

A module is a collection of procedures. There are two types of procedures:

■Sub Procedures: Sub procedures are used to automate Excel actions. A sub procedure is a unit of code enclosed between the Sub and End Sub block. A sub procedure without any arguments is a macro.

■Function Procedures: Functions are used to automate any complex calculations. A Function procedure is enclosed between the Function and End Function block.

The differences between the sub procedures and function procedures are explored in Table 16.1.

TABLE 16.1 Differences Between Procedures

	
Sub Procedure

	
Function Procedure

	
It cannot return a value.

	
It can return a value.

	
It can perform actions on Excel objects.

	
It cannot perform actions on Excel objects.

Here are some more points that you can keep in mind:

■Both types of procedure may or may not have arguments.

■A sub procedure with no arguments is a macro.

■All macros are procedures, but not all procedures are macros.

Visual Basic Editor

Figure 16.1 shows the Code window in Visual Basic Editor:

[image: image]

Figure 16.1 Code Window in Visual Basic Editor

The different parts in the Code window in Visual Basic Editor are as follows:

■Project Explorer: This section displays a hierarchical list of the projects (Excel Workbooks) and all the items contained in and referenced by each project.

■Properties Window: This window lists the design-time properties for selected objects and their current settings. You can change these properties at design time. When you select multiple controls, the Properties window contains a list of the properties common to all the selected controls.

■Code Window: Use the Code window to write, display, and edit Visual Basic code. You can open as many Code windows as you have modules. You can easily view the code in different forms or modules and copy and paste between them.

Figure 16.2 explores the Project Explorer in more detail.

■View Code: Displays the Code window so you can write and edit code associated with the selected item.

■View Object: Displays the Object window for the selected item, such as an existing Document or User form.

■Toggle Folders: Hides and shows the object folders while still showing the individual items contained within them.

■List Window: Lists the loaded projects and the items included in each project.

A Property is a characteristic of any object. The Property Window shown in Figure 16.2 shows the properties of a selected object.

[image: image]

Figure 16.2 Project Explorer and the Property Window

Let us now look at the different parts of the Code window (refer to Figure 16.3).

■Object Box: This view displays a list of objects from current projects.

■Procedure Window: This window contains all the procedures of the current module or events of a selected object.

■Procedure View: This view displays only one procedure at a time.

■Full Module View: This option displays all procedures from the current module.

Refer to Figure 16.3.

[image: image]

Figure 16.3 Code Window

Project Explorer Keyboard Shortcuts

Let us now look at the various keyboard shortcuts:

■ENTER + Æ: Open the selected file from the list, or expand and collapse the list to show its sub-entries.

■SHIFT+ENTERÆ: Open the Code window for the selected file.

■F7 + Æ: Open the Code window for the selected file.

■SHIFT+F10 Æ: View the shortcut menu.

■HOME + Æ: Select the first file in the list.

■END + Æ: Select the last file in the list.

■RIGHT ARROW + Æ: Expands a list, then selects a subentry in the list each time you press it.

■LEFT ARROW + Æ: Selects a subentry in the list, then moves up the list each time you press it until the subentry list collapses into a folder.

■UP ARROW + Æ: Moves up the list one entry at a time.

■DOWN ARROW + Æ: Moves down the list one entry at a time.

Inserting Modules

To insert a module, follow the steps below.

1. Select the book in which you want to store your procedures, as shown in Figure 16.4 (1).

2. Select Insert menu, then select Module, as shown in Figure 16.4 (2).

3. Module1 is added. You can change the name through the property window, as shown in Figure 16.4 (3).

Refer to Figure 16.4.

[image: image]

Figure 16.4 Inserting Modules

Writing Code Inside Modules

To write code inside modules, follow these steps:

1. Double-click the Module inside which you want to write your code for the procedures, as shown in Figure 16.5 (a).

2. Write your code for the procedures, as shown in Figure 16.5 (b). Refer to Figure 16.5.

[image: image]

Figure 16.5 Writing Code Inside the Module

Sub Procedure

Sub procedure is a series of Visual Basic statements enclosed by the Sub and End Sub statements that perform actions but does not return a value.

A Sub procedure can take arguments, such as constants, variables, or expressions that are passed by a calling procedure.

If a Sub procedure has no arguments, the Sub statement must include an empty set of parentheses.

Macro

The macro is as follows:

Sub HelloWorld()

MsgBOx "Hello World"

End Sub

Figure 16.6 features a macro.

[image: image]

Figure 16.6 Macro

Function Procedure

A Function procedure is a series of Visual Basic statements enclosed by the Function and End Function statements.

A Function procedure is similar to a Sub procedure, but a function can also return a value. A Function procedure can take arguments that are passed to it by a calling procedure.

If a Function procedure has no arguments, its Function statement must include an empty set of parentheses. A function returns a value by assigning a value to its name in one or more statements of the procedure.

For example:

Function Celsius (fDegrees)

Celsius = (fDegrees - 32) * 5 / 9

End Function

Refer to Figure 16.7.

[image: image]

Figure 16.7 User-Defined Function

Syntax to Write Functions

Note Arguments are the inputs you want from the end user to calculate the result.

Function name_of_function(argument1 , argument2 , …)

processing the arguments name_of_function

= Result

End Function

Both procedures may or may not have arguments.

Passing by Value Æ: If you pass an argument by value, the called procedure receives only a copy of the variable passed from the calling procedure. If the called procedure changes the value, the change affects only the copy and not the variable in the calling procedure.

Passing by Reference Æ: If you pass an argument by reference when calling a procedure, the procedure has access to the actual variable in memory. As a result, the variable’s value can be changed by the procedure. By default, arguments are by reference.

Scenario 9

Write a function to calculate Profit where profit is the difference of Selling price and Cost price. The Profit function requires two arguments: cost price and selling price.

Function Profit(CP, SP)

Profit = SP - CP

End Function

Refer to Training File5.xls.

Branching a Procedure

If you want to run a block of code depending on the value of a condition, you can use the following decision structures.

■¾ If...Then...Endif

■¾ If...Then...Else…Endif

■¾ If...Then...Elseif…Then…Else…Endif

■¾ Select Case …End Select

Use If…Then...Endif

A single condition that runs a single statement or a block of statements.

Use If...Then...Else…Endif

A single condition that runs two different statements or a block of statements, depending on the result of the condition.

Use If...Then...Elseif…Then…Else…Endif OR Select Case… End

This structure selects more than one condition and runs one of several statement blocks.

Scenario 10

Write a function to check whether a person is eligible to vote or not. To check eligibility, the Vote function requires age as an argument.

Function Vote(Age)

If Age >= 18 Then

  Vote = "Eligible"

Else

  Vote = "not eligible"

EndIf

End Function

Refer to Training File5.xls.

Scenario 11

Write a function to find the grade of an employee based on basic salary as per the given criteria (Using If Elseif):

Grade Salary

D <8000

C 8000 – 15000

B 15000 – 25000

A >=25000

Function Grade (salary)

If salary<8000 Then

Grade = "D"

ElseIf salary<15000 Then

Grade = "C"

ElseIf salary<25000 Then

Grade = "B"

Else

Grade ="A"

End If

End Function

Refer to Training File5.xls.

Scenario 12

Write a function to find a bonus based on grade (use Select Case). Grade bonus:

A 25000

B 20000

C 15000

D 10000

Refer to Training File5.xls.

Function bonus(grade)

Select Case grade

Case "a", "A"

   bonus = 25000

Case "b", "B"

   bonus = 20000

Case "c", "C"

   bonus = 15000

Case Else

   bonus = 10000

End Select

End Function

Scenario 13

Write a function to calculate DA based on region. DA is 5% if the region is either east or west, or else it will be 10%. Use the OR Operator to check multiple conditions.

OR Operator

The OR operator is used to perform a logical conjunction on two expressions. It returns true if any of the expression results are true.

Function CalcDa(Region, sal)

If Region = "east" Or Region = "west" Then

CalcDa = sal * 0.05

Else

  CalcDa = sal * 0.1

EndIf

End Function

Scenario 14

Write a function to calculate DA based on region. DA is 5% if the region is east and salary is >10000. Otherwise, it is 10%.

Use the AND Operator to check multiple conditions.

AND Operator

This operator is used to perform a logical conjunction on two expressions. The AND operator returns true if all the expressions result in true.

Function CalcDa(Region, sal)

If Region = "east" And sal > 10000 Then

CalcDa = sal * 0.05

Else

CalcDa = sal * 0.1

EndIf

Conclusion

Functions and Subroutines are powerful tools in VBA that help you automate tasks and perform calculations in Excel. By understanding how to write procedures, use the Visual Basic Editor, and apply branching techniques, you can enhance your VBA programming skills and create more efficient and dynamic Excel applications.

Exercises

1. Write a Function to calculate the area of a rectangle given its length and width.

2. Create a Subroutine to format a range of cells based on specific conditions, such as highlighting cells with values above a certain threshold.

3. Develop a Function that converts a temperature from Fahrenheit to Celsius.

4. Write a Subroutine to sort a column of data in ascending order.

5. Create a Function to calculate the factorial of a given number.

CHAPTER  17

Conditional Statements in VBA

Introduction

In Visual Basic for Applications (VBA), conditional statements are used to make decisions in your code based on certain conditions. They allow you to execute different blocks of code depending on the outcome of a logical expression. In this chapter, we will focus on two commonly used conditional statements in VBA: Select Case and If...End If.

Structure

In this chapter, we will go over the following topics:

■If…End If

■Select Case

■Select Case vs. If…End If

Objectives

By the end of this chapter, the reader will learn the differences between Select Case and If...End If statements in VBA and learn their appropriate usage in different scenarios.

If…End If

In VBA, the If...End If statement is used to evaluate a condition and execute a block of code if the condition is true. It can also be combined with ElseIf and Else clauses to handle multiple conditions. Here is an example of the basic syntax for the If...End If statement:

If condition1 Then

' Code block to execute if condition1 is True

ElseIf condition2 Then

' Code block to execute if condition2 is True and condition1 is False

Else

' Code block to execute if none of the previous conditions are

True

End If

The “condition” and “condition2” expressions in the above example are Boolean expressions that evaluate to either true or false.

It is important to note that the “If…End If statement can be nested within other control structures, like loops, and can be used in combination with other statements and keywords to create more complex logic in your VBA code.

Example

If the score is equal to or greater than 90, it displays “Grade: A.” If it is between 80 and 89, it displays “Grade: B,” and so on. If the score does not meet any of the specified conditions, it displays “Grade: F.”

Sub GradeEvaluation()

  Dim score As Integer

' Prompt the user to enter a score score = InputBox("Enter the score:")

' Evaluate the score and provide a corresponding grade If score >= 90 Then

MsgBox "Grade: A"

ElseIf score >= 80 Then

MsgBox "Grade: B"

ElseIf score >= 70 Then

MsgBox "Grade: C"

ElseIf score >= 60 Then

MsgBox "Grade: D"

Else

MsgBox "Grade: F"

End If

End Sub

Select Case

The Select Case statement in VBA provides a concise and structured way to handle multiple conditions and execute different code blocks based on the value of a single expression. Here is a comprehensive explanation of its syntax and usage:

Select Case expression

  Case value1

' Code to execute if expression matches value1

Case value2

' Code to execute if expression matches value2

Case Else

' Code to execute if expression does not match any previous cases

End Select

Example

In this example, the program prompts the user to enter a fruit name. The Select Case statement then evaluates the input and displays a corresponding message based on the selected fruit. If the fruit is “apple,” it displays a message about it being a healthy choice. If it is “banana,” it mentions the potassium content. If it is “orange” or “mandarin,” it highlights the citrus goodness. For any other input, it displays a generic message.

Sub FruitSelection()

  Dim fruit As String

' Prompt the user to enter a fruit name fruit = InputBox("Enter a fruit name:")

' Evaluate the fruit name and display corresponding message Select Case fruit

    Case "apple"

MsgBox "You selected an apple. It's a healthy choice!"

    Case "banana"

MsgBox "You selected a banana. It's a great source of potassium."

    Case "orange", "mandarin"

MsgBox "You selected an orange or a mandarin. Enjoy the citrus goodness!"

    Case Else

MsgBox "That's an interesting choice!"

  End Select

End Sub

Select Case vs. If … End If

Use the Select Case statement as an alternative to using ElseIf in If...Then... Else statements when comparing one expression to several different values.

While If...Then...Else statements can evaluate a different expression for each ElseIf statement, the Select Case statement evaluates an expression only once, at the top of the control structure.

Conclusion

In this chapter, we explored the differences between Select Case and If...End If statements in VBA. We learned that Select Case is a useful alternative when you have multiple conditions to evaluate against a single expression. It simplifies your code and improves readability. When you have distinct and unrelated conditions to consider, If...End If statements are more appropriate.

Exercises

1. Write a VBA program that asks the user to enter a day of the week (as a number from one to seven), then displays the corresponding day name. Use both Select Case and If...End If statements to implement the program.

2. Write a VBA program that asks the user to enter a number and determines if it is positive, negative, or zero. Use both Select Case and If...End If statements to implement the program.

CHAPTER  18

Variables and Data Types in VBA

Introduction

In this chapter, we will explore the fundamentals of variables and data types in VBA (Visual Basic for Applications). Variables are essential elements in programming that store and manipulate data during program execution, while data types define the nature of the data stored in variables. Understanding variables and data types is crucial for writing efficient and effective VBA code. We will cover topics such as declaring variables and constants, specifying data types, working with message boxes and input boxes, selecting cells, rows, and columns, and working with sheets, workbooks, and the application object.

Structure

In this chapter, we will cover the following topics:

■Variables and constants

■Declaring variables and constants

■Data types of variables and constants

■The message box and the input box

■Selecting and activating cells

■Selecting and activating rows and columns

■Working with Sheets

■Working with the Workbook

■Working with the application object

Objectives

By the end of the chapter, the reader will be able to understand the concept of variables and constants in VBA and how to declare them, be familiar with different data types available in VBA and their respective ranges and understand the usage of message boxes and input boxes for user interaction. Additionally, the reader will also learn techniques for selecting and activating cells, rows, and columns in Excel, and gain knowledge on working with sheets, workbooks, and the application object in VBA.

Variables and Constants

Let us now learn about variables and constants.

Variables

The features of variables are as follows:

■A variable is a named storage location containing data that can be modified during program execution.

■Each variable has a name that uniquely identifies it within its scope.

■A data type can be specified or not.

■Variable names:

•Must begin with an alphabetic character,

•Must be unique within the same scope,

•Cannot be longer than 255 characters, and

•Must contain an embedded period or type-declaration character.

Constant

A constant is a named item that retains a constant value throughout the execution of a program. A constant can be a string or a numeric literal.

Declaring Variables and Constants

The syntax to declare a variable is:

DIM name_of_variable AS type_of_variable

For example:

Dim strName As String

Dim intX As Integer

Dim intX , intYAs Integer

The syntax to declare a constant is:

Const name_of_variable AS type_of_variable = constant value

For example, Const conAge As Integer = 34.

When declaring variables, use a Dim statement. For constants, use a Const statement.

A declaration statement can be placed within a procedure to create a procedure-level variable. It may also be placed at the top of a module, in the Declarations section, to create a module-level variable.

Data Types of Variables and Constants

Table 18.1 shows the various ranges in data type.

TABLE 18.1 Data Types

	
Data type

	
Range

	
Byte

	
0 to 255.

	
Integer

	
– 32,768 to 32,767.

	
Long

	
– 2,147,483,648 to 2,147,483,647.

	
Single

	
– 3.402823E38 to – 1.401298E – 45 (negative values).

	
1.401298E – 45 to 3.402823E38 (positive values).

	
Double

	
– 1.7200369313486231E308 to

– 4.94065645841247E – 324 (negative values). 4.94065645841247E – 324 to 1.7200369313486231E308

(positive values).

	
Currency

	
– 922,337,203,685,477.5808 to 922,337,203,685,477.5807.

	
String

	
Zero to approximately two billion characters.

	
Variant

	
Date values: January 1, 100 to December 31, 9999.

	
Numeric values: same range as Double.

	
String values: same range as String.

	
Can also contain Error or Null values.

	
Boolean

	
True or False.

	
Date

	
January 1, 100 to December 31, 9999.

	
Object

	
Any object reference.

Using the Option Explicit Statement

Use Option Explicit to enforce explicit declaration of variables. It must appear in a module before any procedure. If not used, undeclared variables will be of Variant type.

Message Box and Input Box

The Msgbox function displays a message in a dialog box, waits for the user to click a button, and returns an Integer indicating which button the user clicked.

The InputBox Function displays a prompt in a dialog box, waits for the user to input text or click a button, and returns a string containing the contents of the text box.

Example:

Sub Greet()

  MsgBox "Hello " & InputBOx("What is your name?")

End Sub

Selecting and Activating Cells

When you work with Microsoft Excel, you usually select a cell or cells and then perform an action, such as formatting the cells or entering values in them.

Refer to Table 18.2 to write the codes for various actions.

TABLE 18.2 Codes for Various Actions

	
To do this

	
Write this code

	
Select cell A1

	
Range("A1").select or Cells(1,1). select

	
Select range A1:B5

	
Range("A1:b5").select

	
Select range A1:A5 and C2:C10

	
Range("A1:A5 , C2:C10").select

	
Select current cell

	
Activecell.select

	
Select range from current cell to B6

	
Range(Activecell , "B6").select

	
Select current region of activecell

	
Activecell.currentregion.select

	
Ctrl + Shift+ Down Arrow from Activecell

	
Range(ActivecellActivecell.End(X lDown)).select

	
Ctrl + Shift + Down Arrow from cell A2

	
Range("A2" , Activecell.End(XlDown)). Select

Selecting and activating rows and columns

Sometimes you need to select specific rows and columns and then perform actions.

To do this, write the code shown in the following Table 18.3.

TABLE 18.3 Codes for Various Actions

	
To do this

	
Write this code

	
Select a row

	
Rows("2:2").select

	
Select rows from 2 to 5

	
Rows("2:5").select

	
Select 3 rows from activecell

	
Activecell.entirerow.Range("1:3"). select

	
Select a column

	
Columns("A:A").select

	
Select columns from B to E

	
Columns("B:E").select

	
Select 3 columns from activecell

	
Activecell.entirecolumn.Range("A:C").select

	
Select current row

	
Activecell.entirerow.select

	
Select current column

	
Activecell.entirecolumn.select

Working with Sheets

You will frequently need to select a specific sheet, insert a new sheet, rename a sheet, and so on. Refer to Table 18.4.

TABLE 18.4 Codes for Various Actions

	
To do This

	
Write This code

	
Select any sheet by index number

	
Sheets(2).selectWorksheets(2)

.select

	
Select any sheet by name

	
Sheets("Sheet1"). selectWorksheets("Sheet1").select

	
Renaming a sheet

	
Sheets("Sheet1").name="newname"

	
Assign a new name

	
Worksheets("Sheet1").name=

Activesheet.name

	
Delete a sheet

	
Sheets("Sheet1").delete Worksheets("Sheet1").delete

Activesheet.delete

	
Insert a sheet

	
Sheets.add before:= sheets("Sheet1")

   Worksheets.add before:=sheets("Sheet1")

Working with a Workbook

Sometimes you need to work with different workbooks. Refer to Table 18.5.

TABLE 18.5 Codes for Various Actions

	
To do This

	
Write this code

	
Open a workbook

	
Workbooks.open filename:="filename with path"

	
Open workbook which contains auto macros

	
Workbooks. openfilename: =" Activeworkbook. runautomacros"

	
Close a workbook

	
Workbooks(2).close

	
Add a new workbook

	
Workbooks.add

Working with the Application Object

Sometimes you will need to ignore some Excel messages. To do this, you need to work with the application object, as illustrated in Table 18.6.

TABLE 18.6 Codes for Various Actions

	
To do this

	
Write This Code

	
To switch off the display of messages

	
Application.DisplayAlert = False

	
To stop flickering of the screen

	
Application.ScreenUpdating = False

	
To stop copy / cut mode

	
Application.CutCopyMode = False

	
To calculate

	
Application.Calculate

Scenario 15

Create a macro which should accept the Name and City of a person and store it in an Excel worksheet in cell A1 and B1. If the user types Mumbai as the city, the font color must be red. Use the InputBox function to take input from the user. Use the MsgBox function to display results.

Sub Accept_Details()

Dim e_Name , e_City As String

Name = InputBox("Enter your name")

City = InputBox("Enter your city")

MsgBox "Your name is " & Name & " and city is " & City Cells(1, 1).Value = e_Name Cells(1, 2).Value = e_City If Cells(1, 2).Value = "mumbai" Then

   Cells(1, 2).Font.ColorIndex = 3

Else

   Cells(1, 2).Font.ColorIndex = 0

EndIf

End Sub

Scenario 16

Create a macro and name it “Data_Entry”. It must accept the employee code, name, hire date, and salary of a person. Insert the values in the “Database” worksheet. Every new record must be stored after the last record.

Sub Data_Entry()

Dim EmpCode As integer, Next_Row as integer

Dim EmpName As String

Dim doj As Date

Dim Salary As Currency

EmpCode = InputBox("Enter Employee Code")

EmpName = InputBox("Enter Employee Name")

doj = InputBox("enter Date of Joining mm/dd/yy")

Salary = InputBox("Enter Salary of Employee")

Range("a65536").select

Selection.end(xlup).select Next_Row= activecell.row+1

Cells(Next_Row, 1).Value = EmpCode Cells(Next_Row, 2).Value = EmpName Cells(Next_Row, 3).Value = Format(doj, "MMM DD YYYY") Cells(Next_Row, 4).Value = Salary

End Sub

Conclusion

In conclusion, this chapter provided a comprehensive overview of variables and data types in VBA. It covered the declaration of variables and constants, explained different data types and their ranges, demonstrated the usage of message boxes and input boxes, and explored techniques for selecting and manipulating cells, rows, and columns in Excel. The chapter also touched upon working with sheets, workbooks, and the application object. By understanding these fundamentals, readers can write efficient and effective VBA code.

Exercise

1. Write a VBA macro that prompts the user to enter their name, age, and favorite color using input boxes. The macro should store the values in cells A1, B1, and C1 of the active worksheet. Additionally, if the user’s age is greater than or equal to 18, the font color of the corresponding cell should be set to their favorite color. Test the macro by running it and entering different values.

CHAPTER  19

Looping Structures in VBA

Introduction

In this chapter, we will delve into the topic of looping structures in Visual Basic for Applications (VBA). Loops are powerful tools that enable the repetitive execution of code, improving efficiency and automating tasks. This chapter explores different types of loops, such as Do...Loop, For...Next, and For Each...Next loops, as well as auto-executed macros that run based on specific events.

Structure

In this chapter, we will go over the following topics:

■Using Loops (repeating actions)

■Using Do…Loop statements

■Using For…Next statements

■Using For Each…Next statements

■Auto-Executed Macros

Objectives

By the end of this chapter, the reader will learn looping structures in VBA, such as Do...Loop, For...Next, and For Each...Next. The chapter also covers practical examples for their implementation.

Using Loops (Repeating Action)

Looping allows you to run a group of statements repeatedly. Some loops repeat statements until a condition is False; others repeat statements until a condition is True. There are also loops that repeat statements a specific number of times or for each object in a collection.

Choosing a Loop to Use

There are various loops you can use, such as:

■Do…Loop: Looping while or until a condition is True.

■For…Next: Using a counter to run statements a specified number of times.

■For Each…Next: Repeating a group of statements for each object in a collection.

Using Do…Loop Statements

You can use Do...Loop statements to run a block of statements an indefinite number of times. The statements are repeated either while a condition is True or until a condition becomes True.

Syntax:

Do [{While | Until} condition]

[statements]

[Exit Do]

[statements]

Loop

Repeating Statements While a Condition is True

In a Do...Loop statement there are two ways to use the While keyword to check a condition. You can check the condition before you enter the loop, or you can check it after the loop has run at least once.

Checking Condition Before You Enter the Loop

The syntax for checking the condition before you enter the loop is:

DO WHILE (condition)

  Code to be repeated

LOOP

Checking Condition After the Loop Has Run at Least Once

The syntax for checking the condition after the loop has run at least once is:

DO

  Code to be repeated

LOOP WHILE (condition)

Scenario 17

Write code to accept and validate a username. A blank name should not be allowed. Refer to Training File5.xls.

Refer to Figure 19.1.

[image: image]

Figure 19.1 Scenario 17

Sub validate_name()

Dim name As String

name = InputBox("enter your name")

Do While Trim(name) = ""

  MsgBox "Name cannot be blank"

    name = InputBox("enter your name")

Loop

End Sub

Note Trim function removes spaces from the beginning and end of the word.

Using For…Next Statements

■You can use For...Next statements to repeat a block of statements a specific number of times.

■The For loop uses a counter variable whose value is increased or decreased with each internal repetition of the loop.

Syntax:

FOR counter_variable = initial_value TO Final_Value

STEPstep_value Code to be repeated

NEXT

Note The smaller the data type, the less time it takes to update.

Scenario 18

Create a macro named “fill_series” to display numbers from one to ten (starting with cell A1).

Sub fill_series()

Dim fill_val As Integer

Range("A1").Select For

fill_val = 1 To 10

ActiveCell.Value = fill_val

ActiveCell.Offset(1, 0).Select Next

End Sub

Offset function() is used to point to or refer to the object up, down, left, or right of the object.

Syntax:

OFFSET(row , column) Example

1. Activecell.Offset(1,0).select: This will select the cell 1 row down and 0 column to the right of the Activecell.

2. Activecell.Offset(0,1).select: This will select the cell 0 row down and 1 column to the right of the Activecell.

3. Activecell.Offset(-1,0).select: This will select the cell 1 row up and 0 column to the right of the Activecell.

4. Activecell.Offset(0,-1).select: This will select the cell 0 row down and 1 column to the left of the Activecell.

Using For Each… Next Statements

For Each...Next statements repeat a block of statements for each object in a collection or element in an array.

Visual Basic automatically sets a variable each time the loop runs.

Any number of Exit For statements may be placed anywhere in the loop as an alternative way to exit.

Syntax:

For Each element In group

[statements]

[Exit For]

[statements]

Next [element]

Required: Variable used to iterate through the elements of the collection or array. For collections, element can only be a Variant variable, a generic object variable, or any specific object variable. For arrays, element can only be a Variant variable.

Group: Required. The name of an object collection or array

Statements

Optional. One or more statements that are executed on each item in group.

Scenario 19

Create a macro titled “UPPER_CASE” to convert data into capital letters. Use the Ucase () function to convert the case into capital letters.

Refer to Figure 19.2.

[image: image]

Figure 19.2 Scenario 19

Sub UPPER_CASE()

  Dim wscell As Range

  For Each wscell In Selection

    wscell.Value = UCase(wscell.Value)

  Next

End Sub

Scenario 20

Create a macro named “lower_case” to convert data into small letters. Use the lcase () function to convert the case into lowercase letters.

Refer to Figure 19.3.

[image: image]

Figure 19.3 Scenario 20

Sub lower_case()

  Dim wscell As Range

  For Each wscell In Selection

   wscell.Value = LCase(wscell.Value)

  Next

End Sub

Scenario 21

Create a macro titled “Proper_case” to convert data into title case letters. Use the WorksheetFunction object to use any function from Excel in VBA. Refer to Figure 19.4.

[image: image]

Figure 19.4 Scenario 21

Sub Proper_Case()

Dim wscell As Range

For Each wscell In Selection

wscell.Value = Application.WorksheetFunction.Proper(wscell.Value)

Next

End Sub

Scenario 22

Open Scenario 22 and modify it. After storing the recorded macro, you should ask the user whether or not to continue and run per the user response. If the user clicks OK, it should continue the data entry. If the user clicks on Cancel, it should display “Thanks” and end the macro. Refer to Figure 19.5.

[image: image]

Figure 19.5 Scenario 22

Sub Data_Entry1()

Dim EmpCode As Integer, next_row As Integer

Dim EmpName As String

Dim doj As Date

Dim Salary As Currency

  Worksheets("database").Select

Range("a65536").Select

Selection.End(xlUp).Select

next_row = ActiveCell.Row + 1

  Do

EmpCode = InputBox("Enter Employee Code")

EmpName = InputBox("Enter Employee Name")

doj = InputBox("enter Date of Joining mm/dd/yy")

Salary = InputBox("Enter Salary of Employee")

Cells(next_row , 1).Value = EmpCode

Cells(next_row , 2).Value = EmpName

Cells(next_row , 3).Value = Format(doj, "MMM DD YYYY")

Cells(next_row , 4).Value = Salary

next_row =next_row + 1

Loop While (MsgBox("Do you want to continue?", vbOKCancel) = vbOK)

  MsgBox "Thanks"

End Sub

Scenario 23

Create a macro which will calculate the following for each employee:

■HRA (75% of the salary)

■DA (60% of the salary)

■TOTAL (salary + HRA + DA)

Refer to Figure 19.6.

[image: image]

Figure 19.6 Scenario 23

There could be two ways to solve this question.

Refer to Training File6.xls.

1. Through a macro, you can put formulae into the cells:

Sub Gross_Salary()

'The user will select the range H2:H101 cells As Range.

For Each wscell In Selection

wscell.Offset(0, 1).Value = "=rc[-1]*75%"

wscell.Offset(0, 2).Value = "=rc[-2]*60%"

wscell.Offset(0, 3).Value = "=sum(rc[-1]:rc[-3])"

Next

End Sub

2. Calculate using your macro and put only the results in the cells:

Sub Gross_Salary()

User will select the range H2:H101 Dim wscell As Range

For Each wscell In Selection

  wscell.Offset(0, 1).Value= wscell.Value * .75

  wscell.Offset(0, 2).Value = wscell.Value * 60%

wscell.Offset(0, 3).Value = wscell.value + wscell.Offset(0, 1).Value + wscell.Offset(0, 2).Value

Next

End Sub

Scenario 24

Create a macro to display a list of names of worksheets in the current workbook. Refer to Figure 19.7.

[image: image]

Figure 19.7 Scenario 24

Sub list_sheets()

„ Declare a variable as worksheet object

Dim sht As Worksheet

For Each sht In Worksheets

ActiveCell.Value = sht.name

ActiveCell.Offset(1, 0).Select

Next

End Sub

Auto-Executed Macros

The syntax is:

fydyr

Refer to Table 19.1.

TABLE 19.1 Auto-Executed Macros

	
To

	
Use

	
Run a macro as soon as the workbook gets opened

	
Sub auto_open()

End Sub

	
Run a macro as soon as the workbook is closed

	
Sub auto_close()

End Sub

Practice 3

Function Search_sheet(newSht)

  Dim sht As Worksheet

For Each sht In Worksheets

If UCase(sht.name) = UCase(newSht) Then

Search_sheet = "Sheet(" & newSht & ") exists"

Exit Function

 End If

Next

Search_sheet = "Sheet(" & newSht & ") does not exists"

End Function

Write a function (“Search_sheet”) to check for the existence of any sheet.

Practice 4

Write a macro to increase the salary by 2000 for each employee.

Scenario 25

Create a macro to generate a region-based and department-based sum of the salary and count of employees using a pivot table. Modify the code in such a way that each pivot should be generated from current data.

Sub Pivot_Summary()

Range("A2").Select
 ActiveWorkbook.PivotCaches.Add(SourceType:=xlDatabase, SourceData:=

_ Range("a2").CurrentRegion).CreatePivotTable TableDestination:="",

TableName:= _ "PivotTable2", DefaultVersion:=xlPivotTableVersion10

ActiveSheet.PivotTableWizard TableDestination:=ActiveSheet.Cells(3, 1)
 ActiveSheet.Cells(3, 1).Select
 ActiveSheet.PivotTables("PivotTable2").AddFields

RowFields:=Array("Region", _ "Dept", "Data")

With ActiveSheet.PivotTables("PivotTable2").PivotFields("salary")

.Orientation = xlDataField

.Position = 1

End With

With ActiveSheet.PivotTables("PivotTable2").PivotFields("Empcode")

.Orientation = xlDataField

.Caption = "Count of Empcode"

.Function = xlCount

End With

Range("C3").Select

With ActiveSheet.PivotTables("PivotTable2").DataPivotField

.Orientation = xlColumnField

.Position = 1

End With

End Sub

Refer to Training File6.xls.

Scenario 26

Write a code to remove duplicate records from the “daily” worksheet if they exist in the “master” worksheet. (Use a nested loop.)

Solution 26

Refer to Training File7.xls.

Sub duplicates()

Dim wscell As Range, tcell As Range
 Worksheets("master").Select
 Range("a2").Select

Range(ActiveCell, ActiveCell.End(xlDown)).Select
 For Each wscell In Selection

Worksheets("daily").Select
 Range("a2").Select

Range(ActiveCell, ActiveCell.End(xlDown)).Select
 For Each tcell In Selection

If tcell.Value = wscell.Value Then
 tcell.EntireRow.Delete End If

 Next

Next

ActiveCell.Select

End Sub

The same code can be written using the find command, as shown.

Sub duplicates_With_find()

Worksheets("master").Select

Rangec("a2").Select

Range(ActiveCell, ActiveCell.End(xlDown)).Select
 For Each tcell In Selection

Worksheets("daily").Select

Set c = Cells.Find(What:=tcell.Value)

If Not c Is Nothing Then Rows(c.Row).Delete
 End If

Next

End Sub

Scenario 27

Create a macro named “Merging_Sheets” which will copy data from all worksheets into one worksheet.

Your macro should generate a pivot for the total of the quantity sold per region, and then for the emp code after consolidation.

Solution

Sub Merging_Sheets()

Scenario27

'Add a sheet at the end and name it as consolidate and create headings

Worksheets.Add After:=Worksheets(Worksheets.Count)

ActiveSheet.Name = "consolidate"

ActiveSheet.Range("a1").Select

Range("a1").Value = "Product"

Range("b1").Value = "Sales"

Copy data from every worksheet to consolidate worksheet

For Index = 1 To Worksheets.Count - 1

Worksheets(Index).Select

Range("a2").Select

Range(Selection, Selection.End(xlDown)).Select

Range(Selection, Selection.End(xlToRight)).Select
 Selection.Copy

Worksheets("consolidate").Select

Cells(Range("a65536").End(xlUp).Row + 1, 1).Select ActiveSheet.Paste

Next, generate a pivot on consolidated data.

Sheets("consolidate").Select Range("A1").Select

Application.CutCopyMode = False

  ActiveWorkbook.PivotCaches.Add(SourceType:=xlDatabase, SourceData:= _

    Range("a1").CurrentRegion).CreatePivotTable TableDestination:="", TableName _

    :="PivotTable1", DefaultVersion:=xlPivotTableVersion10 ActiveSheet.PivotTableWizard TableDestination:=ActiveSheet.Cells(3, 1) ActiveSheet.Cells(3, 1).Select ActiveSheet.PivotTables("PivotTable1").AddFields RowFields:="Product" ActiveSheet.PivotTables("PivotTable1").PivotFields("Sales").

Orientation = _ xlDataField

End Sub

Conclusion

Mastering looping structures is essential for effective VBA programming. By utilizing loops, you can automate repetitive tasks, process large amounts of data, and enhance the overall efficiency of your VBA programs. This chapter provides a comprehensive overview of loops and their applications in VBA, equipping you with the skills to write concise and powerful code that saves time and effort.

Exercises

1. Write a VBA macro named “PrintNumbers” that prints numbers from 1 to 100 in the Immediate Window.

2. Create a VBA macro named “CalculateSum” that calculates the sum of numbers from 1 to 10 and displays the result in a message box.

3. Write a VBA macro named “EvenNumbers” that prints all even numbers from 1 to 20 in the Immediate Window.

4. Create a VBA macro named “Factorial” that calculates the factorial of a given number. The macro should prompt the user to enter a number, then display the factorial result in a message box.

5. Write a VBA macro named “ReverseString” that prompts the user to enter a string, then prints the reverse of the string in the Immediate Window.

6. Create a VBA macro named “TableOfSquares” that generates a table of squares from 1 to 10. The macro should display the number and its square in separate columns in a new worksheet.

7. Write a VBA macro named “CountCharacters” that counts the number of characters in a given string. The macro should prompt the user to enter a string, then display the count in a message box.

CHAPTER  20

Arrays and Collections in VBA

Introduction

Arrays and Collections are essential components in VBA programming, enabling efficient storage and manipulation of multiple values. In this chapter, we will explore their concepts, learn how to declare and use them, understand array indexing and dynamic arrays, and examine practical examples of their application in VBA.

Structure

In this chapter, we will discuss the following topics:

■Arrays

■Declaring the Arrays

■Using Arrays

■Array Indexing

■Declaring a Dynamic Array

■Resizing a Dynamic Array

Objectives

By the end of this chapter, the reader will learn the purpose of arrays and collections in VBA programming, learn how to declare, resize, and use arrays efficiently, and understand the advantages of collections over arrays for advanced data manipulation tasks.

Arrays

Arrays are a set of sequentially indexed elements having the same intrinsic data type. Each element of an array has a unique identifying index number.

Changes made to one element of an array do not affect the other elements. The different types of arrays are as follows:

■An array whose size is specified is a fixed-size array.

■An array whose size can be changed while a program is running is a dynamic array.

■A single dimension array contains only rows.

■A multiple dimension array uses rows and columns.

Declaring the Arrays

Arrays are declared the same way as other variables.

Syntax:

Dim name_Of_array(Size) As Data_Type

Example

Single dimension: Declaring a single dimension array variable of row size 10, which can store integer items.

Dim Myarray(10) As Integer

Multiple dimension (Max 60 dimensions): Declaring a multiple dimension array variable of three rows and five columns, which can store 15 integer items.

Dim Myarray(3 , 5) As Integer

Using Arrays

Using arrays can be explained with an example. To store daily expenses for each day of the month, you can declare one array variable with 31 elements, rather than declaring 31 variables.

Each element in an array contains one value.

Sub Single_array()

Dim curExpense(31) As Currency
 Dim intI As Integer

For intI = 0 to 31

curExpense(intI) = 20

Next

End Sub

Note In the above example, array index will start from zero.

Array Indexing

All array indexes begin at zero. Whether an array is indexed from 0 or 1 depends on the setting of the Option Base statement.

If Option Base 1 is not specified, all array indexes begin at zero.

Example

Option Base 1

Sub Single_array()

Dim curExpense(31) As Currency
 Dim intI As Integer

For intI = 1 to 31

curExpense(intI) = 20

Next

End Sub

Note In the above example, array index will start from one.

Declaring a Dynamic Array

By declaring a dynamic array, you can size the array while the code is running. Use a Dim statement to declare an array, leaving the parentheses empty.

Syntax:

Dim Name_Of_Array() As Data_Type

Resizing a Dynamic Array

Use the ReDim statement to declare an array implicitly within a procedure.

Be careful not to misspell the name of the array when you use the ReDim statement.

Array Example

Option Base 1 ' Initializing the array index 1

Sub Searchdata()

Dim mycell_array() As String ' Declaring the dynamic array

Dim a, i As Long

i = 1

Sheets(1).Select

a = Range("a65536").End(xlUp).Row - 1

ReDim mycell_array(a) ' Redeclaring the array size
 Range("a2", Range("a2").End(xlDown)).Select

For Each mycell In Selection mycell_array(i) = mycell i

= i + 1

Next

Sheets("database").Select

Range("a2", Range("a2").End(xlDown)).Select

i = 1

For i = 1 To a

For Each mycell In Selection

If mycell_array(i) = mycell Then

mycell.EntireRow.Delete 'mycell.Offset(0, 1).Value = "found"

End If

Next

End Sub

Conclusion

Arrays and Collections are powerful tools in VBA programming, facilitating the management of data sets and enhancing code efficiency. With a solid grasp of these concepts, you can optimize your VBA code, improve readability, and handle complex data structures effectively. Incorporating arrays and collections into your programming repertoire will expand your capabilities and enable you to tackle a wider range of VBA projects.

Exercises

1. Declare a dynamic array to store the daily expenses of five employees.

2. Use a loop to input the expenses for each employee for a specified number of days.

3. Calculate the total expenses for each employee and display the result.

4. Determine the employee with the highest total expenses and print their name and the corresponding amount.

5. Calculate the average expenses per day for the entire team and display the result.

CHAPTER  21

Debugging and Error Handling in VBA

Introduction

In this chapter, we will explore the important concepts of debugging and error handling in Visual Basic for Applications (VBA). Debugging is the process of identifying and resolving runtime errors and logical errors in our VBA code. Error handling involves implementing strategies to handle and manage errors that occur during the execution of our code. By understanding these concepts and utilizing appropriate techniques, we can create more robust and reliable VBA macros.

Structure

In this chapter, we will go over the following topics:

■Errors

■Error Handling

■Error Numbers

■Debugging the Macro

Objectives

By the end of this chapter, the reader will learn about errors, error handling, and error numbers, which, along with debugging, are crucial in VBA.

Errors

An error is generated if a statement fails. There are three types of errors:

■Logical: When the macro does not give the expected result. These errors can be handled by a change in logic and the trial and error method

■Technical: A runtime failure of any statement. Use the On Error statement to handle these errors.

■Syntax: These include incorrectly spelled keywords, mismatched parentheses, and a wide variety of other errors. Excel will flag your syntax errors and prevent the code from executing until they are corrected.

Error Handling

There are three ways to handle errors:

■Whenever an error is encountered, direct the control to the specific label or line of code.

•On Error GoTo line / label On Error

■Continue with the statement immediately following the statement that caused the run-time error.

•On Error Resume Next

■Disable any enabled error handler in the current procedure.

•On Error GoTo 0

Note An error-handling routine is not a Sub procedure or a Function procedure. It is a section of code marked by a line label or line number. If you do not use an On Error statement, any runtime error that occurs is fatal; an error message is displayed and execution stops.

Scenario 28

Open Scenario 22. It will generate an error if the Database worksheet does not exist. Modify the code to handle this error; your program should add a new worksheet if the Database worksheet does not exist.

Note Use On Error GoTo line / label.

Solution

Sub Error_handling1()

 On Error GoTo err_handler

 Dim EmpCode As Integer, next_row As Integer

 Dim EmpName As String

 Dim doj As Date

 Dim Salary As Currency

 Worksheets("database").Select

 Range("a65536").Select

 Selection.End(xlUp).Select

 next_row = ActiveCell.Row + 1

 Do

EmpCode = InputBox("Enter Employee Code") EmpName = InputBox("Enter Employee Name")

doj = InputBox("enter Date of Joining mm/dd/yy")

Salary = InputBox("Enter Salary of Employee")

Cells(next_row , 1).Value = EmpCode Cells(next_row , 2).Value = EmpName

Cells(next_row , 3).Value = Format(doj, "MMM DD YYYY")

Cells(next_row , 4).Value = Salary next_row =next_row + 1

Loop While (MsgBox("Do you want to continue?", vbOKCancel) = vbOK) MsgBox "Thanks"

Exit Sub

err_handler: Worksheets.Add

ActiveSheet.name ="database"

Range("a1").Value = "Emp Code"

Range("b1").Value = "Emp Name"

Range("c1").Value = "Date of Joining"

Range("d1").Value = "Salary"

Resume Next

End Sub

Error Number

Each runtime error has a number. If you know the number, you can trap the error by its number. For example, refer to Table 21.1.

TABLE 21.1 Error Numbers and Their Descriptions

	
Error Number

	
Description

	
61

	
Disk Full

	
4

	
Application defined or Object defined error

	
7

	
Out of memory

	
9

	
Subscript out of range

Try the following code to see the error for a particular error number.

Sub Show_Error():

Dim ErrorNumber

For ErrorNumber = 61 To 64 ' Loop through values 61 – 64.

Msgbox Error(ErrorNumber)

Next ErrorNumber

End Sub

Scenario 29

Open Scenario 28. If you leave inputbox empty, your macro will generate an error. Modify the code as follows (use On error resume next).

Sub Error_handling2()

  Dim EmpCode As Integer, next_row As Integer

Dim EmpName As String

Dim doj As Date

Dim Salary As Currency

  ' If there is any error it should continue with the next line On Error resume Next

Worksheets("database").Select Range("a65536").Select Selection.End(xlUp).Select next_row

= ActiveCell.Row + 1

Do

EmpCode = InputBox("Enter Employee Code")

EmpName = InputBox("Enter Employee Name")

doj = InputBox("enter Date of Joining mm/dd/yy")

Salary = InputBox("Enter Salary of Employee")

Cells(next_row , 1).Value = EmpCode Cells(next_row , 2).
Value = EmpName

Cells(next_row , 3).Value = Format(doj, "MMM DD YYYY")

Cells(next_row , 4).Value = Salary next_row =next_row + 1

Loop While (MsgBox("Do you want to continue?", vbOKCancel) = vbOK) MsgBox "Thanks"

End Sub

Debugging the Macro

Debugging is the process of finding and correcting runtime errors and logical errors. Press F8 to execute code one line at a time.

The Debug toolbar can be seen in Figure 21.1.

[image: image]

Figure 21.1 Debug Toolbar

Here are the various toolbar buttons:

■Design Mode: Turns design mode off and on.

■Run Sub/UserForm or Run Macro: Runs the current procedure if the cursor is in a procedure, runs the UserForm if a UserForm is currently active, or runs a macro if neither the Code window nor a UserForm is active.

■Break: Stops execution of a program while it is running and switches to break mode.

■Reset: Clears the execution stack and module level variables and resets the project.

■Toggle Breakpoint: Sets or removes a breakpoint at the current line.

■Step Into: Executes code one statement at a time.

■Step Over: Executes code one procedure or statement at a time in the Code window.

■Step Out: Executes the remaining lines of a procedure in which the current execution point lies.

■Locals Window: Displays the Locals window.

■Immediate Window: Displays the Immediate window.

■Watch Window: Displays the Watch window.

■Quick Watch: Displays the Quick Watch dialog box with the current value of the selected expression.

■Call Stack: Displays the Calls dialog box, which lists the currently active procedure calls (procedures in the application that have started but are not completed).

Here are some tips that will help you keep errors to a minimum:

■Use an Option Explicit. This will force you to define the data type for every variable that you use. This will avoid the common error of misspelling a variable name.

■Format your code with indentation. If you have several nested For...Next loops, consistent indentation will make it much easier to keep track of them all.

■Be careful with On Error Resume Next. This statement causes Excel to ignore any errors and continue. In some cases, using this statement will cause Excel to ignore errors that should not be ignored. You may have bugs and not even realize it.

■Use comments. Make a habit of writing comments, so that when you revisit your code you can understand the logic. Adding a few comments to describe your logic can save you significant time.

■Keep your subroutines and functions simple. Write your code in smaller modules, each of which has a single, well-defined purpose.

■Use the macro recorder to identify properties and methods. If you do not remember the name or syntax of a property or method, record a macro, and look at the recorded code.

■Consider a different approach. If you are having trouble getting a particular routine to work correctly, you might want to scrap the idea and try something completely different. In most cases, Excel offers several alternative methods of accomplishing the same thing.

■Use the debug toolbar.

Conclusion

Debugging and error handling are essential skills for VBA developers. By effectively managing errors and debugging our code, we can create more robust and error-free macros. Applying best practices, such as proper code formatting and commenting, and using the available debugging tools will help prevent and resolve errors efficiently.

Exercises

1. Open a new Excel workbook and navigate to the Visual Basic Editor (VBE).

2. In the VBE, insert a new module for writing the VBA code.

3. Create a subroutine named “CalculateStatistics” that takes no parameters.

4. Declare the necessary variables for storing input values and calculated statistics.

5. Implement error handling using advanced error handling techniques, such as “On Error GoTo,” “On Error Resume Next,” and “Err.Raise.”

6. Prompt the user to input a range of numbers from the worksheet using the “Application.InputBox” method.

7. Use the “WorksheetFunction” object to perform the following calculations on the selected range:

	a. Calculate the sum of the numbers.

	b. Calculate the average of the numbers.

	c. Calculate the maximum value in the range.

	d. Calculate the minimum value in the range.

8. Display the calculated statistics in separate message boxes.

9. Include comprehensive error handling to handle scenarios such as invalid input, empty selection, non-numeric values in the range, or division by zero errors.

10. Test the macro by executing it with different inputs and verify that it handles errors effectively and provides accurate results.

CHAPTER  22

User Forms and User Input in VBS

Introduction

User Forms and user input are essential aspects of creating interactive and user-friendly applications in Visual Basic Scripting (VBS). User Forms allow developers to design intuitive interfaces and capture user input for various purposes. By utilizing controls such as labels, text boxes, buttons, and more, VBS developers can create dynamic and responsive forms that enhance the overall user experience.

In this chapter, we will explore the process of creating User Forms in VBS, including designing the form layout, adding controls, and handling events. We will also discuss how to incorporate user input into your scripts, enabling your applications to respond to user actions and perform relevant tasks.

Structure

In this chapter, we will go over the following topics:

■User Forms

■Creating User forms

■Adding Other Controls

■Handling Events for the Control

Objectives

By the end of this chapter, the reader will learn about user forms and how to create them, add other controls, and handle events for the control. Understanding User Forms and user input in VBS will enable you to build interactive and functional applications that meet the specific needs of your users.

User Forms

User Forms can be used to create a customized Dialogue Box. Refer to Figure 22.1.

[image: image]

Figure 22.1 User Forms

Creating User Forms

To create a user form, follow these steps:

1. Click Insert Menu.

2. Select UserForm, as shown in Figure 22.2 (a).

3. This will add one object, UserForm1, in your workbook, as shown in Figure 22.2 (b).

4. Use the Properties window to change the name, behavior, and appearance of the form. For example, to change the caption on a form, set the Caption property, as shown in Figure 22.2 (c).

Refer to Figure 22.2.

[image: image]

Figure 22.2 Creating User Forms

Adding Other Controls

To add other controls, follow these steps:

1. Click toolbox in toolbars, as shown in Figure 22.3 (a).

2. Drag the control onto the form, as shown in Figure 22.3 (b).

3. Change the properties, such as name, font, and so on, from the Property window, as shown in Figure 22.3 (c).

Refer to Figure 22.3.

[image: image]

Figure 22.3 Adding Other Controls

Handling Events for the Control

To handle events for the control, follow these steps:

1. Open the code window for the form.

2. Select the form control.

3. Click the View code tool from the project explorer window, as shown in Figure 22.4 (a).

4. Select the control which you have placed in your form from Figure 22.4 (b).

5. Select the event for your control, as shown in Figure 22.4 (c).

6. Write code for the event, as shown in Figure 22.4 (d).

[image: image]

Figure 22.4 Handling Events for the Control

Scenario 30

Create a UserForm which will accept the participant’s information to get enrolled for the training. The form should have Insert and Cancel command buttons. When the Insert button is clicked, the information entered in the form must go into Excel. When the Cancel button is clicked, the Form should be closed.

Solution

Follow the steps below.

1. Insert a UserForm.

2. Change the name and caption from the property window.

3. The name of the form should be “USR_enroll.”

4. The caption should be “Training Enrollment Form.”

5. Design the form as shown in Figure 22.5.

[image: image]

Figure 22.5 Scenario 30 Solution

This example has several properties.

■Label: Displays descriptive text.

■TextBox: A TextBox is the control most commonly used to display information entered by a user.

■ListBox: Displays a list of values and lets you select one or more.

■ComboBox: Combines the features of a ListBox and a TextBox. The user can enter a new value, as with a TextBox, or the user can select an existing value, as with a ListBox.

■Frame: Creates a functional and visual control group.

■Properties: Attributes (properties or variables).

■Methods: Operations the object will perform with the attribute.

Refer to the following Table 22.1.

TABLE 22.1 Employee UserForm

[image: image]

Conclusion

In conclusion, User Forms and user input are essential components of Visual Basic Scripting (VBS) that allow developers to create interactive and user-friendly applications. By utilizing User Forms, developers can design intuitive interfaces, capture user input, and enhance the overall user experience. Incorporating User Forms and effectively managing user input can greatly improve the functionality and usability of VBS applications.

Exercises

1. Create a UserForm called “RegistrationForm” that captures user information for event registration. The form should include the following controls:

	a. Labels: “Name:,” “Email:,” “Phone:,” “Event:,” “Payment Method:.”

	b. Textboxes where the user will enter their name, email, and phone number.

	c. Combobox containing a list of events for the user to select.

	d. Option buttons for the user to choose their preferred payment method (e.g., “Credit Card,” “PayPal,” “Cash”).

	e. Command buttons: “Submit” and “Clear.”

Your task is to design the UserForm with the appropriate controls, set their properties, and handle events for the Submit and Clear buttons.

CHAPTER  23

Advanced VBA Techniques and Best Practices

Introduction

In this chapter, we delve into advanced VBA techniques and best practices to enhance the functionality and efficiency of Excel applications. We explore topics such as initializing control values, working with option buttons, creating custom buttons and user forms, utilizing Add-ins, implementing a case conversion Add-In, and creating menus through code. By mastering these advanced techniques, readers will gain a deeper understanding of VBA programming and be able to build more powerful and user-friendly Excel applications.

Structure

In this chapter, we will go over the following topics:

■Code to set initial values for the control

■Code for option buttons

■Code for Insert Button

■Code to show a User Form

■Add-ins

■Code for the Change Case Form

■Creating a menu with code

Objectives

By the end of this chapter, the reader will learn about advanced VBA techniques and best practices to enhance their Excel applications.

Code to Set Initial Values for the Control

To set initial values for the control, follow these steps:

1. Select View code from Project explorer.

2. Select the UserForm object.

3. Select Initialize event.

Refer to Figure 23.1.

[image: image]

Figure 23.1 Setting Initial Values for the Control

The code is as follows:

Private Sub UserForm_Initialize()

TXT_name.Value = ""

TXT_address.Value = ""

TXT_contact_no.Value = ""

TXT_company_name.Value = ""

CBO_subject.AddItem "MS Excel"

CBO_subject.AddItem "VBA with Excel"

CBO_subject.AddItem "MS Word"

CBO_subject.AddItem "MS Powerpoint"

CBO_subject.AddItem "MS Office"

CBO_subject.AddItem "MS Access"

CBO_subject.AddItem "MS Project" OPT_company.Value = True

End Sub

Code for Option Buttons

To apply option buttons, follow these steps:

1. Double-click OPT_company

Private Sub OPT_company_Click()

When the user selects this option, txt_companyname text box will be visible.

TXT_companyname.Visible = True

End Sub

2. Double click OPT_personal

Private Sub OPT_personal_Click()

When the user selects this option, txt_companyname text box will not be visible.

TXT_companyname.Visible = False

End Sub

Refer to the following Figure 23.2.

[image: image]

Figure 23.2 Adding Option Buttons

Code for Insert Button

Refer to the following Figure 23.3.

[image: image]

Figure 23.3 Adding the Insert Button

Double-click Insert Button

Private Sub CMD_insert_Click()

' Code to find out next blank cell

ActiveWorkbook.Sheets("Training Enrollment").Activate Range("a1").Select

Do

If IsEmpty(ActiveCell) = False Then

ActiveCell.Offset(1, 0).Select

End If

Loop Until IsEmpty(ActiveCell) = True

' Code to put values from Form to Excel

ActiveCell.Value = TXT_name.Value

ActiveCell.Offset(0, 1).Value = TXT_address.Value ActiveCell.Offset(0, 2).Value = TXT_contactno.Value ActiveCell.Offset(0, 3).Value = TXT_email.Value ActiveCell.Offset(0, 4).Value = CBO_subject.Value If OPT_personal.

Value = True Then

ActiveCell.Offset(0, 5).Value = "Personal" Else

ActiveCell.Offset(0, 5).Value = TXT_companyname.Value

End If

TXT_name.Value = ""
 TXT_address.Value = ""
 TXT_contact_no.Value = ""
 TXT_email.Value = ""

TXT_companyname.Value = "Enter your Company name "
 TXT_companyname.Visible = False CBO_subject.Value = ""
 OPT_company.Value = True

End Sub

To clear the form after inserting the values, follow these steps:

1. Double-click the Cancel Button.

2. Write the following code:

Private Sub CMD_cancel_Click() Unload me

End Sub

Code to Show User Form

To run the UserForm from Excel, insert a module and write a macro:

Sub Enrol_form()

USR_enrol.Show

End Sub

Add-ins

Add-ins are separate utilities. They provide some extra functionality to the software. The extension name of an Add In is .XLAM. In Excel, we have ready-made Add-Ins, such as Solver, Analysis Toolpack, Conditional Sum Wizard, and so on.

Scenario 31

Create an Add-in to convert the case into upper, lower, or proper, according to the option selected by the user.

Solution

Follow the steps below.

1. Design a form for Add-ins, as shown in Figure 23.4.

[image: image]

Figure 23.4 Designing a Form for Add-ins

2. Open a new Excel workbook.

3. Open Visual Basic Editor.

4. Insert a User Form and name it “Changecase.”

5. Assign the caption “Change Case.”

6. Drag Objects over the form.

7. Design it as shown in Table 23.1.

TABLE 23.1 Option Button

[image: image]

8. Open the code window for the Changecase form.

9. Write code for the different controls.

Code for the Change Case Form

Double-click OPTupper control.

Private Sub OPTupper_Click()

'When user select this option it will convert into Uppercase

 Dim rng As Range, wscell As Range

 Set rng = Range(refselect)

 For Each wscell In rng

  wscell.Value = UCase(wscell.Value)

 Next

End Sub

Refer to Figure 23.5.

[image: image]

Figure 23.5 Lowercase

Now, double-click the OPTlower control.

Private Sub optlower_Click()

'When user select this option it will convert into Uppercase

 Dim rng As Range, wscell As Range

 Set rng = Range(refselect)

 For Each wscell In rng

wscell.Value = LCase(wscell.Value)

Next

End Sub

Refer to Figure 23.6.

[image: image]

Figure 23.6 Proper Case

Double-click opt_upper control and write the following code:

Private Sub optproper_Click()

'When user select this option it will convert into Uppercase

 Dim rng As Range, wscell As Range

 Set rng = Range(refselect)

 For Each wscell In rng

wscell.Value = Application.WorksheetFunction.Proper(wscell.Value)

Next

End Sub

Double-click cmdexit control.

Private Sub cmdExit_Click()

End

End Sub

Insert a module and write a macro to show the Changecase form.

Sub show()

Changecase.show

End Sub

Creating Menu with Code

Refer to the following code:

Sub auto_open()

'This code will create a new menu in the existing menubar, which will have one menuitem i.e., Changecase Add-Ins

Dim newmenu As CommandBarPopup
 Dim menuitem As CommandBarButton

Set newmenu = CommandBars(1).Controls.
 Add(Type:=msoControlPopup, before:=CommandBars(1). Controls("help").Index)

newmenu.Caption = "E&xtras"

'When Changecase menuitem is selected it should show changecase form Set menuitem = newmenu.Controls.Add(Type:=msoControlButton) menuitem.Caption = "&Change Case" menuitem.OnAction = "show"

End Sub

Sub auto_close()

'This will remove menu when add ins is removed from the excel CommandBars(1).Controls("extras").Delete

End Sub

In this example:

■Auto_Open(): This is the first event that is fired whenever a Workbook is opened.

■Auto_Close(): This is the last event that is fired whenever a Workbook is opened.

Conclusion

In this chapter, we have explored advanced VBA techniques and best practices that can significantly improve the functionality and user experience of Excel applications. From initializing control values to handling option buttons, creating custom buttons and user forms, utilizing Add-ins, and creating menus through code, we have covered a wide range of topics. By applying these techniques and following the best practices outlined, readers can create more robust, efficient, and user-friendly Excel applications. With a solid grasp of these advanced techniques, readers will be well-equipped to take their VBA skills to the next level.

Exercises

Let us consider an example-based exercise that combines several of the advanced VBA techniques discussed in this chapter.

Scenario: You are working on a project management tool in Excel. The tool allows users to input project details, track progress, and generate reports. Your task is to enhance the tool by implementing the following features:

1. Add a UserForm called “TaskForm” that allows users to input task details, including task name, assigned person, start date, end date, and status (e.g., “Not Started,” “In Progress,” “Completed”).

2. Implement validation checks in the TaskForm to ensure that all required fields are filled and that the end date is not earlier than the start date. Display appropriate error messages if any validation fails.

3. Create a custom Insert button on the TaskForm that adds the entered task details to a designated worksheet, such as “ProjectTasks.” Ensure that each new task is inserted on a new row, then clear the input fields after successful insertion.

4. Implement a menu system using VBA code. Create a new menu item called “Project Management” in the Excel menu bar. Under the “Project Management” menu, add options to open the TaskForm, display a list of all tasks, and generate a summary report.

5. Develop a summary report function that calculates and displays the total number of tasks, the number of tasks in each status category, and the percentage of completed tasks. The summary report should be displayed in a new worksheet named “TaskSummary.”

6. Implement an Add-In called “TaskUtilities” that provides additional functions for task management, such as sorting tasks by name or date, filtering tasks by status, and generating specialized reports. Test the Add-In by using it in different workbooks to verify its functionality.

7. Apply best practices for code organization, error handling, and optimization throughout the project to ensure clean and efficient VBA code.

CHAPTER  24

Building Custom Add-ins with VBA

Introduction

In this chapter, we will explore the process of building custom Add-ins with Visual Basic for Applications (VBA) in Excel. Add-ins are additional functionalities or tools that can be integrated into Excel to enhance its capabilities and streamline workflows. We will cover topics such as protecting Add-ins with a password and using Add-ins effectively.

Structure

In this chapter, we will go over the following topics:

■Protecting your Add-ins with a password

■Using Add-ins

Objectives

By the end of this chapter, the reader will learn how to protect their Add-ins with a password, as well as how to utilize Add-ins efficiently to enhance functionality.

Protecting Your Add-ins with a Password

To protect your Add-ins with a password, follow these steps:

1. Collapse all the objects of the project (the Excel file in which you have inserted forms and modules for Add-ins).

2. Right-click over that project.

3. Select VBA project properties.

4. Select the Protection tab.

5. Select Lock for viewing.

6. Set a password.

7. Click OK.

Refer to Figure 24.1.

[image: image]

Figure 24.1 Adding a Password

8. Once you are ready with the form and modules of your Add-ins, switch to the Excel environment.

9. Save the current file with the type Add-ins (.xlam extension), as shown in Figure 24.2.

[image: image]

Figure 24.2 Saving the Current File

Using Add-ins

To use Add-ins, follow these steps:

1. Click on the Office Button.

2. Click on Excel Options.

3. Select Add-ins.

4. Click on the Go… Button, as shown in Figure 24.3.

[image: image]

Figure 24.3 Selecting the Add-ins

5. Browse to locate your Add-ins, as shown in Figure 24.4.

[image: image]

Figure 24.4 Locate Your Add-ins

Conclusion

In conclusion, building custom Add-ins with VBA empowers users to extend the functionality offered by Excel and streamline their workflows. Protecting Add-ins with a password ensures their security. Utilizing Add-ins effectively enhances productivity and enables users to access additional features and tools within Excel.

Exercises

1. Open Microsoft Excel and create a new workbook.

2. Create a simple VBA macro that formats the selected cells with a specific font, font size, and background color.

3. Save the VBA macro as an add-in with an .xlam extension.

4. Protect the Add-in with a password to ensure its security.

5. Test the Add-in by installing it in Excel and using it to format cells in different worksheets.

CHAPTER  25

ChatGPT with Excel

Introduction

In this chapter, we will explore the integration of ChatGPT with Excel. Excel is a powerful tool for data organization and analysis, while ChatGPT is an AI language model that can assist in various tasks. By combining these tools, you can leverage the capabilities of both to enhance your Excel experience.

Structure

In this chapter, we will go over the following topics:

■Using ChatGPT with Excel

Objectives

By the end of this chapter, the reader will learn how to integrate ChatGPT with Excel to further leverage the power of Excel and improve efficiency in tasks such as data analysis, troubleshooting formulas, and formatting.

Using ChatGPT With Excel

Excel is a powerful tool for organizing and analyzing data. On the other hand, ChatGPT is an AI language model that can provide assistance in various domains, including Excel. Below are some ways you can use Excel and ChatGPT together.

■Ask for help with Excel functions and formulas. You can ask ChatGPT for help with specific Excel functions or formulas that you are having trouble with. Simply describe the problem or provide an example, and ChatGPT can suggest a solution or provide a step-by-step guide, as shown in Figure 25.1.

[image: image]

Figure 25.1 Asking ChatGPT for Help With Excel Functions and Formulas

■Get tips and tricks for using Excel. ChatGPT can provide tips and tricks for using Excel more efficiently. For example, you can ask for shortcuts, formatting tricks, or ways to automate tasks in Excel, as shown in Figure 25.2.

[image: image]

Figure 25.2 Asking ChatGPT for Tips and Tricks for Using Excel

■Get insights from data analysis. Excel can be used to analyze data and generate insights, as shown in Figure 25.3. ChatGPT can help you interpret the results of your analysis or suggest new ways to look at your data, as shown in Figure 25.4.

[image: image]

Figure 25.3 Data on Excel

Go to ChatGPT, and in chat, write how to analyze this data. The response is as shown in Figure 25.4.

[image: image]

Figure 25.4 ChatGPT on How to Analyze This Data

■Collaborate on Excel Spreadsheets. You can use ChatGPT to collaborate on Excel spreadsheets with others. For example, you can ask ChatGPT to suggest changes or improvements to a spreadsheet, or to provide feedback on a specific aspect of the data. Figure 25.5 features a spreadsheet with data.

[image: image]

Figure 25.5 Spreadsheet with Data

If you ChatGPT to provide feedback on the pivot table shown in Figure 25.5, the following response is generated:

[image: image]

Figure 25.6 ChatGPT Response

■For Coding in Excel. You can generate any code using ChatGPT, such as a code for converting numbers to words in Excel using VBA.

To convert words to numbers in dollars in Excel using VBA, you can create a custom function that uses the Microsoft Speech Object Library to convert the text to speech and then extract the numbers from the spoken text. Here is an example of how you could do this:

1. Open a new Excel workbook and press Alt + F11 to open the VBA editor.

2. In the editor, go to Insert | Module, to create a new module.

3. In the new module, copy and paste the code shown in Figure 25.7.

[image: image]

Figure 25.7 Code to be Copied Into the New Module

4. Save the module and return to your Excel worksheet.

5. In the cell where you want to convert words to numbers in dollars, enter the following formula:

=WordsToNumbers(“Two thousand five hundred rupees and fifty paise only”)

6. Press Enter to calculate the result.

7. This formula will convert the words “Two thousand five hundred rupees and fifty paise only” to the number 2500.50. You can replace the example text with the actual text you want to convert.

The combination of Excel and ChatGPT can help you work more efficiently and effectively with data and can provide new insights and perspectives on your work. Let us say that you have a spreadsheet with sales data for your company. You want to calculate the total sales for each month and create a chart to visualize the data. To do that, you need to follow the steps below.

1. First, you can use Excel to create a new column and use the MONTH function to extract the month from the date in your sales data.

2. Next, you can use the SUMIFS function to calculate the total sales for each month. You will need to specify the criteria for the function to use to sum the sales data for each month.

3. Once you have your totals, you can create a chart to visualize the data. Select your data and go to the Insert tab, then choose the type of chart you want to create.

4. If you are not sure which chart type to use or how to format the chart, you can ask ChatGPT for suggestions. For example, you could ask, “What’s the best chart type for visualizing sales data by month?” or “How can I make my chart more visually appealing?”

5. ChatGPT can provide suggestions based on best practices and design principles. You can also ask ChatGPT to explain specific features or settings in Excel if you are not sure how to use them. Refer to Figure 25.8 for an example.

[image: image]

Figure 25.8 Asking ChatGPT for Help With Specific Features or Settings in Excel

Using Excel and ChatGPT together can help you work more efficiently and effectively with data and can provide new insights and perspectives on your work.

Conclusion

In conclusion, integrating ChatGPT with Excel provides valuable assistance and guidance for users. By leveraging the power of Excel functions and formulas, along with ChatGPT’s capabilities, users can improve their efficiency in tasks such as data analysis, troubleshooting formulas, and formatting. ChatGPT can also provide tips, tricks, and insights for using Excel more effectively. Additionally, the ability to collaborate on spreadsheets and seek feedback from ChatGPT enhances the overall experience of working with Excel. By combining these tools, users can optimize their data management and analysis workflows, leading to enhanced productivity and better decision-making.

Exercises

1. Open Microsoft Excel and create a new workbook.

2. Enter the following sample sales data in a worksheet.

TABLE 25.1 Sample Sales Data

	
Dates

	
Sales

	
01-01-2023

	
$500

	
05-01-2023

	
$300

	
10-02-2023

	
$750

	
15-02-2023

	
$600

	
03-03-2023

	
$900

	
07-03-2023

	
$400

3. Create a VBA macro that performs the following tasks:

a. Calculate the total sales for each month.

b. Identify the month with the highest sales.

c. Display the calculated totals and the month with the highest sales in a message box.

Index

A

Absolute cell reference, 21–22

Advanced Filter, 76–77

Arrays, VBA

declaration of, 224

dynamic array

declaration of, 225–226

ReDim statement, 226

indexing, 225

types of, 224

Autofill feature, 15–16

AutoFilter feature, 72–73

B

BODMAS rule, 30

Buttons

in Excel worksheet, 168–171

modifying menus or buttons, 164–168

on Quick Access Toolbar, 164

recorded macros, edit, 171–176

C

Cell references

absolute cell reference, 21–22

mixed cell reference, 22–24

relative cell reference, 20–21

Charts

for data, 144

designs, 143

filters option, 145

recommendations, 147

Sparklines, 147–149

templates, 145

types of, 142, 145

Waterfall, 146–147

ChatGPT

coding in Excel, 265

collaborate on Excel spreadsheets, 264

data analysis, 262–263

vs. Excel, 266

help with Excel functions and formulas, 262

response, 265

tips and tricks for using Excel, 262

Conditional formatting

icon sets, 117

new formatting rules, 117

using cell values, 115

using formulas, 116–118

Consolidate option, 82–89

Customized sort, 67–68

D

Data filter, 74

Data Validation

methods of, 52–55

rules for, 51–52

E

Excel

Backstage view

options available in, 4–5

share option, 6

ChatGPT (see ChatGPT)

components, 3–4

data mining, features in, 11–13

default settings, 7–8

features of, 1

Format Table, 9

interaction, 6–7

objectives, 2

option window of, 7

quick data analysis tool, 10

turnaround time reduction techniques

Autofill feature, 15–16

conditional formatting, 14

data validation, 14

Excel templates, 15

formulas and functions, 14

keyboard shortcuts, 13

Pivot tables, 15

sorting and filtering features, 16

F

Filters

Advanced Filter, 76–77

AutoFilter feature, 72–73

charts, 145

Data filter, 74

Number filter, 73

Text filter, 74

Formulas, 30–31

Functions

IF function, 32–33

IF with AND, 35–36

IF with NOT, 36–37

nested IF function, 34–35

syntax of, 31, 32

H

HLOOKUP, 38–39

I

IF function, 32–33

IF with AND function, 35–36

IF with NOT function, 36–37

Index function

index-match, 44–45

syntax, 44

L

Lookup functions

HLOOKUP, 38–39

VLOOKUP

column function in, 41–42

function Arguments, 38

match function in, 42–43

with Range Non-Zero, 40–41

with Range Zero, 39–40

Loops, VBA

Do...Loop statements, 208–210

Each...Next statements, 211–212

For...Next statements, 210–211

M

Macros, VBA, 152

assigning buttons to (see Buttons)

auto-executed macros, 218

create, 153

debugging, 233–235

define, 154–155

description, 155

lcase () function, 213

Proper_case function, 213–214

record, 154

Relative Reference, 156–158

run by name, 159–161

running methods, 158

shortcut key, 155

stop recording, 156

storage, 155

Ucase () function, 212

uses, 152

Mixed cell reference, 22–24

Multilevel sort, 66–67

N

Named range

create, 24–25

delete, 27

rename/edit, 25–26

Nested IF function, 34–35

Number filter, 73

P

Pivot table

create, 96–99

data model, 110

percent of grand total, 99–101

PivotChart, 102–105

Power Pivot, 109–111

Power View, 109

recommendations, 95–96

slicer, 105–107

timeline, 108

types of fields, 94

Protection

employee information system, 58

file with password, 61–62

levels of, 58

part of worksheet, 60–61

workbook level protection, 59–60

worksheet, password protect, 59

R

Relative cell reference, 20–21

S

Simple sort, 66

Slicers, 105–107

Sorting

customized sort, 67–68

definition of, 66

multilevel sort, 66–67

simple sort, 66

Sparklines, 147–149

Subtotal function

multiple levels of subtotals, 81–82

single level subtotal, 80–81

T

Text filter, 74

Trace Dependents, 50–51

Trace Precedents, 48–50

Turnaround time reduction techniques

Autofill feature, 15–16

conditional formatting, 14

data validation, 14

Excel templates, 15

formulas and functions, 14

keyboard shortcuts, 13

Pivot tables, 15

sorting and filtering features, 16

U

User Forms in VBS, 238

add other controls, 239

create, 238–239

handle events for the control, 240–242

V

VBA

add-ins, 250–251

password protection, 258–259

use, 259–260

arrays

declaration of, 224

dynamic array, 225–226

indexing, 225

types of, 224

Auto_Close(), 255

Auto_Open(), 255

branching techniques, 188–191

Changecase form, 251–254

conditional statements

If...End If statement, 194

Select Case statement, 195–196

definition of, 152

errors

error-handling, 230–231

error numbers, 232–233

types of, 230

Function procedure, 186–188

InputBox function, 202

insert button, 248–250

loops

Do...Loop statements, 208–210

Each...Next statements, 211–212

For...Next statements, 210–211

macros, 152

assigning buttons to (see Buttons)

auto-executed macros, 218

create, 153

debugging, 233–235

define, 154–155

description, 155

lcase () function, 213

Proper_case function, 213–214

record, 154

Relative Reference, 156–158

run by name, 159–161

running methods, 158

shortcut key, 155

stop recording, 156

storage, 155

Ucase () function, 212

uses, 152

modules, 184–185

Msgbox function, 202

option buttons, 247–248

procedures, types of, 180

select and activate

cells, 202

rows and columns, 203

set initial values for control, 246–247

Sub procedure, 185–186

UserForm, 250

uses of, 152

variables and constants

data types, 201

declaration of, 200–201

features of, 200

Option Explicit statement, 202

Visual Basic Editor, Code Window, 181–183

working with

application object, 204

sheets, 203

workbooks, 204

VLOOKUP

column function in, 41–42

function Arguments, 38

match function in, 42–43

with Range Non-Zero, 40–41

with Range Zero, 39–40

W

What-if Analysis tools

data tables

one variable, 123–124

two variable, 124–125

Goal Seek feature, 122–123

scenarios

create, 126–127

delete, 127

display, 128

merge from another worksheet, 128–129

summary report, 127

Workbooks

hyperlinks, 138–139

merge, 136–137

share, 136

Track Changes feature, 137–138

Worksheets

auditing features, 135

consolidation feature, 133

intersheet reference, 132

OEBPS/image/Figure_19.7.jpg
Sheet name l

 Sheet4

Validation

Emp Inf

Salary

Mixed cell

Ad Filter
Scenarios
Financial Functions
Functions

OEBPS/image/Figure_4.1.jpg
Home Insert Page Layout Formulas Data Review View

= X Cut

& Calibri -1 <A A e |
Eg Copy ~
Paste - < < .| = S
. ¥ Format Painter u [l 2-A- = o

Clipboard [} Font ~ Alignment
C6 - e
4 A B | G | D

No. of Units Sold Cost Per Unit Total Revenue

2500 11250 28125000

OEBPS/image/Figure_9.10.jpg
W @D HBRY S 9

£ £ o ot G o o by
Nt ke

suonts Gifcami |11 | A A B~ % 9 B gt ot

- o A-EH- GBS
e e i
" [e— ”
AL cory b £
1
a el
3 Yeanfo [seicn IATE - sum ofary
a[o2000 > 2
5 8
6 Grandm 2 a7
i Sl Years OATE
8 Eomdcolan >
s
i 8 sou.
1 0 o
B o >
3
18 X Remee Yers OATEY
15 2 Show omis
1
= S i senge..
= ottt gt

e [[

£ searcn

Ouveloper

My Pvabie e Design

mn@ ® & - o0 x
(5 conmers | (N

e

PivotTable Fields

Bowre
D

O cusmae
0 opucr i

[———

T s 1 cotores
= o > v
VoAt -8 [smeray -

0 Detrtayout pte
B E M - s e

OEBPS/image/Figure_4.2.jpg
28125000

OEBPS/image/Figure_4.3.jpg
m Data Review View Help Q Tell me what you want to do
B O = =5, & Define Name -
— Y-

| Text Date& Lookup& Math& More Name |
- Time~ Reference~ Trig~ Functions~ Manager L5 Create from Selection | ¥ Remove Arrows -

2o Trace Precedents

=% Trace Dependents

piseriine P A

OEBPS/image/Figure_4.4.jpg
File Home Ins LR ECINal Formulas view ew

ALY RIS 2] @ -

Insert AutoSum Recently Financial Logical Text Date & Lookup & Math& Mc
Function = Used ~ = < ~ Time ~ Reference~ Trig~ Functi
Function Library

(] M £ || =A2*B2

] A B © D

2| m 28125000

OEBPS/image/Figure_15.14.jpg
2
EeTr——r -

T x
[N S

23

[SPE . E————
Doz o [E
Do
Eome

OEBPS/image/Figure_19.3.jpg
BEFORE

anfd Last Nanfl 1
2 1 raja Raymondeka|
EH| 2 kuldeep Sharma
4 2 suman Shinde
5 3 |beena Mavadia
6 4 |seema Ranganathar
7 5 |deepak |Jain
8 5 |l D'Souza
9 6 neena Mukherjee
10 7 pankaj Sutradhar
1 8 |andre Fernendes
12 9 |suay Madhrani

Lele

iy
S
@

=

5
B

OEBPS/image/Figure_15.15.jpg
| Text Import Wizard - Step 3 of 3 ? x

This screen lets you select each column and set the Data Format.

Column data format

@® general
“General’ converts numeric values to numbers, date values to dates, and all remaining
Oten values to text.
| Opste: [omy > Advanced...
{ O Do not import column (skip)
Data preview
E 2 ral ene 1 ene
ender fcors [pass Fail Letter ward
e 0 [pass G
0 Passp pve
3 6 [pass UTLIER
2 fass | pve
S fpass e
2 frail UTLIER
< >
Cancel < Back Next > Einish

OEBPS/image/Figure_19.4.jpg
BEFORE AFTER

1
1 2 1 Rea
2 3 2 [Kudeep
2 4 2 sumn
5 5 3 |eena
% 6 4 |seema
B 7 5 |Deepak
8 5 |uie
2 9 6 |Neena
6 Mukheriee 0 7 |anka
7 Sutrachar 1| 8 |Ande
8 Femendes D9 susy
9 Madhrani 13 10 |shipa
10 Lele 4 1 |Meera
15 7 |Sheetal

OEBPS/image/Figure_15.12.jpg
a ° [
Fie Home lnsent Fomuas

4
s I First Nanfd Last Nanfd_Deptl Reziofd Deptcod

6 1 RaymondekafSales.

m 2 Sharma [Admin [north 70 Maros i Al Open Workbooks - X
8| 2 Stinde |Sales south 10 | oucipin 007,50
s 3 Mavada |MKg [east 20 00/5.25
0 4 RanganatharRED [north 30 009,00
u s \Jain Personal [east 6 00/5.92
2 s DSowza [R&D |west £ 005,32
B 6 Mukheriee [R&D [north 0
w7 Suradnar [Sales [north 10
58 Femendes (Mg |north 20
P Madhreni |Finance [east a0
7o o dmin lwest 0

a5 Function and Absolute value Logical Functions Conditonsl formatting + | ——

T i

OEBPS/image/Figure_19.5.jpg
Mictosoll el

e i

Canosi

Microsot Dl X

Thankes

OEBPS/image/Figure_15.13.jpg
Previous code

iGanerah 7] e oo

Sub Filter_Macro()

Range ("a7") .Select
Range ("AS:H106") . AdvancedFilter Action:=x1FilterInPlace, CriteriaRange
Range ("A1:B2"), Unique:=False

End Sub

Modify the code as follows

(General) | [Filter_Macro

Sub Filter Nacro()

Range ("A2") .Value = InputBox("Which Department 2")

Range ("a7"} .Select

Range ("A5:H106") . AdvancedFilter Action:=x1FilterInPlace, CriteriaRange:= _
Range ("A1:B2"), Unique:=False

End Sub

OEBPS/image/Figure_19.6.jpg
R R e il
R T - i T
G i fum Reeerrd
85 e [oswe mD
53w s RO
07 | S sues
B fee e
5 e e Fee
ERE =

by Or-ian 16
302 [|swma e fom | 70 ol
Sa fem | |deses
7n e | & | Tror
35 e o || oeseroe
HEE bom | |oasepcs
o7 fona o | %o |ossere
B (e o | 2| cssers
I et | w0 |orsess
| B4 B | = i

OEBPS/image/Image2724.jpg
Ql Sort Oldest to Newest
Z | sort Newest to Oldest

Sort by Color >

Sheet Vie >

Filter by Color >

Date Filters

| search (Al

(Select All)
2017
2016
2013

v
v
v
v
V12012
v
o
v
v

2010
2008
2007
2006 v

‘: Cancel J |

B-8-8-8-8-0-88

OEBPS/image/Figure_19.1.jpg
Mrosot cel

antr you e

Cancel

Mitosoft Fcel

Narme cannot e bk

o

OEBPS/image/Figure_19.2.jpg
BEFORE

1 [Raa Raymondeka|
2 |Kudeep [Sharma

2 |suman [Shinde

3 |Beena Mavadia

4 |seema |Ranganatha
5 |Deepak [Jain

5 |duie D'Souza

6 [Neema [Mukherjee
7 |Panksj |Sutradhar
8 |Andre Femendes
9 [suay Madhrani
10 [shipa Lele

11 |Meera Lawani

7 |sheetal |Desai

CmND D s BNN

23

-

RAJA
KULDEEP
SUMAN
BEENA
SEEMA
DEEPAK
JULIE
NEENA
PANKAJ
ANDRE
SUJAY
SHILPA
MEERA
SHEETAL

OEBPS/image/Figure_11.3.jpg
Scenarios:

No Scenarios defined. Choose Add to add scenarios.

Delete

Loan Amount 100000

Rate of Intrest 10.50%
Edit.. Payment /month

PMT [EMIT

Merge...
Summary...

Changing cells:

Comment:

OEBPS/image/Figure_11.4.jpg
Changing Cel

Loan_Amount 100000 150000 200000

Rate_of_Intrest 10.50% 10.60% 11.00%
36 24 48

Loan_Amount 100000 150000 200000

Rate_of_Intrest 10.50% 10.60% 11.00%

Payment__month 36 24

PMT__EM (53.25024) ($6.963

Notes: Current Values column represents values of changing cells at
time Scenario Summary Report was created. Changing cells for each

scenario are highlighted in gray

OEBPS/image/Figure_22.1.jpg
[MIM College Jati Software Py, Ltd. o

RollNo. 17 p Code
p Name
Search cancel portient
Region
salary

Lnsert | [Eonee]

OEBPS/image/Figure_22.2.jpg
e I Format Debug 7 Microsofi Visusl Basic for Appications - Book! « [Userform 1 (UseFoem]
o8 file Et View Insert Format Debug Bun lools Adddins Window Help

Bracedure...

Module
Class Madule

= 59 Microseft Exced Objects
File... W shests (Shest1)
£ Thisweorkbeok
& 3 Foms
[UseForm1
Praperties - UsssForm1 o E3Modie
—I 3 Modulel
{Usexformi Userform >} 25 VBAProjoct (FUNCRES.XLAM)
C Alphabetic Categorized + 2% voAProject (PLRSOMALXLSE)
[UserFormi 7
[l aneooo0ors.

W 0000128

0 - fmBorderStyleiome
userform1

0 - fmCydeAllForms
32000

Tre

OEBPS/image/Figure_9.19.jpg
& s @) B B
v EFedsenings
:
3 T - Sumofary
tlosss [Eull
e s
fareses)
s ol
1
n
b
i
i
R e [

o o Bl e Do [camrens

£ = il

A e
O PivotTable Fields %
2 Gomsao i o [+
[—
B B F

e e - [amean -

OEBPS/image/Figure_15.10.jpg
Advanced

Action
4 Fiker the list, in-place
€ Copy to another location

List range: 546:$H5106

Copy to: 'k]

I™ Unique records only

o

Crteriarange: [Salaryigagigesz Seledl

Database
Range
Criteria

Range

OEBPS/image/Figure_9.18.jpg
JHERY ¢ C 9 n ouv £ sewen we @ ® & - o x

Fle vome imet Fomiss Dus Reiew View Pagelyout Devoper Hep [6 commen | (R

B G VB B éﬁvp

ot ® 5 e n sy e s g

o2 v v
A c o e 3 3 H ' i K L % N o P

1

2

3 mer sumofary Sumstry

4 0999 7 ©

5 10001999 =

& 20002999 »

7 30003999)

5 4000499 -

© Grand Total 2 ot

10 i

n n

2 .

1

X " o woms mows smws swowm

15 :

= ner

v -

<o e g B

OEBPS/image/Figure_15.11.jpg
T Sl Microsoft Excel E

filtwy_| ———— Which Department >

Cancel
[admil
ﬁ
Which Regicn ?
Cancel

OEBPS/image/Figure_9.17.jpg
a . B °
Flo Mams bt fomus Owa fmew Vew Piglm Guelper b forsledns Cesgn 6 oo | R
e Io4o O [

c o+ D s s
e

B om-%0uR

1 8 € L £ £ e Y ! 2 * i PivotTable Fields vox
T

H on———

7 e | g

o ol I
Bl o il G i

z) e e raatl Lo e

4 185000 BESgyEgEgEsgEEgEy .

OEBPS/image/Figure_9.16.jpg
A i @D EEBF I C 9o Dav | P e @ ® & - 0 x
T e o [i T ot B S B [
b B O Iy 0|6
Do = el BB L 4 il [8

- 65w Sy

h

e ——— s, |

e s Z

5 21042007 - 27042007 a n

7 19052007 -25.05:2007 3 ®

Vo emaoy :

5 22052007 28082007 i o;l I l l .

10 29092007 -05:10-2007 2 PR R RN AR PR AR]

5 v w5 Siifdneidaiasetase

S

- i | figdiagagadniiisg

S P

OEBPS/image/Figure_9.15.jpg
a . R [}
Mo fomm et Fomu Dua faien Ve Paselayos Demcper fulp iibesden Dein [o | (CERD

ot I E B I iy O @

Fowwn B
Ty g Coeend foman Soat et
| WA SN oo bt | RE

5 e P o~
A 8 c o e £ . H ' 7 X L m N -
Smerary

oy
Dsa (o010
Dbt 16008

10 _""‘"" »
E [| I | I I I

2 .
= = an @ | an

) et 7 07 2

= Yo (DATE) - Qurts (OATS) - ™

=]

v -
BN o [T e .

T N e B B D - ———+ u

OEBPS/image/Figure_9.14.jpg
D EHB B

9 oy

G m A A

& &
e
i v

Sk an

3

- Quarters (DATE) - Sum of QTY

v .
aw v
an .

»

Qi s

s aw =

» an =

11 oo Toral

22 Grand Total

5

1

1

1

o

o e e+

AT SRR

B

£ seach

@ O & - o

Pt Arshzs Draign

= an BB O E
CIERITR | Rt v bl coh o
—

an ae as | e an as
Yours (0TS - Querrs(0ATE] - -

B D -—a—-

x

G ommens | (D

OEBPS/image/Figure_9.13.jpg
@ (] L
Fle Home et Fomis Ost eiew View Pgelaod evdopm Hep Poiiblesnaie Deson
] & | £ Gmea DB m B
pate B , . ™ Conditonsl Fommatss Col
et B | % 5[(St et ot
A L 5w w e
As viilx v fx 2007
- c E G it
1
2 . smstan
BEE ~ e o
aae g
5 | Wlsuiegse (00201 | 4 &
6| Dodngse [160s2me] s 20
7 s
. o s
9 29 10
s B I
: 1 (NERRRR N
4 M ERERRN
& P
s 007 on
15 | [16 Years (QATE) = Wonths (OATE).
16 7
I e £
<5 et | * — B

[R Y —

| Comments
Bimet ~ T v /\v
N el -
Bt | O« s st o
. g g
PivotTable Fields v ox
Chocss s 1 ad o repor ®-|
S 2
Do
Oacc 1
(S
Dl ropucr t

[—

T s 1 Comns
= fom = Ve
Voo +|3 [sumotary E

0 e ayout Updte
B D D - —— e

OEBPS/image/Figure_9.12.jpg
& s =N wuos @ = s
o P % ,

P s e et ovn e (0 commens

E B o) . P40

E Mustustions | Ad| I E [!-ﬁ Iﬂ &m m Comment Tt | Symboks

7] liX v F e B e Clustered Column 3 =

5 & @® re -

NSNS 6 | C} i -
i = i otTable Fields v x
2 - - l - | S — [@-]
3 Months (DATE) - Sum of QTY. | |- I
i m G dokbhel 2]
5 Feb 4 B stock J
5 [war s B suie ot
7 Apr 1 & e acc 1
5 May 1 B eemap f—
5 un 2 @ suines bicour g
10 1 , W o P
11 mug = 1 ot
15 2 1 et s e
15 GrandTotal 1 = s
1 o
o 0 con from = vam
1 ontonty <[sumotare .
v o T

G Shel et b c——) Odo o Udle
ety BB T Ao Imesipne W M - e

OEBPS/image/Figure_9.11.jpg
W e @D HE DY I C 9 oy £ saen men @ ® & - o0 X

Mo Wome it fomiss Oua Reior View el Oeslops e orbbiAmyze Do (6 connens | (N

B8 88

S Gond |t S ot) st

outsdes (] s

i [
e THlx v AL o
s G noos B S B a o
PivotTable Fields
fh e E—
4 O
5
19 O 1
1 fEpe—
u Dot -
7 Orag e bebween rcas belows:
» -
20 7 s oo
i
Mo < [smoay -
s Sheetl | pivot + ¢ e———— ©0 Defer Loyt Upcate

gy - - i

OEBPS/image/Figure_9.21.jpg
a O + 3
Fle Home et Fomiss O Reiew View Pegelyout Devsoper Hep
[T s 5 i
sworca | Bamotary [ET——
R i seiogs © 8 it comecons
o
st Tmires
A
1 Do
: [
3 NET - sumofary
4 0999 37
S 10001999 3s
5 2000299 B
7 3003999 P
& [4000-4599 10
9 Grand Total i
10
1
1
1
1

0009

10001999 20002009

Pivotlable Anayze Design

R &

ChngeData Actors
S | | ed

57 ikt o
e

ot

30003999 4000 400

OEBPS/image/Figure_9.20.jpg
A e @D E BB I D

Fle Home et

oo

Fomuae

e .
st sers | G
cusTnawe X %
A B ¢
£y
b
5 wersmefary
4 059 Ed
s 10001990 E
& 20002599 o
7 30003999 2
5 0001599 10
5 GandTow 11
»
n
n
1
1
oy
s
u
I s T

P p——

Dua Feien View Pogelsyaut Deeloper Hep Slker

@ ® & - o x
[commer | (IR

B sewch

yteng s+ B | s [Dwe saon
sttt - B0 ez -
Asorcinten 2| itz 1) O 28
T T T Y S U e T B

OEBPS/image/Figure_22.3.jpg
(a) BA =

(b)

Properts - Toxtbor

[rextioxt Tecox
Mo cargored

() Totort ~
[utoze Fase

a2 Fase

NuorcSainz True

jBoccoor [asoon00nsa.
sty - nBeskSeopae
ordrcolor [880000006,

fordrye - mborcersyeione
(Conrtseurcs

s e (c)
= -

OEBPS/image/Figure_22.4.jpg
Insert | FormatDebug
Procedure..

B userform

[E Moduie
#: Class Module

Userfom

s

Private Sub UserForm Click()

End Sub

Private Sub UserForm Initialize()

End Sub

Gick

Acivate
Corirol.

BeforeDragover

BeloreDropOrPeste

Cick

—DolCick

Deachte

Merminate
zoom

OEBPS/image/Figure_22.5.jpg
Taining Enrolment Form

RITU ARORA ACADEMY

Emall Address

bt J

OEBPS/image/Figure_10.1.jpg
P D EE -

Formatas Cell | Insert Delete Format
Table~ Styles~ ~ - + | @ Clear~

| ?é, Top/Bottom Rules * R
| Data Bars > N
1 i Color Scales > N
=
Icon Sets »
B NewRule.. [
E@ ClearRules »

[E Manage Rules..

E Duplicate Values...

More Rules...

OEBPS/image/Figure_10.2.jpg
[rew Formatting Rule T |

Select a Rule Type:

» Format all cells based on their values

» Format only cells that contain

» Format only top or bottom ranked values

» Format only values that are above or below average
» Format only unique or duplicate values

» Use a formula to determine which cels to format

Edit the Rule Descripton:

Format values where this formula is true:

[=#D1="sales" |

e
OK Cancel

OEBPS/image/Figure_5.4.jpg
Protect Structure and |

Protect workbook for
v Structure
™ windows

2ix

Password (optional):

OEBPS/image/Figure_5.5.jpg
PivotTable

Organize v Newfolder

Documents library

File name: EEEE1
S s [l

X Favees Inclodes: 2locaions e
5 it 2 Fieshring
e @ Onedie (5| Name rasmorsto e ||
1 4 Recent Places Ji Custom Office Templates. Possword to modity:
2 % Dropbox @ My DataSources Bessonly recommended
3 1 Onelot Notebooks
% bries J Outcck ks
5 [Documents il TS TTET—T: |
6 & Music
7 Eriawes 0]
8
5
10
n

Authors: lenovo Tags: Addatag

Publizh
) Sove Thumbnsil

= Hide Flders

Map Network Drive...
Web Options..

==

Compress Pictures..

OEBPS/image/Figure_5.6.jpg
TAXNVOLE

Star Track Corporation Ltd

Station Road, Mumbai-05

Invoice No Address
Date
Ws
__SrNo Product Qty [Rate [Amount
[
[
[
[
[
[
|
[
(Gross Amount >>
[Add: VAT (14%)
[Less: Discount
| [Net Amount >>

OEBPS/image/Figure_9.22.jpg
DHE B I 9 n oy £ sowen

e Horm | bt Formis | Duta i Vi) e Liyoik Deroper) il Tmmbes

snsioies| W

o

*| | Bwiatonms ~ E2-

o] Bostteoms -

[oEr—

man @ ® & - o x
[commens | (G

st a1m @ scott

OEBPS/image/Figure_3.2.jpg
B8 v i X fx {=SUM(A2:A6*B2:B6)}

A B © D E F
1 Quantity Price
2 2% 600
3 18 $ 17.25
4 12 $ 25.00
5 3 $ 2000
6 7 $ 10.00
7
8
9

Total Sale] _ 812.5]

10

OEBPS/image/Figure_3.3.jpg
Search for a function:

Type a brief description of what you want to do and then
dlick Go

Or select a category: | Most Recently Used :

Select a function:

AVERAGE
P
HYPERLINK
COUNT
MAX

SIN

SUM(numberl.number2....)
Adds all the numbers in a range of cells.

Help on this function

OEBPS/image/Figure_3.4.jpg
2 - | =1F(C2="Manager",1000,500)

APl ConnluasD e o o

EMPNO NAME DESG Branch BASIC HRA

1RAJ OFFICER Mumbai

2RAJESH CLERK Mumbai 500
3 ANAND MANAGE Delhi 1000
4RAJU CLERK Delhi 500
S HEMANT MANAGE Mumbai 1000
6 SANTOSKCLERK Delhi 500
7 BHAUMIKOFFICER Delhi 500
8 MANJIT OFFICER Mumbai 500
9 KAMAL OFFICER Delhi 500
10 SONU CLERK Mumbai 500

OEBPS/image/Figure_3.5.jpg
[1] -0 =IF(H2<5000,H2°0.05, IF(H2<10000,H2°0.1,H2°0.15))
A] c [E E s H 1
EmpcodFirstNam LastNam De Region Branch Hiredate

w|ulolunlaleln]m

OEBPS/image/Figure_3.1.jpg
[Tota Sales

OEBPS/image/Figure_12.2.jpg
Product |Price

Productl |=Jan!B2+Feb!B2+March!B2
Product2
Product3
Productd
Products
Product6
Product?

»] Jan Feb ~March | 2011 <FJ 4

OEBPS/image/Figure_12.3.jpg
Product |Price

Productl m

Product2

Product3 m

Productd
Product5

» M| Jan | Feb ‘Mz

OEBPS/image/Figure_12.4.jpg
Function:
Sum
Reference:

=

[growse...

All references:

Use labels in

] Top row

] Left column

Create links to source data

Add

OEBPS/image/Figure_12.5.jpg

OEBPS/image/Figure_23.1.jpg
Select Object

Select Event

E3Miosot Vil Bsic o Appltons - Gl

Do £t Yiew et Farmat Debug Bun
EE-@ s oB89c > nak

Private Sub Userform_Initialize()

End Sub

Write Code

OEBPS/image/Figure_3.13.jpg
C
A B C D E
Salary Da empcode Hra Gross Tax
10 il 2 10 3 4
55 5 3] [} 7, 8
60 9 Rl 10] 11 12,
empcode |DA Salary Gross
3 55 7
2 1 10|
4 9 60 11

OEBPS/image/Figure_3.10.jpg
Employee Information System

Employee Code

Name [EVLOOKUP (B3 Salary1$AS1:5HS 101.COLUMN(Salary1$851).0)
Region

Department

Salary

OEBPS/image/Figure_3.11.jpg
Employee Information System

Employee Code[1]

[Firstame) =VLOOKUP(B3 SalarylSAS1:5HS 101, MATCH(AS SalarylSA$1:3H$1,0).0)
Region

Department

Salary

OEBPS/image/Figure_3.12.jpg
c11 v =INDEX($AS1:SES8, MATCH($C$10,$C$1:5C$8,0), MATCH(B11, $AS1:$E$1,0))

TONMTIO T R Y R R N ———
L Qw1 Qw2 Year Qw3 Qw4
179710 256530 2003 238743 298005
200939 248342 2004 208143 254058
215163 196065 2005 225809 161280
178401 296915 2006 172994 282426
| 228589 150984 2007 146222 273034
| 162005 105743 2008 230778 224151
291710 213426 2009 244276 141012

auws [22809]

atra 161280

OEBPS/image/Figure_23.6.jpg
© wrocas
" orcasn
< Double click here
e
[oPTproper =
Private Sub OPTproper_Click()
Write your code here
End Sub

Continued...

OEBPS/image/Figure_23.2.jpg
RITU ARORA ACADEMY

Click here

Private Sub OPT_company_ClickQ
Write vour code here

1 Sub

OEBPS/image/Figure_23.3.jpg
oeréemet————— Double click

PR
T s
o

[et =

Private Sub CMD_insert_Click()

Write your code
End Sub

OEBPS/image/Figure_23.4.jpg
 wppercase

 lowercase

 propercase

OEBPS/image/Figure_23.5.jpg
Double click here

Private Sub optlower_Click() Writ
rite your

code here

End Sub

Continued...

OEBPS/image/Figure_11.1.jpg
Set cell:
To yalue:

By changing cell:

lI]-

OEBPS/image/Figure_11.2.jpg
Na v s wN e

A 8 c D r—ry " PR —
— - = 1 | Financial Functions and what if analysis

Financial Functions and what if analysis 2

3

| Loan Amount 100000

; Rate of Interest 10.50%
Loan Amount 100000 PMT (85/12, B6, B4) | 5 Payment/month 36
Rate of Interest 10.50% 7 pmT(EMI] 2(3.25024) X(3:25024)

4 24 (4,637.60)
Payment/month 36 = iz
PMT[EMI] (3,250.24) 10 48 x(256039)

11 60 %(2,149.39)

OEBPS/image/Figure_4.5.jpg
W A @) H BB Y I CS9

5 P search ma @ ® & - o0 x

e e e e e e e el e e [conments
S X g g @¢ = = = L]
ot | s Sty o Ll Da L N b < % v & @
facion | Uisde e % Tmev Refeme~ Tig Fundons© B i ®
ooy odedanes Forui g cotion ~
ViookuP VX e puTe21283,51) S
A 8 @ [3 F G H 1 K [} ™
1 Principle Interest 300000)
2 Rate 14%|
3 Nper |
4 [em =PMT(82/12,83,81)
5 ot et p,] e
6
7
8
9
10
1
2
13
1
15

a5 Sheett +

OEBPS/image/Figure_4.6.jpg
Validation criteria
Allow:
Lﬂ Ignore blank
Data:
between -]

[] Apply these changes to all other cells with the same settings

(Gwm]) (ow]

OEBPS/image/Figure_4.7.jpg

OEBPS/image/Figure_2.3.jpg
oo |wln| =

A B C D E F G H 1
Empcode FirstNam: LastNam¢Dept Region Branch Hiredate Basic HRA
Ferozepur (28126 =H2"50%
=H3'50%
=H4"50%
=H5"50%
|=HE"50%

Hydrabad (36220

Ranganath{R&D

G E W=

OEBPS/image/Figure_2.4.jpg
3000 4000 5000

OEBPS/image/Figure_2.5.jpg

OEBPS/image/Figure_2.6.jpg

OEBPS/image/Figure_2.1.jpg
Relative
Cell
Reference

Types of
Cell
Reference

Mixed
Cell
Reference

Absolute
Cell
Reference

OEBPS/image/Figure_2.2.jpg
njalwinl =

A

Empcode FirstName LastName Dep

B

[

D

F
Branch

G

H

Hiredate Basic

|
HRA

OEBPS/image/ML-LOGO.jpg

OEBPS/image/Figure_3.6.jpg
Raja
Kuldeep
Suman
Beena
Seema
Deepak
Julie
Neena
Pankaj

Andre I

Sujay
Shilpa
Meera
Sheetal
K. Sita
Priya
Aalok
Aakash

Raymondekal
Sharma
Shinde
Mavadia
Ranganathan|
Jain

D'Souza
Mukherjee
Sutradhar
Fernendes
Madhrani
Lele

Lalwani
Desai
Narayanan
Shirodkar
Trivedi

Dixit

Dept

Sales
Admin
Sales
Mktg
R&D
Personal
R&D
R&D
Sales
Mktg
Finance
Admin
Finance
Director
Personal
Personal
Admin
Admin

Region Deptcode

north
north
south
east

north
east

west
north
north
north
east

west
north
east

south
north
north
east

Hiredate

01-Jan-16
01-Mar-17
01-Jan-10
24-Nov-12
04-Sep-13
17-Aug-04
04-Sep-06
04-Sep-08
05-Sep-08
06-Sep-08
07-Sep-08
01-Mar-90
11-Dec-07
12-Dec-13
13-Dec-13
14-Dec-12
01-Mar-83
01-Mar-83

125000
40000
100000
70000
120000
79000
71000
71000
85000
90000
85000
120000
110000
150000
85000
85000
90000
90000

OEBPS/image/Figure_3.7.jpg
A] c D E F G H 1] K i M

Empcode [JEY 2 2 3 4 5 5 6 7) 9 10
BB Raja |Kuideep [Suman |Beena |Seema Deepak |Julie Neena [Pankaj |Andre |Sujay [Shipa
PERBIT™ RaymondeSharma [Shinde [Mavadia ~[Ranganathan|Jain D'Souza |Mukherjee [Sutradhar |Femendes [Madhrani |Lele
IR Sales (Admin [Sales |Mkig [R&D Personal |[R&D RSD [Sales |Mktg |Finance |Admin
[T rorth fnorth [south |east north east |west |noth |noth north [east west
Deptcode [T 70 10 20 30 60 30 30 10 20 40 70
LTI O1-Jan-16] 01-Mar-17|01-Jan-10| 24-Nov-12| 04-Sep-13] 17-Aug-04| 04-Sep-06| 04-Sep-08| 05-Sep-08 | 06-Sep-08| 07-Sep-08| 01-Mar-90
125000 40000 100000 70000 120000 79000 71000 71000 85000 90000 85000 120000

L I

OEBPS/image/Figure_3.8.jpg
ViooKkuP

P) [
Table amay T5] - umber

colndecnam [5] - number

wgetokp | [8] - o

Looks for a value in the leftmost column of a table, and then returns a value in the same row from a column you
specity. By default, the table must be sorted in an ascending order.

Lookup_value s the value to be found in the fist column of the table, and can be a
value, a reference, or a text string.

Formula result =

Cod Com)

OEBPS/image/Figure_3.9.jpg
Employee Information System

Employee Code

Name [EVLOOKUP (83 Salary'$A51:5H5101,2.0)
Region

Department

Salary

OEBPS/image/Figure_1.4.jpg
i

PRI I

s[ElkE

BuNysEEEy

Sheetd

Theme fonts
Calbei Lighe
Calbn
A Fonts
Jgmy®
Aharoni

ot Narrow
Arial Rounded MT Bold

Adial Uricode MS
AventGorde
AvontGorce-800k
Bakenille Old Faxce
Batang

larsey)
ot

[GRETY

vl
=
Zren®

ol

Asgrmant

Com

OEBPS/image/Figure_1.5.jpg
Share
Share
&% Share with People

Email

pint

Eport

Publish

Book2 - Excel

Sgnin 7 —

Share with People
% StpSve o documnt 10 Onivecstion

“ Step 2:Shre yourdocument We'l do s st you've
finshed g

EH

Sweto
Goud

OEBPS/image/Figure_1.6.jpg
Excel Options
Formulas

Data

Proofing

Save

Language
Accessibility
Advanced
Customize Ribbon
Quick Access Toolbar

Add-ins

Trust Center

E‘Q General options for working with Excel.

User Interface options

When using multiple displays:®
© Optimize for best appearance
O Optimize for compatibility (application restart required)
Show Mini Toolbar on selection ®
Show Quick Analysis options on selection
Show Convert to Data Types when typing @
Enable Live Preview ®
O Collapse the ribbon automatically ©
() Collapse the Microsoft Search box by default ®

Show save commands in the application header ©

ScreenTip style: | Show feature descriptions in ScreenTips “:
When creating new workbooks

Use this as the default font: | Body Font v

Font size: |: 12 vt

Default view for new sheets: | Normal View &

Include this many sheets: 1 ¥

Personalize your copy of Microsoft Office

User name: Dell |

[Always use these values regardless of sign in to Office.
Office Theme: | Vbl

Cancel

»

OEBPS/image/Figure_1.7.jpg
wa

EHEBREBO® N0 wEweN~

Reasy

Trust Center

Ready

(& customize the Ribbon

Choose commands from:
Popular Commands

Add orRemove Fiters
A Chart Types
Borders

Calculte Now
Center

Conditions! Formsting
Copy

Custom ot

cu

Decrease FontSize
Delete Cels.

Delee Sheet Columns
Delee Sheet Rows
e

il Color

Font

Font Color

FontSize

Fomat Cels

Fomat Painter

Freeze Panes

Incresse Font Sze
Insert Cels.

Insent Functon.

Insert Picture

Insert Sheet Columns
Insert SheetRows
Insert Table

Merge & Center

SENER> s SiEr=4

5 »Ea >

g

Customize the Rigbon:
Main Tabs

Wi Tabs
) Eackground Removal
@lHome
& Clpbourd
8 fot
8 Algnment
8 Nomber
 styies
@ ces
8 edting
lnsert
T1page Loyout

I Developer
Waddins

]

NewTab | | NewGroup | | Rensme

Customi Reset ~

imgor/bport

o

OEBPS/image/Figure_1.1.jpg
© Open

Info

Save As

Share

Trvvvvivvwyy

Publsh Project timeline Date tracking Gantt chart

Search for online templates Pl ‘

Account Suggested scarches: Business Personal Planners and Trackers Lists Budgets Charts Calendars

O v s bt

Got tarted with

\\V &7

OEBPS/image/Figure_1.2.jpg
Quick Access
oolbar

Al

EB 0 ®NowawNm

lz.
13
14
15|

Ready

Calibei

Pate o B I y-

Cipboard 7

Sheet Tab

Font Asgnment

By default 1 sheet

nsert new shee

Genenal) Conditiona! Formatting =~ = lnsent ~

G2+ % » | BFFormatas Table~ ExDelete -+ - P~
‘|3 7 Censtytes - Eiformats & -

Number

Styles Celts Eting

OEBPS/image/Figure_1.3.jpg
Details about the file i.e. Versions, Created date, Last modified

Create new blank worksheet or templates

‘Normal Save, Save As, Open

Print Preview, Page setup, Print
To Share the file on cloud

To save the worksheet in PDF, email

To Close the Current File

To get the details of user

To make change in default setting of Excel or to customize the Ribbon or to create
new ribbon

OEBPS/image/Figure_21.1.jpg
Debug Toolbar

Immediate Window
Step Into Step Out Quick Watch

Reset

OEBPS/image/pg-94.jpg
Product Region Sales Representative Sales Revenue Sales Quantity
Product A North John $10,000 50
Product D East 48
Product B North Lisa $9,700 52
Product C East Mark $10,300 55
Product D South Sarah $8,900 47
Product A South John $9,500 51
Product B East Lisa $11,200 58
Product C North Mark $10,900 57
Product D West Sarah $12,700 66

OEBPS/image/Figure_2.7.jpg
4000

5000

OEBPS/image/Figure_2.8.jpg
D

e p— "
3000 4000 5000

=D1°C2 =£1'D2 =FI'E2
=D2°C3 =£2'D3 =F2'E3
=D3°C4 =E3°D4 =F3'E4
=D4*C5 =E4'DS =F4"ES
=D5°C6 =£5°D6 =F5'E6

OEBPS/image/Figure_2.9.jpg
Slalulalwlvie

=C$1*$A5
=CS1*SA6

=D$1°$A2
=D$1°9A3
=D$1*5A4
=D$1'$A5

=ES1°SA2
=£51°9A3
=ES1*5Ad
=ES1*SAS
=£51°3A6

=FS1°5A2
=F$1°9A3
=F$1°5A4
=F$1°3A5
=F$1°3A6

OEBPS/image/Figure_15.7.jpg
(a)

(d)

7 Properties

{,J View Code

Run Dialog

Controls

(b)

Macro name:
Subkotal Mac

Hiredate Salary
25-0ct-88
26-0ct-88 17500
11-Dec-84 19250
4-Mar-95 14000 Subtotal
29-Sep-91 13300
3-Mar-99 7000
N, AYTEA

Farmulas Data Re

'f"! [%f Properties
RG]
[o view Code

Insert |Desig
= sde B Run Dialog

| Form Controls
s x« _!j e
[Eh .

Eultjn {Faim ControB \
| ATOVER COTooTs

_J_Ewﬁl_".

OEBPS/image/Figure_15.8.jpg
|Dept Region
Admin East

Empcode First Name LastName Dept Region Branch|
Shinde Sales Cuttack

Femendes Mktg Darjeelin,
Lahwani Finance Calcutta
Trivedi | Admin Cuttack

Patna
Cuttack
Patna
Darjeelin
Calcutta

Mktg
Sales
Personal
| Admin
R&D

19|Satinder Kaur |Sasan
Shetty
Qureshi
Sardesai
Gokhale

39|Kirtikar

OEBPS/image/Figure_15.9.jpg
fout Formulas | Data | Review View Developer

& Clear = 4] pat
|
G Reapply || B = [Facor
= | Textto Remove
Advanced ||| Columns Duplicates 2 Wh
Sort & Fiter Data Taols

Z| sot | Fitter

Advanced

Specify complex criteria ta limit
which records are included in the
result set of a query,

OEBPS/image/Figure_15.3.jpg
VX S ot

7 Condoanstioemsting + (0 Logi s Cani

east Total
north Total
south Total
west Total
Grand Total

1779000
3548000
1784000
1638000
8749000

OEBPS/image/Figure_15.4.jpg
Sort ? X

- Add Level || X Delete Level || [[3Copy Level i A ||~ || options..] My data has headers
Column SortOn Order
Sortby | Region v | |cell values v| |Atoz ~
Thenby | pept v | | cell values v| |atoz M
Thenby |Branch ~ | |Cell Values v| |Atoz v

OK Cancel

OEBPS/image/Figure_15.5.jpg
% Group v #Z | & Data Analysis

Total several rows of related data
together by automatically inserting
subtotals and totals for the
selected cells,

@ Press F1 for more help.

1 O i
< Ungroup ~ “Z || % Solver -
Subtotal |
| outine Analysis
Subtotal

[Replace current subtotals
I Page break between groups
I gummary below data

Remove 4l Cancel

OEBPS/image/Figure_15.6.jpg
Second Level of Outline

14 o [[

ble cells (Alt + :)

OEBPS/image/Figure_15.1.jpg
Excel Options
Generl

Formulss

Dt

Prooling

Sove

Langusge
Accesibity
pr—
Customize Risbon
Quick Access Toooar
Addns

st Center

Choose commands rom:®

[Macros

Customize Quick Access Toolbar D

For lldocuments (default

PrTESTIY
PTESTY
PrTESTV?
RaNDOM
Ranom?
RANKPERC
RANKPERC?
RecRess.
ReGRESS?
sawpLE
sawpLEr
st
Tres
T
& ST
& zZesne

530[30/530 530 3= 30 o T 530 o 330 £ e 0 Y

Show Quick Access Toolbar

Toolbar Pasiton | Above Ribbon !
Abiays show command labols

PTTESTH 2

.

H Tum Autosave om0
H swe
1 emai

<< Bemove,

Modify..
Coramsion [g [0

[mporespnt~ [©

ox

Cancal

OEBPS/image/Figure_15.2.jpg
east Total
north Total
south Total
‘west Total

Grand Total

1779000
3548000
1784000
1638000
8749000

OEBPS/image/Figure_1.14.jpg
y Excel Options v
S View and manage Microsoft Office Add-ins.
Formulas
! Proofing Add-ins
] Save JNafme < S S | Location Type
Language Active Application Add-ins
1 No Active Application Add-ins
1| Ease of Access
1 Inactive Application Add-ins
|| Advanced Analysis ToolPak C\.\Office16\Library\Analysis\ANALYS32.XLL Excel Add-in
4| customize Ribbon Analysis ToolPak - VBA ce16\Library\Analysis\ATPVBAEN.XLAM Excel Add-in
|) Date (XML) s\Microsoft Shared\Smart Tag\MOFLDLL Action
Quick Access Toolbar Euro Currency Tools root\Office16\Library\EUROTOOLXLAM Excel Add-in
Inquire C\..osoft Office\Office16\DCF\NativeShim.dll COM Add-in
Microsoft Actions Pane 3 XML Expansion Pack
Trust Center Microsoft Power Map for Excel C\..ap Excel Add-in\EXCELPLUGINSHELLDLL ~ COM Add-in
Microsoft Power Pivot for Excel C\..el Add-in\PowerPivotExcelClientAddindll COM Add-in
Microsoft Power View for Excel in\AdHocReportingExcelClient.dll COM Add-in

rary\SOLVER\SOLV

Excel Add-in

OEBPS/image/Figure_1.13.jpg
H#
What-If
Analysis ~

OEBPS/image/Figure_1.12.jpg
—

—e

Data
Validation ~

OEBPS/image/Figure_1.11.jpg
Conditional
Formatting ~

OEBPS/image/Figure_1.18.jpg

OEBPS/image/Figure_1.17.jpg
File Home Insert Page Layout [Zel{ulll-S@ Data Review View Helf

A2 BIEBIOE R O B

Insert AutoSum Recently Financial Logical Text Date & Lookup & Math & More
Function < Used ~ < > ~ Time ~ Reference ~ Trig~ Functions ~

(]

OEBPS/image/Figure_1.16.jpg
n
Text to
Columns

OEBPS/image/Figure_1.15.jpg
Query Options

GLOBAL

Data Load

Security
Privacy
Diagnostics

CURRENT WORKBOOK

Data Load
Regional Settings

Layout

[V] Display the Query Settings pane

[V! Display the Formula Bar

Data Preview

[] Display preview contents using a monospaced font

[V! Show whitespace and newline characters

Parameters
[J Always allow parameterization in data source and transformation dialogs

OEBPS/image/Figure_1.10.jpg
1

PivotTable

OEBPS/image/Figure_1.19.jpg
gt Calibri -1 < A A
| Copy -

! v orri - A~
Format Painter BRI U - & e

iboard r Font 5

Inserit Page Layout Formules Data

Q’ Tell me what you want to do

]

[
1]
i

= B Merge & Center ~

OEBPS/image/Figure_1.23.jpg
> AutoSum ~
Fill ~

t
. @ Clear~

BEE
l. Sort Largest to Smallest
Custom Sort...

Filter

Reapply

Y
Yx Clear
N
|

T T |

OEBPS/image/cover.jpg
ADVANCED EXcCEL 365
Including ChatGPT Tips

OEBPS/image/Figure_1.22.jpg

OEBPS/image/Figure_9.8.jpg
W rm @D HER Y I 9 - o 2 sowcn @ ® 5 - 0 x

[Cormer: (R

B E==

N ey

Fle Home It Fomes Deia Redew Viw Pegelsyou Devloper Help Puotlbie e Design

e 2 [Buwsa [[B o -

] @ [e Y- AL
e i (R & Tl ol - oo i)
5 Ji[x v] awmpotar o
et b pivotTable Fields v x

Chooe ek 0 et 15 ot k-2
[sowen »
O g
Bar
O 1

10 GrndTos s o 5

i g b s

i 7 raes ks

o

i S v -

= [asmne - semmaror -

zu =

 — ok

OEBPS/image/Figure_9.9.jpg
DEHEBRE S D s omv £ sexch
Home et Formuas Oata Review View Pageloyout Deveoper Help
Drowiendor O o fows
ek S | o, e, | @ Couenn Hesders] Banded Colams
e e sy opirs
B viid
e | v A K % ok
1 BISO A E-B: soigumiton
2 6o Cokmn ol
NAME - Seuch e e
P L | ot fou ot
elo American D ’
5 Filofax UK %0
6 P80 Shipping Blimlo 5ot Baent Row Tl
7 Rolls Royce jR— R
& shelloil D s
5 e %ot P o
10 Grand Total Sai > Difncerom.
1 X Renene Sumof % tfrnc rom.
n
z Samoevaesty > revigToin
5 Showahes s > g o
15 St [
- [CR— RankLagest to St
IBI steea [_ ot cotors- e

Pivotlble Aralyze Design

Frobese

wea @ © 2 - o x

(B commens

PivotTable Fields

Chooss s t addo eport.

Lo
Oacc

& custame

0 proovcr

Coaee ¥

Drog ks between aeas blow:

it 1 Colums
= fows > oo
cusmuane [smotary

) Dsfr Layout Updae

OEBPS/image/Figure_9.4.jpg
DHEBY S 9 oy P sowen

I
EEe 2l ililen &2

 Tgrom emest 0w sowee Je P

VB el e Acc cusname probucieRcRr arv P s ner
I

ime sher miwe s ol o ¢ e e e
locsho sues e Beil T St s | imey iy e

OEBPS/image/Figure_9.5.jpg
A

1
1
B
1
15
15
u

e

B

Home insert

e

.

. o
[Rep—[inwno.
[Bernie _sIN1012
|gernie 1001
[Bernie SIN1008.
|Bernie sia001
sermie sin1007
|Bernie SIN1007
[Bernie SIN1008.
ljane SIN1004
sne siNI00S
Jane siN1011
Jene SIN1004
ne sia009
ine swaon1
{Jane sIN1014
Isteve sN1002
|steve sinz003
N e

e
Le)

[or———

30-un:
181008
29-Mar-08
2.Aug08
31-Aug 08

27-May-08
12-Aug 08
28-Aug-08
30ep-07
16-4an-08
21-Feb08

¥

Review View

bk, e

Cress whre o want e e ol

Roo1

Cheme ey ot oo e s
[RPVITS——

Pag oyt
P d-B-a

Decloper Help

3

3

o [I

1BM M5 Servers

ek A compaatsever
o s
BT e
Witbresd e Som 2+ Montos
ot 0k KyoraCPonen
ey
o e
Ptk Compagiemes
Yoo a0 Chamhers

43300

5200
275.00
536.00
874,00
55000
536.00
43300
20200
43300

%000
11000

5000
53600
30200
43300

OEBPS/image/Figure_9.6.jpg
A e @D HERE I 9

e Home W fomues Dua Reier Vew Poelymt

i fumotary
e mern 2
& oS =
9 wnsbrest e »
T e et
. e

oesn

3 P

2 seueh
O

Fse [, [

ol N .

wen @ © & - o x
o | SRR
[=

P et (B

] PivotTable Fields v x
- %]
et 2|

L
i

may

=24

(PSR
e

OEBPS/image/Figure_9.7.jpg
W e @D BE R I C D v P

RIS O ey
e e 8 T | B

T R

& 8IS -A-EH-BAY

C——— :

o e

TR

i, =

o R

[

s s

@ ® & - 0 x
3 Commens | (G

Hreim

n.DB,

] PivotTable Fields

o Qbmmmatpin

OEBPS/image/Figure_1.21.jpg
INew

= Sugtestedsearches: Business Personal Phannersand Trackers Usts Budgets Charts Gakendars

Swors Apzex
Going beyond ==
Pie charts
-1 T D S R I < 4 -
Beyond pie charts tutortal Saasonal photo cakendar Basic personal bugget Seasonal Mastrated any yoor . Any year oac. month cakendar Academic alendar

feedhack

prors - I

Basic abarcesheet St sehedle

OEBPS/image/Figure_1.8.jpg
A B &
First Name Last Name Full name

A B
1 Email ID Name

2 nitin.giri@pragatisoftware.com nitin

3Ibeena ore@gmail.com m !
4 |ajay.raj@rediffmail.com
5 |vandana.umesh@pragatisoftware.com

OEBPS/image/Figure_1.20.jpg
File Home
[T

i%
PivotTable Recommended Table

PivotTables
Tables

OEBPS/image/Figure_1.9.jpg
File Home Insert Formulas Data Review View Pagelayout Developer Help

N) W dxr ==Fo- | |G Bcorsonttomuing~ | Eian - “iv O @
b- I u-M|&.A- L W% 9 [Efomata bl & oddato - m's«wmu Amlyze
M - - @ B T cebisyles ~ Efomat~ | O Fiter~ St~ | Data
Cgteod & Fort Ll Ngremen El Namer " Syles. Ceis laning Anilysis be amazie) ks
Al v i XV &1
E £ G H 1 3 3 L M N o » Q R
Chals Touh Tabds Spukline
1
12
y E B E B B @
14 | DataBas Cokr lonSet Geater Tt
15 Sesle Thin Conters fm
:_6, Condmonal Formatting uses rubes 1o highight interesting data.
18
19
< > Sheett + EERE—— e ———— L »

Ready @ ¥ Accrmsibiey Goodiogo Count 21 Sume 2974

OEBPS/image/Figure_9.1.jpg
Report Filter Column
Labels list

138662 80115 238684 150837 173047
149449 82151 240398 166792 178253
144931 84346 250219 169073 181556
147804 84320 247687 168926 177227

| Grand Total

OEBPS/image/Figure_9.2.jpg
Bookl - Excel

A] 3 Online Pictures

i = | o 2

Pvortable RN v | Fictures O P hi Recommended

ivotTsble Recommended Table Pictures My Add-ins - [Recommende
ke) LE B

Tables Hlustrations Add-ins
Recommended PivotTables

Want us to recommend PivotTables
a| that summrize your complex data?

B3

L E F G H 1 J i L

Click this button to get a
customized set of PivotTables that
we think will best suit your data.

dwN e

OEBPS/image/Figure_9.3.jpg
DEHBEDRE S 9 ouv £ secn s

et Fomudos Dus Reiow View Pagelayout Developer Help

5 DB BB B

© P Condtions Fomanss cl | EEOder

< B @ %9 B8 - e s @romar
s 5 o . e 5 w6 s P
a v % ner

s c o € £ o H ' s X L
INVNO. DATE ACC CUSINAME PRODUCIPRGRP QIY CP SP. NET
Beie SINIL2 64an-07 5005 shellOil Sony23'IMonitors 6 43300 58500 90000
Bermie SINI0OI 1SApr08 AOOL AngloAmerican P DeskiePrinters 1L 5200 7500 9000

1
2

5

4 Bernie SINIOOS 29Jul08 AOOL AngloAmerican HPM27LPrinters 3 27500 36000 1080.00
5 Bernie SINIOOL 4-AprO8 AOOL AngloAmerican CompagiSevers 3 53600 80000 2,400.00
6 Bernie SINI0O7 27Jun-08 5005 ShellOil CompaqiServers 2 87400 115000 230000
7 Bernie SINI0O7 304un07 5005 ShellOil IBMMaS Severs 5 55000 995.00 4975.00
8 Bernie SINIOOS 18Jul0B AOO1 AngloAmerican CompaqiSevers 4 53600 80000 320000
9 same SINI0A 29Mar08 F003 FilofaxUK Sony23'Montors 6 43300 62500 187500
10 1ane SINIOOS 2AugO8 ROOL RolsRoyce DaewoolMonitors 3 20200 39000 117000
1jane SINIOLL 31Aug08 WO04 Whitbreadplc Sony23'IMonitors 2 43300 60000 120000
12 1ane SINIOOA 27:May-08 F003 Filofax UK KyoceraCPrinters 4 9000 12000 48000
13Jane SINIOO9 12Aug08 ROOL RolsRoyee Lexmark(Prnters 1 11000 15000 150.00
14 3ane SINIOIL 28:Aug08 WO04 Whitbreadple KyoceraCPrinters 7 %000 10500 73500
15 Jane SINIOM4 30Sep07 F003 Filofax UK Compaqiservers 2 53500 82500 165000
e SNIOR | 16in0n | R0y Plostipg Smifcheson £ | M2 0w Mol
17 Steve SINI0O3 21eb08 ROOL RolsRoyce Sony23'IMomitors 4 43300 65000 2,600.00
15 Gteve SINIAOR JSMavN7 OMA BROShinming Mamwan IManitare 3

<> et —

OEBPS/image/pg-268.jpg
Label Ritu Arora Academy
Label Contact No.
TextBox Enter your company name
Frame Other Details

Option Button Company

Option Button Personal

Command Button Insert

Command Button Cancel

OEBPS/image/Figure_7.1.jpg
W Clear % =7 Flash Fill B

Y Reapply =" B-BRemove Duplicates =
Vo Advanced c‘,.um:s £% Data Validation ~
Sort & Filter Data Tools
Filter (Ctrl+Shift+L)

— Turn on filtering for the selected
cells.

Then, click the arrow in the column
header to narrow down the data.

OEBPS/image/Figure_16.6.jpg
) Fle Edt Wew Insett Fomet Joos Dats Window VBAAddns Help NewMenu

DEER SR VE XD®-#(9-0-BR =
H TR TER S

41 % | b (R3]0
@ By G | YoRenly with

FEe 2 u BS % 2 €5 29

T

Hello World

OEBPS/image/Figure_16.7.jpg
B fe fdit View Insert Format Debug Run Iooks Add-ins Window Help
EE-d:sBamv »uaESF
roject - VBAProject X

@15 col1

(General)

] [Prom

nE@]
T T Esen e A Public Function Profit(sp As Integer,
69 Thisworkbook Profit = cp - sp
- &4 VBAProject (PERSONALXLSB) End Function
= & VBAProject (SIGNATURE AND EN
i {8y Microsoft Excel Objects
Sheett (Sheet!)
48] Thisworkbook
{5 Modules
2 molet
i woalex
& odues

cp As Integer)

OEBPS/image/Figure_16.2.jpg
Project Explorer Properties Window

OEBPS/nav.xhtml

		Cover

		Halftitle

		Title

		Copyright

		Dedication

		Contents

		Preface

		Acknowledgments

		About the Author

		Chapter 1: Overview of Excel 2021

		Introduction

		Structure

		Objectives

		Components of the Excel Window

		Backstage View

		Saving and Sharing Files Online

		Interacting with Excel

		Working with Default Settings

		Formatting of Tables

		Paste Special Preview

		Flash Fill

		Quick Data Analysis

		Data Mining

		TAT Saving Techniques

		Conclusion

		Exercises

		Chapter 2: Cell References and Range

		Introduction

		Structure

		Objectives

		Using Different Types of References

		Types of Cell Reference

		Relative Cell Reference

		Absolute Cell References

		Mixed Cell Reference

		Named Range

		Creating a Named Range

		Editing Named Ranges

		Deleting Named Ranges

		Conclusion

		Exercises

		Chapter 3: Working with Formulas and Functions

		Introduction

		Structure

		Objectives

		Using Formulas in a Worksheet

		Array Formula

		Using Functions

		Example

		IF Function

		Example

		Nested IF

		Example

		IF With AND

		Syntax

		IF With OR

		IF With NOT

		Lookup Functions

		VLOOKUP

		HLOOKUP

		Making VLOOKUP Dynamic

		Using the Column Function in VLOOKUP

		Using the Match Function in VLOOKUP

		Index

		Index-Match

		Conclusion

		Exercise

		Chapter 4: Data Validation

		Introduction

		Structure

		Objectives

		Trace Precedents

		Trace Dependents

		How to Use Trace Dependents

		Setting Data Validation Rules

		Methods of Data Validation

		Creating a List

		Conclusion

		Exercises

		Chapter 5: Protection

		Introduction

		Structure

		Objectives

		Employee Information System

		Protecting a Worksheet by Using Passwords

		Protecting a Workbook

		Protecting a Part of a Worksheet

		Password Protecting a File

		Conclusion

		Exercises

		Chapter 6: Sorting a Database

		Introduction

		Structure

		Objectives

		Definition of Sorting

		Simple Sort

		Multilevel Sort

		Customized Sort

		Conclusion

		Exercises

		Chapter 7: Filtering a Database

		Introduction

		Structure

		Objectives

		Filters

		AutoFilter

		Number, Text, or Date Filters

		Filtering a List Using Advanced Filter

		Filtering Unique Records

		Conclusion

		Exercise

		Chapter 8: Subtotals and Data Consolidation

		Introduction

		Structure

		Objectives

		Subtotals

		Display Subtotal at a Single Level

		Displaying Nested Subtotal

		Consolidate Data

		Example of Consolidated Data

		Conclusion

		Exercises

		Region: East

		Region: West

		Region: South

		Chapter 9: Pivot Tables

		Introduction

		Structure

		Objectives

		Examining Pivot Tables

		Recommended Pivot Table

		Creating a Pivot Table

		Percent of Grand Total

		Group Items in a Pivot Table

		Grouping of Dates

		Monthly Report

		Create a Graph Using Pivot Data

		Weekly Report

		Grouping of Numbers (Creating Slabs)

		Slicer

		Timeline

		Power View

		Power Pivot

		Benefits of Data Model

		Creating a Pivot Table Using Power Pivot

		Conclusion

		Exercises

		Chapter 10: Conditional Formatting

		Introduction

		Structure

		Objectives

		Conditional Formatting

		Conditional Formatting Using Cell Values (Column-based Conditional Formatting)

		Conditional Formatting Using Formula (Record-based Conditional Formatting)

		Icon Set

		Formulas with Multiple Conditions

		Apply a Conditional Formula Based on a Different Sheet’s Cell Reference

		Conclusion

		Exercises

		Chapter 11: What-if Analysis

		Introduction

		Structure

		Objectives

		Goal Seek

		Using the Goal Seek Command

		Projecting Figures Using a Data Table

		One-Variable Data Tables

		Two-Variable Data Tables

		What-if Scenarios

		Creating Scenarios

		Create a Scenario Summary Report

		Delete a Scenario

		Display a Scenario

		Merge Scenarios from Another Worksheet

		Protecting Scenarios

		Conclusion

		Exercises

		Task 1: Goal Seek

		Task 2: Data Table

		Task 3: Scenario Manager

		Chapter 12: Working with Multiple Worksheets, Workbooks, and Applications

		Introduction

		Structure

		Objectives

		Links Between Different Worksheets

		Sheetname!Reference

		Creating Links Between Different Software

		Auditing Features

		Dependent and Precedent Cells

		Workgroup Collaboration

		Sharing Workbooks

		Merging Workbooks

		Tracking Changes

		Creating Hyperlinks

		Creating Links to a Different File

		Conclusion

		Exercises

		Chapter 13: Working with Charts

		Introduction

		Structure

		Objectives

		Creating Charts Using Chart Tools

		Chart Designs

		Adding Titles and Values in Charts Using Chart Tools

		Formatting Charts

		Charts for Data

		Chart Templates

		Chart Filter Option

		Waterfall Chart

		Recommendations

		Sparklines

		Create a Sparkline

		Customize Sparklines

		Change the Style of Sparklines

		Conclusion

		Exercises

		Chapter 14: Creating and Recording Macros in VBA

		Introduction

		Structure

		Objectives

		Introduction to VBA

		Uses of VBA

		Introduction to Macros

		Creating a Macro

		Adding a Developer Tab on the Ribbon

		Recording a Macro

		Defining a Macro

		Macro Storage

		Macro Shortcut

		Macro Description

		Stop Recording

		Relative Reference Macro

		Scenario 1

		Running Your Macro

		Running the Macro by Name

		Scenario 2

		Scenario 3

		Conclusion

		Exercises

		Chapter 15: Assigning Buttons to Macros

		Introduction

		Structure

		Objectives

		Creating Buttons on the Quick Access Toolbar

		Modifying Menus or Buttons

		Scenario 4

		Creating a Button in the Excel Worksheet

		Scenario 5

		Editing the Recorded Macros

		Scenario 6

		Scenario 7

		Scenario 8

		Practice 1

		Practice 2

		Conclusion

		Exercises

		Chapter 16: Functions and Subroutines in VBA

		Introduction

		Structure

		Objectives

		Writing Procedures

		Visual Basic Editor

		Project Explorer Keyboard Shortcuts

		Inserting Modules

		Writing Code Inside Modules

		Sub Procedure

		Macro

		Function Procedure

		Scenario 9

		Branching a Procedure

		Use If…Then...Endif

		Use If...Then...Else…Endif

		Use If...Then...Elseif…Then…Else…Endif OR Select Case… End

		Scenario 10

		Scenario 11

		Scenario 12

		Scenario 13

		Scenario 14

		Conclusion

		Exercises

		Chapter 17: Conditional Statements in VBA

		Introduction

		Structure

		Objectives

		If…End If

		Example

		Select Case

		Example

		Select Case vs. If … End If

		Conclusion

		Exercises

		Chapter 18: Variables and Data Types in VBA

		Introduction

		Structure

		Objectives

		Variables and Constants

		Variables

		Constant

		Declaring Variables and Constants

		Data Types of Variables and Constants

		Using the Option Explicit Statement

		Message Box and Input Box

		Selecting and Activating Cells

		Selecting and Activating Rows and Columns

		Working with Sheets

		Working with a Workbook

		Working with the Application Object

		Scenario 15

		Scenario 16

		Conclusion

		Exercise

		Chapter 19: Looping Structures in VBA

		Introduction

		Structure

		Objectives

		Using Loops (Repeating Action)

		Choosing a Loop to Use

		Using Do…Loop Statements

		Repeating Statements While a Condition is True

		Checking Condition Before You Enter the Loop

		Checking Condition After the Loop Has Run at Least Once

		Scenario 17

		Using For…Next Statements

		Syntax

		Scenario 18

		Using For Each… Next Statements

		Syntax

		Scenario 19

		Scenario 20

		Scenario 21

		Scenario 22

		Scenario 23

		Scenario 24

		Auto-Executed Macros

		Practice 3

		Practice 4

		Scenario 25

		Scenario 26

		Scenario 27

		Conclusion

		Exercises

		Chapter 20: Arrays and Collections in VBA

		Introduction

		Structure

		Objectives

		Arrays

		Declaring the Arrays

		Syntax

		Example

		Using Arrays

		Array Indexing

		Declaring a Dynamic Array

		Syntax

		Resizing a Dynamic Array

		Array Example

		Conclusion

		Exercises

		Chapter 21: Debugging and Error Handling in VBA

		Introduction

		Structure

		Objectives

		Errors

		Error Handling

		Scenario 28

		Error Number

		Scenario 29

		Debugging the Macro

		Conclusion

		Exercises

		Chapter 22: User Forms and User Input in VBS

		Introduction

		Structure

		Objectives

		User Forms

		Creating User Forms

		Adding Other Controls

		Handling Events for the Control

		Scenario 30

		Conclusion

		Exercises

		Chapter 23: Advanced VBA Techniques and Best Practices

		Introduction

		Structure

		Objectives

		Code to Set Initial Values for the Control

		Code for Option Buttons

		Code for Insert Button

		Double-click Insert Button

		Code to Show User Form

		Add-Ins

		Scenario 31

		Code for the Change Case Form

		Creating Menu with Code

		Conclusion

		Exercises

		Chapter 24: Building Custom Add-ins with VBA

		Introduction

		Structure

		Objectives

		Protecting Your Add-Ins with a Password

		Using Add-Ins

		Conclusion

		Exercises

		Chapter 25: ChatGPT with Excel

		Introduction

		Structure

		Objectives

		Using ChatGPT With Excel

		Conclusion

		Exercises

		Index

Page List

		i

		ii

		iii

		iv

		v

		vi

		vii

		viii

		ix

		x

		xi

		xii

		xiii

		xiv

		xv

		xvi

		xvii

		xviii

		xix

		xx

		xxi

		xxii

		xxiii

		xxiv

		xxv

		xxvi

		1

		2

		3

		4

		5

		6

		7

		8

		9

		10

		11

		12

		13

		14

		15

		16

		17

		18

		19

		20

		21

		22

		23

		24

		25

		26

		27

		28

		29

		30

		31

		32

		33

		34

		35

		36

		37

		38

		39

		40

		41

		42

		43

		44

		45

		46

		47

		48

		49

		50

		51

		52

		53

		54

		55

		56

		57

		58

		59

		60

		61

		62

		63

		64

		65

		66

		67

		68

		69

		70

		71

		72

		73

		74

		75

		76

		77

		78

		79

		80

		81

		82

		83

		84

		85

		86

		87

		88

		89

		90

		91

		92

		93

		94

		95

		96

		97

		98

		99

		100

		101

		102

		103

		104

		105

		106

		107

		108

		109

		110

		111

		112

		113

		114

		115

		116

		117

		118

		119

		120

		121

		122

		123

		124

		125

		126

		127

		128

		129

		130

		131

		132

		133

		134

		135

		136

		137

		138

		139

		140

		141

		142

		143

		144

		145

		146

		147

		148

		149

		150

		151

		152

		153

		154

		155

		156

		157

		158

		159

		160

		161

		162

		163

		164

		165

		166

		167

		168

		169

		170

		171

		172

		173

		174

		175

		176

		177

		178

		179

		180

		181

		182

		183

		184

		185

		186

		187

		188

		189

		190

		191

		192

		193

		194

		195

		196

		197

		198

		199

		200

		201

		202

		203

		204

		205

		206

		207

		208

		209

		210

		211

		212

		213

		214

		215

		216

		217

		218

		219

		220

		221

		222

		223

		224

		225

		226

		227

		228

		229

		230

		231

		232

		233

		234

		235

		236

		237

		238

		239

		240

		241

		242

		243

		244

		245

		246

		247

		248

		249

		250

		251

		252

		253

		254

		255

		256

		257

		258

		259

		260

		261

		262

		263

		264

		265

		266

		267

		268

		269

		270

		271

		272

		273

OEBPS/image/Figure_16.3.jpg
Code Window

ObjectBox Procedure Window

Cdo Ares

OEBPS/image/Figure_16.4.jpg
1 —0 L L i |
1 R s S) Sheets (sheetd)

~ 46) Thisworkbook
BE3-d am s
2.2 5 Motk

-8 turol ool (LUROTOLXLA)

486 fumcres (FUNCRESXLA) Properties - Modulel [X]

55 Tnternet_Assistant (HTMLYXLA)
S K

[Module1 Module 'j

Aphabetic |£aw'ized |
. Module! |
e £ W
Isert | Fomat_ Debi
3 efom Typelnew]
i odde

) Coss odde

OEBPS/image/Figure_16.5.jpg

OEBPS/image/Figure_16.1.jpg
o W

OEBPS/image/pg-277.jpg
Object

Reference Edit
Option Button
Option Button
Option Button

Command Button

Property

D R

Value

UPPERCASE
lowercase
Proper Case

EXIT

OEBPS/image/Figure_8.9.jpg
Consolidate

Function:

Reference:

[—

Al references:

Use labels in

Top row

Left column

Create links to source data

OEBPS/image/Figure_8.5.jpg
Help @ Tell me what you vant 1o do

T Snon Queres L Comnections

S Bec
[from Table [B

=] =
Y ENTE
Reresn fiter Totto fash Remow Dt
« DioRecentsources - [W Advanced | cotumns Fil - Dupliates Valdation]

L S

OEBPS/image/Figure_8.6.jpg
Consolidate ? X

Function:

Sum

Sum a
Count

- Averaie

| |Product & Add
| |Count Numbers
StdDev
stdDevp

Var

Var hd
| " rrerow
(O Left column (] create links to source data

_ OK Close

R R O R R ORI

>

Browse...

= Delete

OEBPS/image/Figure_8.7.jpg
| Consolidate ? D

Eunction:

Max e d

E ‘ Browse... -

Use labels in

Top row
Left column (] Create links to source data

OEBPS/image/Figure_8.8.jpg
Consolidate

Eunction:
Max

Reference:

All references:

Use labels in

([Top row
(O teftcolumn (] create links to source data

OEBPS/image/Figure_8.2.jpg
At each change in:
[Dept x
Use function:

Sum 2

Add subtotal to:
Deptcode -

I Hiredate.
T —

I~ Page break between aroups
I Suminary below data

Remove Al Cancel

OEBPS/image/Figure_8.3.jpg
New

Sugpesied seerches Business Persor

[

1
a
7

OEBPS/image/Figure_8.4.jpg

OEBPS/image/Figure_6.1.jpg
Signiin

8, Share

wtosum ~ (A
utoSum va

: Sort & Find &
e Filter Select -
Editl 8| SortAtoZ ~
il sotZtoa 5
Custom Sort...
R U[=
————HY FEilter

%

Y.

OEBPS/image/Figure_6.2.jpg
3L a0d Leve | X petete tevel | B Copyteve | [+][] [tions.. | My data has headers

Column Sort On Order
Sortby | Column C Values. | |Smallest to Largest

OEBPS/image/Figure_13.5.jpg
4,00,000
3,50,000
3,00,000
2,50,000
2,00,000
1,50,000
1,00,000

50,000

2,00,000 25,000
i) 3,25,000
1,00,000
50,000
Material Labour Overhead Subsidy Total Cost

OEBPS/image/Figure_13.6.jpg
B
AFRR
EIEEIEES
EIERIE T

OEBPS/image/Figure_13.7.jpg
(IR

HEEE

»

Y

OEBPS/image/Figure_13.1.jpg
3D Line Col
Map~

5 Tours Spar
Insert Surface or Radar Chart

Click the arrow to see the different
types of surface and radar charts
available and pause the pointeron -

theicons to see a preview in your
document.

OEBPS/image/Figure_13.2.jpg
@ Avosave @o) H B2 B W I T

File Home Insert Formulas Data

0E D

Add Chart Quick | Change 2214
Element v Layout ¥ | Colors v

Chart Layouts =7
Charts Vi

A B

il Column Chart - Basic

Review View Page Layout

om0
" M ¥ ":’1' z - Switch Row/ Select ~ Change | Move
Column Data ChartType = Chart
= oata Tpe | Location ¥
E F H 1 K T ™ N o 4 a R -
W Actual Sales (USS mn) M Target Sales (USS mn) +
300 7|
250 240
200 17 Y
150 122
100 £
54 60 38 49
50 - 11 — 33 A1 2827
o — -
@ RAD DD AD HED ©0 1GAD PEMD
v
01_Thermo 02_2axis 03 Waterfall -+ —_— »

3
[Actual Sales [Target Sales

4 Dept. Name _|(US$ mn) (Us$ mn)

5 corD 54 50
6 RAD 122 96
7 RDD 11 16
8 AD 38 35
9 HFD 176 240
10 ED 33 49
1 LGAD 2 29
12 [pemp I 2)
13

14

15

16

17

18

19

20

< > - SelfRef01 seffRef 02 SelfRef 03
Resdy [R Accesibity: Investigate

Charts - Read... v P Search
Developer Help Chart Design

Format

wron @ ® & - o0 X

| © comments

i M - ————+ 9%

OEBPS/image/Figure_13.3.jpg
A Avosve @) H BB W F - D H v Chorts - Read. v £ search maon @ @ & - o x

File Home Insert Formulas Data Review View Pagelayout Developer Help ChartDesign Format [& comments |
fﬂ 13 (Calibri (Body) Yo A A = % B == & \::/ & -z 2y /O @
bse B T s ki |l === B % 9w % = - E Find &
S 23] A 6 4 B formats | & v Select ¥
Clipboard 15 Font 5 Alignment Number Siyles cets editing Anaysis v
Chart 1 v [z fe v
A 8) 3 3 G H !) K L [N o [Q R a
i Exploded Pie Chart
2 ;',F:: Chart Elements
2 [T + B chart Title
wal Sales
Data Label
4 MM' LcAD E e
5 cDFD 54 o gen
6 RAD 122 PEMD
) RDD 1 < 5%
8 AD 38 0
9 HFD 176 8%
10 ED 33 ROD
1 LGAD 2 2%
12 PEMD 2
_ RAD
b 26% Actual Sales (US$ mn)
1 -
15
16
17
18
19 i -
< > = selfRef01 SelfRef02 SelfRef03 01 Thermo | 02.2axs |03 Waterfall |04 - + i 4 com———— >

OEBPS/image/Figure_24.1.jpg
Mirosol Visual Basic for Applications - Emai Atomationdsm - (Module2 Codel)
4§ 5l o Yo et Famet Debug B Took Adéins Wndow b
HE-G s L8n90) 1 aKETY @]

~ ocirsenst

4 s e Ot
et o)
W e et s
Thsononk
= s Dok ot o v
S ot
|2 nosier
& 28 VBAProject (RNCRES UAW)
= 26 viAProjec (PLRSONALXS0)

Pasrdto e e poprt
>

OEBPS/image/Figure_24.2.jpg
©
@ e
D) e

 oper

o

OneDrve - Persons
o agmin

Otherlocations

B mr
s

Browse

i @ 9

B> Users > Dl > Appta > Roming > Microroft > Addine

(G b o

[e

[Etor s |

o 1

& o

] st

OEBPS/image/Image2817.jpg
Subtotal ? X

At each change in:

Region l v
Use function:
Sum [v

Add subtotal to:

Replace current subtotals
D Page break between groups
Summary below data

Remove All Cancel

OEBPS/image/Figure_24.3.jpg
|
Popular . <. »
R View and manage Microsoft Office add-ins.
Formulas
Proofing Add-ins
Save
(Active Application Add-ins
Adwnced | Analysis ToolPak C\.32XUL Excel Ad
analysis ToolPak - B
Custonize

Fagams

Trust Center

Resources

CALHAM Excel Ad

Internet Assistant VBA CALXAM Excel Ad]
»

Add-i Analysis ToolPak

Publisher: Microsoft Corporation

Location: C:\Program Files\Microsoft Office\Office12\Library\Analysis\ ANALYS32.XLL

Description:

Provides data analysis tools for statistical and engineering analysis

Manage: |Excel Add-ins » GO
o

Z

OEBPS/image/Figure_24.4.jpg
3 @) BB - i X Q
Bl Home e Fomus Osta Reiew View Pogelmyou Developer Help B
= oo addine) B B impon

Visual Macros B Use Relave Reforences |t ns vl Source @ Bpansion Packs 7
e Vi S @

A sty s s "
a v O =i

e
Boiib o i i e T L e B

e

oo o sl o s v
"

o Home Emaillst Sheeti | + s

OEBPS/image/Figure_12.1.jpg
Product |Price

Productl
Product2
Product3
Productd
Products
Product6
Product?

412

499

Feb / Ms

-m;

r
l“»-M | Jan Feb | March

OEBPS/image/Figure_7.6.jpg
" Advanced Filter SR

Action

(@) Filter the list, in-place

© Copy to another location
Lstrange: [5C52:5D52 (z]
Criteria range: E]

Copy to: @

__| Unique records only

(o)

OEBPS/image/Figure_8.15.jpg
iorion plostin oo

80520
115730
77580
90730
115550
66640
76010
82640
71040

OEBPS/image/Figure_8.14.jpg
Consolidate

Function:

Sum v
Reference:

*South Zone'!K6 Browse..

Allreferences:
'East Zone'l$AS1:5C$10

‘South Zone''SAS1:5C$10
“West Zone'SAS1:5C$10

(J Top row
Oteftcolumn (] create links to source data

oK Close

OEBPS/image/Figure_8.13.jpg
~ Consolidate ? X B

Eunction:

Browse... B

L - add r
- - Delete L
| Use labels in S
(O To0p row r

(7] Left column (7] create links to source data

| OK. Close

OEBPS/image/Figure_8.12.jpg

OEBPS/image/Figure_8.11.jpg
e - 5
4 TR S ol 1 . s "
1]

2]

3

5

s| product Sclesnep | Soles Amount
5 prouet 1 Aastutosn Gl 25000
7 rotuct2 kit i 31200
ol roducra ool Sharma 26300
bl ot 1 Chirsgjain 20510
0 o5 Somnath Gendar 35600
il o o Chourasva assi0
2 o7 Lkt Yodoy 2310
i Podcts Manan Kushal 2080
i Foduts Yopesh Londe 00
i

i

v

il

i

20]

21

2|

=

2

S —1

2|

Fia

ol

»

East Zone | Viast Zone | South Zane |

®

OEBPS/image/Figure_7.5.jpg
—

Criteria Range

©NO U AW R

—

List Range

EmpcodeFirst NamLast Name¢__ Dept

BNV AW

T e ———
REBERNSGEGEES

22

Sales
|Admin
Sales
Mkig
R&D
Personal

Region Deptcode Hiredate
north
north
'south
east
north
east

R&D west
& i Raja Raymondeka Sales north 10 01-Jan-16 125000
3 Kuldeep 'Sharma |Admin north 70 01-Mar-17| 40000
2 Suman 'Shinde Sales 'south 10 01-Jan-10/| 100000
3 Beena Mavadia Mktg east 20 24-Nov-12| 70000
4 Seema Ranganathar R&D north 30 04-Sep-13| 120000
5 Deepak Jain Personal |east 60 17-Aug-04| 79000
5 Julie D'Souza R&D \west 30 04-Sep-06 71000
T Pankaj Sutradhar Sales north 10 05-Sep-08| 85000
8 Andre Fernendes |Mktg north 20 06-Sep-08| 90000
10 Shilpa Lele |Admin Iwest 70 01-Mar-90| 120000
1 Meera Lalwani Finance |north 40 11-Dec-07| 110000
x Sheetal Desai Director |east 80 12-Dec-13] 150000
13 K. Sita Narayanan |Personal |south 60 13-Dec-13 85000
14 Priya Personal |north 60 14-Dec-12] 85000
16 Aakash |Admin east 70 01-Mar-83 90000
17 Parvati Mktg \west 20 13-Aug-86 60000
18 Farhan Mktg north 20 05-Jun-99| 34000

OEBPS/image/Figure_8.10.jpg
Consolidate 2 X

Function:
Max

Reference:
ses7sks13]

Al references:

Use labels in

(O Top row
([Left column (O create links to source data

OEBPS/image/Figure_5.1.jpg
Employee Information System

Employee Code| 1l
First Name Raja Raymondekar
Region North
Dept Sales

Salary 15625

OEBPS/image/Figure_5.2.jpg
Levels of Protection

Workbook Level Worksheet Level Cell Level
Protection Protection Protection

OEBPS/image/Image2708.jpg
— - —

é‘l Sort Smallest to Largest

,Z\,], Sort Largest to Smallest

Sort by Color >
Sheet View >
? Clear Filter From "Salary
lor >
Number Filters >
‘Search

| (Select All) A
¥|34000
¥/40000
145000
150000
153000
-v]55000
¥/60000

¥/65000 v

‘: Cancel] |

OEBPS/image/Figure_5.3.jpg
Protect the workbook

1. Protect the workbook structure
2. Protect the work book window

OEBPS/image/Figure_14.8.jpg
Product Name [Quantity [Price |

Monitor [|
__
PenDive [[|

OEBPS/image/Figure_14.9.jpg
Product Name Total
S |

Monitor | |

Keyboard | | |
PenDrive | [|
e

OEBPS/image/Figure_14.4.jpg

OEBPS/image/Figure_14.5.jpg
Home

lnsed ! Formulas

Visual Ma
Basic

R

lnsert Design
Mode

Use relative references so that
macros are recorded with actions
relative to the initial selected cell.

For instance, if you record a macro
in cell A1 which moves the cursor
to A3 with this option turned on,
running the resulting macro in cell
J6 would move the cursor to J3.

If this option was turned off when
the macro was recorded, running it
in cell J6 would move the cursor to
A3,

OEBPS/image/Figure_14.6.jpg
HB9-vc-3 &)+ Bookl - Microsoft Excel

Home Insert Page layout Formulas Data Review View | Developer |

X j 3 @ Stop Recording
=== =22 [Use Relative References

»@ % (&F Properties

=, uzp Biopeiies

Gel View Code & Expansion Packs
Visual Macros Insert Design Source
Basic 3\ Macro Security ~ Mode 1 RunDialog %} Refresh Data
Code Controls
AL ~Q £ | Pragati Software Pvt. Ltd.
s I

4] !
1 Pragati Software Pvt. Ltd.

als|w o

OEBPS/image/Figure_14.7.jpg
BN By

@ s
e Home Wt Fornds Oia Revew View Pegeloyt Deoper Hip
OB 4xﬂﬂ e | [s

i ——— i view coe 1 Seion iy
Voo 7 X | @ reknom

B
s
o
o
e
crtens.

Nacon i 0 0pen Workocks
p—

1B =

OEBPS/image/Figure_14.1.jpg
a (]

B d |em
B
s

e

T

[——

o st ©

[——

P -

Bmitomases
B
[l
e
[ty
Bosercims
[
e
s
Do ol
Srora s
B
e
[ooechy
Gt
T

BT

@

jers
e
S
S0 e
g
0o

SO
St o

(e D
v O @

T ET———

OEBPS/image/Figure_14.2.jpg
@ - -E0&) Bookl - Microsoft Excel
el SRk bt

Home Insert Page Layout Formulas Data Review View. \ Developer

‘ﬂ E |E3 Record Macro| i s v‘\z‘ (5 Properties
| 2B
~= Use Relative References | 4 gelview Code

T Map Properties. [3
‘& Expansion Packs

Visual Macros Insert Design Source
Basic 3\ Macro Security ‘ v Mo,?! # Run Dialog || “@} Refresh Data
Code [Controls XML
Record Macro
Record 3 macro. Eelnsr aalas'G - -

Each of the commands you perform
‘will be saved into the macro so
that you can play them back again.

OEBPS/image/Figure_14.3.jpg
Macro name:

lMacrol
Shorteut key:
Crl+ r
Store macro in:

This Workbook

Personal Macro Workbook
New Workbook

De:

OEBPS/image/Figure_25.8.jpg
How to deactivate GetPivotdata in excel

To deactivate the GetPivotData feature in Excel, you can follow these steps:

Select any cell within the pivot table.
. Go to the "Options" or "Analyze" tab in the Excel ribbon.
. Click on "Options” or "PivotTable Options", depending on your version of Excel.
. In the "PivotTable Options” dialog box, go to the "Data” tab.
Under the "Data" tab, uncheck the "Generate GetPivotData" checkbox.

oA W N o

. Click OK to save your changes.

Once you have completed these steps, the GetPivotData function will be deactivated in your

pivot table.

X

OEBPS/image/Figure_25.4.jpg
How To analyse this data

To analyze this data, you can use various Excel functions and tools to perform calculations,

create charts, and filter the data. Here are some steps you can follow:

1. Convert the data into an Excel table by selecting the data range and pressing Ctrl+T. This
will allow you to sort, flter, and analyze the data more easily.

2. Use the SUM function to calculate the total amount spent on each product group, lie
this: =SUNIF (PRGRP, "Monitors” ,NET)" to get the total spent on monitors.

3. Create a PivotTable to summarize the data and gain more insights. You can drag and
drop fields such as CUSTNAME, PRODUCT, PRGRP, QTY, CP, S.P. and NET into the Rows
and Values areas to calculate the total amount spent by each customer o product group.

4. Create a column chart to visualize the total amount spent by each product group. You
can do this by selecting the product group names and the corresponding total amounts,
then clicking the Insert tab and selecting Column Chart.

Use filters to narrow down the data by selecting specific customers or product groups.

You can do this by clicking the drop-down arrow next to the column headers and

selecting the desired values.

These are just a few examples of how you can analyze this data in Excel. Depending on your

specific needs and questions, you can use various other Excel functions and tools to further

analyze the data.

& @

OEBPS/image/Figure_25.5.jpg
WD W EWN

WWWRNNNNNNNNNRN R 2 e e
NRPOVLRIINOOHEBDNORLROL®OIYOO AR PO

2
)

Row Labels Sum of QTY
= Anglo American 30
Compaq H16 250mb 7
Eizo 19" CAD 4
HP Deskjet Printer 12
HP M27 Laserjet 7
= Filofax UK 12
Compaq H16 250mb 2
Kyocera Deskjet 4
Sony 23" Flat screen 6
=/P&O Shipping 24
Daewoo 23" 3
Dell 260 mb 2
Eizo 19" CAD 15
Kyocera Laser 28ppm 4
=Rolls Royce 15
Daewoo M56 3
Dell 260 mb 5
Lexmark G25 printer 3
Sony 23" Flat screen 4
= Shell Oil 13
Compagq 1000mb 2
1BM M45 Server 5
Sony 23" Flat screen 6
= Whitbread plc 23
Daewoo M56 12
1BM M45 Server 2
Kyocera Deskjet 7
Sony 23" Flat screen 2
Grand Total 117

OEBPS/image/Figure_25.6.jpg
This table shows the sum of the QTY (quantity) of each product sold for each company. To

analyze this data, you can:

1. Identify the top selling products - Look for the products with the highest quantity sold.
For example, the Sony 23" Flat Screen was the top-selling product with a total quantity
soldof 18 (6 + 6 + 4 + 2).

2. ldentify the top performing companies - Look for the companies with the highest
quantity sold. For example, P&O Shipping sold the highest quantity of products with a
total quantity sold of 24.

3. Compare sales between companies - Look for patterns and differences in sales between

companies. For example, Anglo American sold a total of 30 products, which is almost

three times the number of products sold by IBM M45 Server, which sold only 7 products.

4. Compare sales of products within companies - Look for patterns and differences in sales

of products within a company. For example, Filofax UK sold 6 Sony 23" Flat Screens and 2

Compaq H16 250mb Servers, while Shell Oil sold 6 Sony 23" Flat Screens and 2 Compaq
1000mb Servers.

S Reaenerate resnonse

Fels

OEBPS/image/Figure_25.7.jpg
vbnet) Copy code

Option Explicit
" This function converts a given word in rupees to a number

ing) As D

Function WordsToNumbers(ByVal words As
' Create a new instance of the SpVoice object
Dim speech As New SpVoice
' Convert the text to speech
speech.Speak words, @

' Extract the numbers from the spoken text

WordsToNumbers = Val(speech.CurrentVoice.GetOutput(Nothing, Nothing, SpeechVoi

End Function

OEBPS/image/Figure_13.jpg
Phase | Cost |
50,000
1,00,000

2,00,000
Subsidy (25,000)
3,25,000

OEBPS/image/Figure_25.1.jpg
If an alphabet appears once in word replace it with a "2". If an alphabet appears more than
once replace it with a "*" in excel. Please tell formula

You can use the following formula in Excel to replace single occurrences of letters with "2"
and multiple occurrences with "**:

TIF(A1,"*"&MID (A1, ROW(INDIREC (A1))),1)&

Assuming the word is in cell A1, this formula uses the * counTzF* function to count the

number of times each letter in the word appears in the word. If a letter appears more than

once, the formula returns "**, otherwise it returns "?".

OEBPS/image/Figure_25.2.jpg
What is the shortcut of Insert Column in excel

The keyboard shortcut to insert a column in Excel is:
Alt + |, then C

This shortcut works in most versions of Excel, including Excel 2019, Excel 2016, Excel 2013,
and Excel for Office 365.

Here are the steps to insert a column using the keyboard shortcut:

1. Select the column to the right of where you want to insert the new column.
2. Press Alt + | to open the Insert menu.

3. Press C to select the "Insert Sheet Columns” option.

OEBPS/image/Image2715.jpg
%l Sort Smallest to Largest

ﬁl Sort Largest to Smallest

Sort by Color >,
Sheet View >
SZ Clear Filter From "Emg

Filter by Color >
Number Filters >
Search

) (Select All) ~

v]1

]2

CE]

V4

vI5

16

vl7

V|8 v

| Cancel 1 :

OEBPS/image/Figure_25.3.jpg
E
CUSTNAME
Shell Oil
Anglo American
Anglo American
Anglo American
Shell Oil
Shell Oil
Anglo American
Filofax UK
Rolls Royce
Whitbread plc
Filofax UK
Rolls Royce
Whitbread plc
Filofax UK
P&O Shipping
Rolls Royce
P&O Shipping
Anglo American

E
PRODUCT

Sony 23" Flat screen
HP Deskjet Printer
HP M27 Laserjet
Compaq H16 250mb
Compaqg 1000mb
IBM M45 Server
Compaq H16 250mb
Sony 23" Flat screen
Daewoo M56

Sony 23" Flat screen
Kyocera Deskjet
Lexmark G25 printer
Kyocera Deskjet
Compaq H16 250mb
Eizo 19" CAD

Sony 23" Flat screen
Daewoo 23"

Eizo 19" CAD

G

PRGRP

Monitors

Printers |

Printers
Servers
Servers
Servers
Servers
Monitors
Monitors
Monitors
Printers
Printers
Printers
Servers
Monitors
Monitors
Monitors
Monitors

H
Qry
6

-
N

P WARUNNRANWOSAUGUNWW

|
cp
433.00
52.00
275.00
536.00
874.00
550.00
536.00
433.00
202.00
433.00
90.00
110.00
90.00
536.00
302.00
433.00
320.00
302.00

J
S.p.

585.00
75.00
360.00
800.00
1,150.00
995.00
800.00
625.00
390.00
600.00
120.00
150.00
105.00
825.00
450.00
650.00
400.00
400.00

K
NET
900.00
900.00
1,080.00
2,400.00
2,300.00
4,975.00
3,200.00
1,875.00
1,170.00
1,200.00
480.00
150.00
735.00
1,650.00
900.00
2,600.00
1,200.00
1,600.00

OEBPS/image/Figure_2.12.jpg
8 =
Total salary =sUtical)
Lowest Salary =MIN(sal)
Highest Sala~y =MAaXisal)
Average cf Salary =AVERAGEisal)

No.of Frop =COUNT(sAl)

OEBPS/image/Figure_2.13.jpg
Name Manager

New... Edit..

ter ~

Name. Value

Refers To Scope Comment

Refers to:

P [=sheernisasizsast

Close

OEBPS/image/Figure_2.14.jpg
Name:
Scope: Iwcr&«boo& X]
Comment: _‘.J

Referstor [Coaaryigrszsrion EN]
[)
Y

OEBPS/image/Figure_2.10.jpg
Slolalaleln-

OEBPS/image/Figure_2.11.jpg
sal -

fo | salary

F

G

ERESEESGGHEGRESEOw® v wnaswn =

[Raymondekar
shinde
sharma
Mavadia
Ranganathan
D'souza

jsa
Mukherjee
sutradhar
Feendes
[Madhrani
Lele
Lalwani
Desai
Narayanan
hirodkar
[Trivedi
Dixit
Khanna
sadiq
sasan

Panchal

Sales
iSales
{Admin
Mkig

R&D

R&D
Personnel
R&D

sales
Mitg
Finance
|Admin
Finance
(Director
Personnel
Personnel
(Admin
/Admin
[Mktg
Mktg
Mitg
IMktg

west

north

west
north
east

south
north

east
west
north
north
east
west

Branch
Ferozepur
Cuttack
Hydrabad
Delhi
Kanpur
Mathura
Pune
|Agra
(Ambala
Darjecling
Pune
|Jammu
Calcutta
cochin
hammu
|1aipur
Cuttack
[Nasik
[Mathura
|saipur
Patna

Nasik

Hiredate | Salary

